• All problems can be solved by a fairly basic application of concepts covered in class. Problem (2b) requires a somewhat careful argument (but see the hint).
• Please feel free to refer to facts proved in lecture notes. It would probably be useful to state the “clean event” once and use it for several problems.
• OK to discuss solutions with others, but write your own solutions separately.

Notation. We will use some notation from the class. T is the time horizon, K is the number of arms, a_t is the arm chosen at time t, μ^* is the expected reward of the best arm. For each arm a, $\mu(a)$ is the expected reward, and $\Delta(a) = \mu^* - \mu(a)$ is the “badness”.

Problem 1: rewards from a small interval. Consider a version of the problem in which all the realized rewards are in the interval $[\frac{1}{2}, \frac{1}{2} + \epsilon]$ for some $\epsilon \in (0, \frac{1}{2})$. Define versions of UCB1 and Successive Elimination attain improved regret bounds (both logarithmic and root-T) that depend on the ϵ.

Hint: Use a more efficient version of Hoeffding Inequality in the slides from the first lecture. It is OK not to repeat all steps from the analysis in the class as long as you explain which steps in the analysis are changed.

Problem 2: instantaneous regret. Recall: instantaneous regret at time t is defined as $\Delta(a_t)$.

(a) Prove that Successive Elimination achieves “instance-independent” regret bound of the form

$$E[\Delta(a_t)] \leq \frac{\text{polylog}(T)}{\sqrt{t/K}} \quad \text{for each round } t \in [T]. \quad (1)$$

(b) Let us argue that UCB1 does not achieve the regret bound in (1). More precisely, let us consider a version of UCB1 with $UCB_t(a) = \bar{\mu}_t(a) + 2 \cdot r_t(a)$, where $\bar{\mu}_t(a)$ and $r_t(a)$ are as defined in class. (It is easy to see that the analysis from the class carries over to this version.) Focus on two arms, and prove that this algorithm cannot achieve a regret bound of the form

$$E[\Delta(a_t)] \leq \frac{\text{polylog}(T)}{t^{\gamma}}, \quad \gamma > 0 \quad \text{for each round } t \in [T]. \quad (2)$$

Hint: Fix reward function μ. Focus on the clean event. If (2) holds, then the bad arm cannot be played after some time T_0. Consider the last time the bad arm is played, call it $t_0 \leq T_0$. Derive a lower bound on the UCB of the best arm at t_0 (stronger lower bound than the one proved in class). Consider what this lower implies for the UCB of the bad arm at time t_0. Observe that eventually, after some number of plays of the best arm, the bad arm will be chosen again, assuming a large enough time horizon T. Derive a contradiction with (2).

(c) Derive a regret bound for Explore-first with N steps of exploration, namely: an “instance-independent” upper bound on the instantaneous regret. (There are two cases: $t \leq N$ and $t > N$, the first case being trivial.)
Problem 3: bandits with predictions. In “bandits with predictions”, after T rounds the algorithm outputs a prediction: a guess y_T for the best arm. We are mainly interested in the instantaneous regret $\Delta(y_T)$ for the prediction.

(a) Take any bandit algorithm with an instance-independent regret bound $E[R(T)] \leq f(T)$, and construct an algorithm for “bandits with predictions” such that $E[\Delta(y_T)] \leq f(T)/T$.

(b) Consider Successive Elimination with $y_T = a_T$. Prove that (with a slightly modified definition of the confidence radius) this algorithm can achieve

$$E[\Delta(y_T)] \leq T^{-\gamma} \quad \text{if} \ T > T_{\mu,\gamma},$$

where $T_{\mu,\gamma}$ depends only on the mean rewards $\mu(a) : a \in A$ and the γ. This holds for an arbitrarily large constant γ, with only a multiplicative-constant increase in regret.

Hint: Put the γ inside the confidence radius, so as to make the “failure probability” sufficiently low.

(c) Prove that alternating the arms (and predicting the best one) achieves, for any fixed $\gamma < 1$:

$$E[\Delta(y_T)] \leq e^{-\Omega(T^\gamma)} \quad \text{if} \ T > T_{\mu,\gamma},$$

where $T_{\mu,\gamma}$ depends only on the mean rewards $\mu(a) : a \in A$ and the γ.

Hint: Consider Hoeffding Inequality with an arbitrary constant α in the confidence radius. Pick α as a function of the time horizon T so that the failure probability is as small as needed.

Problem 4: doubling trick. Take any bandit algorithm A for fixed time horizon T. Convert it to an algorithm A_{∞} which runs forever, in phases $i = 1, 2, 3, \ldots$ of 2^i rounds each. In each phase i algorithm A is restarted and run with time horizon 2^i.

(a) State and prove a theorem which converts an instance-independent upper bound on regret for A into similar bound for A_{∞} (so that this theorem applies to both UCB1 and Explore-first).

(b) Do the same for $\log(T)$ instance-dependent upper bounds on regret.

Note: in this case, regret increases by a $\log(T)$ factor.

Note: consider a regret bound of the form $C \cdot f(T)$, where $f(\cdot)$ does not depend on the reward function μ and C does not depend on T. Such regret bound is called *instance-independent* if C does not depend on μ, and *instance-dependent* otherwise.

Problem 5: lower bound for non-adaptive exploration. Consider a algorithm such that:

- in the first N rounds (“exploration phase”) the choice of arms does not depend on the observed rewards, for some fixed N;
- in all remaining rounds (“exploitation phase”) the algorithm only uses observed rewards from the exploration phase.

Prove that any such algorithm for two arms must have regret $E[R(T)] \geq \Omega(T^{2/3})$ in the worst case.

Note: In particular, regret bound for Explore-First cannot be improved.

Hint: Assume a deterministic algorithm and use the “bandits with predictions” impossibility result from class (Lemma 1.1 in Lecture note 4).