Discussion: practical aspects of IID bandits

Where we are:
- covered so far:
 - IID bandits: upper & lower bounds
 - Bayesian bandits via Thompson Sampling
 - 5 algorithms => 5 general techniques
 - basic & self-contained, except:
 - more complicated analysis for UCB1 and the sqrt{T} LB with better constants
 - proof for log(T) lower bound
 - log(T) upper bound for Thompson Sampling
- Coming up next
 - start with simple model, push in different directions
 - constrained function classes: Lipschitz, linear, convex
 - adversarial rewards (full feedback and bandit feedback)
 - contextual bandits
 - later: dynamic pricing (& similar problems),
 connections to game theory & mechanism design

Algorithms for IID bandits: practical performance
- Thompson Sampling is as good as anything else (and applied in practice)
- Doubling trick: bad in practice, blows up regret by constant factor
- UCB with decreased confidence radius $r_{t}(a)$
 - log(T)-->log(t) (also removes the need to know T)
 - plug in estimate of reward variance $Var(a)$
 - recall: small & known variance => can plug it into the confidence radius;
 instead, one can estimate the variance ...
 - UCB-tuned: $r_{t}(a) = \frac{\ln t}{\sqrt{\frac{1}{n_{t}(a)} \cdot V_{t}^{UCB}(a)}}$, where $V_{t}^{UCB}(a)$ is approx. UCB on $Var(a)$
 From the original UCB1 paper. Good performance in simulations, no provable bounds.
 - UCB-V: $r_{t}(a) = \frac{2 \ln t}{\sqrt{n_{t}(a)}} V_{t}(a) + c \log t \frac{1}{n_{t}(a)}$, where $V_{t}(a)$ estimates $Var(a)$
 Use an estimate instead of UCB, but add a correction term.
 In a follow-up paper; comes with theoretical guarantees.
 - just replace const $\times \log t$ with 1! Worked pretty well in simulations (for some generalizations of IID bandits).
 - UCB2: $r_{t}(a) = \frac{\alpha \log(t/n_{t}(a))}{n_{t}(a)}$, and each chosen arm is played $\beta n_{t}(a)$ times in a row
 From the original UCB1 paper; explains “1” in UCB1!
 ... for carefully chosen constants α, β
• Successive Elimination is not good in practice: sampling uniformly from active arms suffices for theory, but you want to sample better arms more often
 ○ Successive Elimination with "better" arms selection: e.g., based on Thompson Sampling: published in follow-up work, works OK in simulations
• eps-greedy: (very) good in some regimes, but very sensitive to the choice of eps
• ϵ_t-greedy, $t = \min(1, \frac{cK}{d^t})$ Needs $d \approx \min_{a: \Delta(a) > 0} \Delta(a)$
 Performs very well with the right d.
 But very sensitive to the choice of constant c -- needs diff constants for diff instances!

Evaluation on simulated data [more complicated than it seems]
• Need to try many different "regimes" for reward function μ
 ○ 2 arms: {small/medium/large Δ} x {small/medium/large μ_1}
 ○ K arms: {fraction of good arms} x {# "types" of arms} x {all values shifted up/down}
 ○ deviations from IID - much more complicated, will discuss with adversarial rewards
• different "tunings" of the same algorithm
 ○ ideally, one tuning for all regimes
 ○ ... but if we know smth about typical problem instances, may be ok to tune to the instance
• which time horizon do we care about? what if one algo is better initially but worse later?

Simulate on real data [more complicated than it seems]
• ideal: full feedback data -- but where do we get such data?
 Can take real data from different problems, and "fake" a bandit problem
 ○ multi-class classification datasets \Rightarrow contextual bandits with 0-1 rewards
 • omit contexts \Rightarrow fake an instance of IID bandits (with 0-1 rewards)
 ○ repeated auctions with bids \Rightarrow can use bids as customers' "private values" for dynamic pricing
 • caveat: in repeated auctions, one may have very different participants compared to dynamic pricing,
 so typical "private values" may be different
 ○ data from recommender systems
 • users and songs/restaurants/movies that they chose
 • data point = (user, <user features>, chosen item, <rating for this item>)
 reward = 1 or "rating" for all chosen items, 0 otherwise
 \Rightarrow can use it to create an instance of contextual bandits
 • caveat: data may depend heavily on the "menu" offered to the users, might not reflect their true preferences
• minimally: need enough samples from each arm to estimate the mean reward for this arm
 ○ good: probably ok to have less samples from bad arms
 ○ bad: only estimates, not the true values; inserts IID assumption into the data;
 (also, this approach is not suitable to simulate contextual bandits)
 ○ ugly: data collection needs to explore!
 so one needs to deploy [something like] a bandit algorithm just to collect the data.
• counterfactual evaluation:
 ○ what would have happened if you ran this algorithm when collecting the data?
 ○ again, data collection needs to explore
... and record the data very carefully, we’ll discuss this more in the class on “contextual bandits”.

- available datasets
 - multi-class classification – lots of publicly available datasets, widely used.
 - recommender systems: movies, songs, restaurants, shared bookmarks (some data available)
 - Yahoo news dataset: essentially, contextual bandits.
 Probably the only “real” bandit dataset available publicly.
 - medical trial data: lots of medical trials, a few are available publicly
 (... and I’ve seen a paper that simulates bandits on that data)

Real-world applications [more complicated than it seems]

- most common: A/B testing
 - essentially, Explore-First with uniform-at-random arms selection
 - pros: easier to implement in practice, easier to understand, does not rely on IID assumption
 - cons: inefficient like "Explore-First".

- Thompson Sampling:
 - published: at Microsoft (old version of the ad platform), Google Analytics (ad targeting)
 - rumors: Twitter, Criteo (ad targeting), Netflix, LinkedIn

- versions of UCB1 -- anecdotal evidence, at least for some small-scale deployments
- Contextual bandits: at Microsoft (MSN News, Bing, Ads), Yahoo (News, possibly also Ads), LinkedIn
- many deployments not publicized (trade secrets, engineers don't care to publish, afraid of bad PR)

Barriers for adoption: in practice, one might not have ...

- ... the right feedback:
 - might not know how to define "rewards"
 - rewards not always observed and/or arrive too late
- ... the right algorithm [yet] (because the setting is more complicated than IID bandits)
- ... the right infrastructure: it may be difficult to ...
 - ... insert a bandit algorithm into the existing system
 - ... implement the logging in the right way
 (logging is mainly done for debugging and charging, and ML is an afterthought)
 - ... have a sufficiently fast feedback loop
- ... enough data points for bandits to make a difference
- ... buy-in from management:
 - do we really need to explore? are we not afraid to explore?
 - why would it help to go beyond A/B testing?
 - inertia: why change? e.g., we already *have* A/B testing ...
- ... the manpower and/or expertise

For all these reasons, it helps to have "ML system" = {algorithms & infrastructure}, not just algorithms

- Ideally: one system for many applications.
- **Multi-world Testing Decision Service**: a system for contextual bandits developed at MSR-NYC