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ABSTRACT
This paper considers two inter-related questions: (i) Given a
wireless ad-hoc network and a collection of source-destination
pairs {(si, ti)}, what is the maximum throughput capacity
of the network, i.e. the rate at which data from the sources
can be transferred to their corresponding destinations in the
network? (ii) Can network protocols be designed that jointly
route the packets and schedule transmissions at rates close
to the maximum throughput capacity? Much of the ear-
lier work focused on random instances and proved analyt-
ical lower and upper bounds on the maximum throughput
capacity. Here, in contrast, we consider arbitrary wireless
networks. Further, we study the algorithmic aspects of the
above questions: the goal is to design provably good algo-
rithms for arbitrary instances. We develop analytical per-
formance evaluation models and distributed algorithms for
routing and scheduling which incorporate fairness, energy
and dilation (path-length) requirements and provide a uni-
fied framework for utilizing the network close to its maxi-
mum throughput capacity.

Motivated by certain popular wireless protocols used in
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practice, we also explore “shortest-path like” path selection
strategies which maximize the network throughput. The
theoretical results naturally suggest an interesting class of
congestion aware link-metrics which can be directly plugged
into several existing routing protocols such as AODV, DSR,
etc. We complement the theoretical analysis with extensive
simulations. The results indicate that routes obtained using
our congestion aware link-metrics consistently yield higher
throughput than hop-count based shortest path metrics.

1. INTRODUCTION
Two central questions in communication networks are:

what is the throughput capacity of the network, and how can
one utilize the network close to the capacity? In other words,
given a collection of source-destination pairs {(si, ti)}, what
is the maximum rate (throughput) at which the network can
transfer data from the sources to their corresponding des-
tinations? There are many factors effecting this question
such as interference, fairness and energy constraints. For
a wired network, some of these constraints can be formu-
lated easily as a simple linear program (LP), but this prob-
lem is non-trivial to solve in the case of wireless networks
due to interference. An influential result on the capacity of
wireless networks is that of Gupta and Kumar [9]. They
show that, given n identical randomly distributed nodes on
a unit square, with each node having an independent ran-
domly chosen destination, the uniform per node throughput
capacity in bit-meters/second, is Θ( 1√

n log n
): this is sub-

linear in the number of nodes, in contrast with the wired
setting. Several extensions of the basic result have recently
been considered, see Section 9 for additional discussion.

Here, building on the earlier results in [16], [13], and [17],
we study the algorithmic aspects of both the inter-related
questions posed earlier, namely: (i) What is the maximum
throughput capacity of the network? (ii) How to design
network protocols that jointly route the packets and sched-
ule transmissions at rates close to the maximum throughput
capacity. In contrast to the results in [9], we focus on (a)
arbitrary instances rather than just random node distribu-
tions, (b) allow nodes to have varying transmission ranges
instead of uniform ranges, (c) consider not only the uniform
node-throughput metric but other natural linear functionals
of node throughputs and (d) consider linear constraints such
as total energy consumed and path length.

Key technical contributions of our work include a novel
definition for congestion which captures the central proper-
ties of wireless interference, linear models for a wide class
of wireless throughput maximization problems, and the no-



tion of rate competitiveness of scheduling algorithms. Our
techniques can accommodate a variety of path selection con-
straints such as low energy, low hop-count, etc. as well as
incorporate wireless technologies such as multiple channels
and directional antennas. The algorithmic and analytical
techniques introduced here are applicable to a variety of in-
terference models including the Protocol Model and could
be of independent interest. The main contributions of this
paper are as follows:

1. Given an arbitrary wireless network G = (V, E), where
each node can have a different transmission range, and a set
of k arbitrary source-destination pairs, we describe a polyno-
mial time approximation algorithm that computes the max-
imum achievable throughput in G to within a constant fac-
tor. Thus, this is an algorithmic version of the Gupta and
Kumar [9] result, and gives a way of quantifying the ca-
pacity for an arbitrary wireless network. In contrast the
work of [9] focuses on a random wireless network. As noted
and emperically shown in [13], the capacity of an arbitrary
wireless network could differ substantially from a random
network. Our results are based on a linear programming
formulation of the problem and crucially uses the properties
of wireless interference models. The results hold for various
interference models and for variable power levels at individ-
ual transceivers. Recently, there has been substantial in the
use of directional antennas to improve the overall capacity of
ad hoc networks [28]. Our techniques can be easily extended
to the case of directional antennas as well. A new stability
measure is introduced that provably bounds the optimium
capacity to within constant factors.

2. Our approach allows us to incorporate the per flow
end-to-end fairness constraints in the throughput maximiza-
tion problem. The resulting LP formulation can enforce any
given (long term) fairness objective; our scheduling algo-
rithm guarantees that the total throughput is within a con-
stant factor of the optimal, for such a fairness constraint.
As radio devices become cheaper and smaller, sensor and
ad hoc networks are becoming more and more prevalent.
This is leading to a new challenge: how to design proto-
cols such that radio devices do not drain battery power very
fast. There has been much research on all aspects of routing
and scheduling with low energy requirements; see, e.g., [25,
14] and the references therein. Our approach makes it very
simple to add energy constraints into the formulation: given
such a bound on the energy, we aim to maximize throughput.
In fact, we can add any set of requirements that can be mod-
eled by linear constraints. Our LP-formulations differ from
the formulations presented in [13, 16] as follows: although
[16] presents constant factor approximate LP formulations
for a class of scheduling problems, they do not handle wire-
less interference constraints in their formulations, thus lim-
iting the utility of their approach to most realistic wireless
network scenarios. The approach of [13] can model arbi-
trarily complex interference models; however, they do not
discuss how close their computed throughput is to the op-
timal throughput. Our modeling techniques overcome both
these limitations.

3. We also study the empirical performance of a natu-
ral class of congestion-aware path selection strategies which
arise from our LP formulations. Since these heuristics es-
sentially involve computing shortest paths using congestion-
aware link metrics, standard routing protocols such as AODV

can be easily modified to incorporate such link metrics. This
yields a unified protocol for MAC, routing and (aspects of)
transport layers in a wireless network which gives good through-
put and does not require too many changes from existing
routing protocols. The algorithm of [16] involves multiple
phases (as does that of [8]), and cannot be easily used this
way. As shown in [3, 6, 24, 26], there is a significant interac-
tion between individual layers of a OSI protocol stack and
plugging in optimal protocols for each layer does not lead to
optimal overall performance [6]. As a result, recent work has
focused on designing unified protocols for wireless networks
[23]. The unified routing+scheduling protocols developed
here overcome this performance loss.

4. We perform extensive simulations to study the perfor-
mance of our algorithm and the shortest path heuristics. We
obtain explicit tradeoff between fairness and total through-
put, which shows the increase in throughput with decreasing
fairness requirement; while this behavior is completely ex-
pected, our results also quantify this tradeoff, i.e., by what
fraction does the throughput increase for a given loss in fair-
ness. Similarly, we also study such a relationship between
the energy consumed and throughput. Thus, our results pro-
vide a formal way of quantifying the tradeoffs between differ-
ent constraints for wireless networks. Our simulations also
indicate that routes obtained using our congestion-aware
shortest path heuristics have much better throughput in ev-
ery instance than the routes obtained using the hop-count
based shortest path algorithm.

2. ORGANIZATION
The rest of the paper is organized as follows. In Section

3 we introduce some basic definitions of network flows, net-
work and interference models. In Section 4, we present our
centralized and distributed algorithms and related stability
results for link-flow scheduling. In Section 5, we present our
end-to-end flow scheduling algorithms and analyze their per-
formance using the notion of rate-competitiveness. In Sec-
tion 6 we discuss our LP formulations for the various flow
problems and show how to incorporate wireless interference
and fairness, energy and dilation constraints. In Section 7,
we deal with our congestion-aware path selection strategies.
In Section 8, we present the results of our simulations which
measure the impact of various constraints and path selection
strategies on the network throughput.

3. PRELIMINARIES
This section contains basic definitions and concepts used

in the rest of the paper. We consider multi-hop wireless
networks. The network is modeled as a directed graph G =
(V, E). The nodes of the graph correspond to individual
transceivers and a directed edge (u, v) denotes that u can
transmit to v directly. Each edge in G = (V, E) has a capac-
ity c(e) bits/sec and denotes the maximum data that can be
carried on e in a second. We assume that the system oper-
ates synchronously in a time slotted mode. Each time slot
is τ seconds long. Thus, at most τc(e) bits of information
can be transmitted over link e during any time slot.

A schedule S describes the specific times at which data
is moved over the links of the network. In other words, let
Xe,t be the indicator variable which is defined as follows:

Xe,t =

�
1 if e transmits successfully at time t
0 otherwise

(1)



A schedule S is a 0 − 1 assignment to the variables Xe,t,
e ∈ E, 0 ≤ t. We will focus on periodic schedules in this
paper. A schedule S is periodic with period T , if ∀e, t, i:
Xe,iT+t = Xe,(i+1)T+t. In wireless networks, links can be
scheduled to transmit in the same time slot only if they do
not interfere. The precise notion of interference will be made
clear in the following subsection. For ease of exposition, we
will assume that c(e) is 1 and τ is also 1. All the results
generalize directly, when we relax these constraints.

3.1 Network and Interference Models
We assume that vertices V are embedded in the plane

R2. Each vertex (transceiver) u has an associated range
denoted by range(u). A necessary (but not sufficient) con-
dition for a transceiver v to hear u is that v be within a
distance range(u) of u. Specifically, if transmission is not
feasible from u to v either because v is outside the range
of u or because of other reasons (such as the presence of
an obstruction between u and v), then the edge (u, v) is
not present in the graph G = (V, E). This is an impor-
tant consideration for modeling realistic network scenarios
such as indoor wireless networks or even outdoor networks
in the presence of obstructions. We assume that all anten-
nas are omnidirectional although generalizations to various
path loss models and directional antennas is possible and is
omitted in this paper.

Since the medium of transmission is wireless, simultaneous
transmissions on proximate edges may interfere with each
other resulting in collisions. Formally, we say that edges
e1, e2 ∈ E interfere with each other if edges e1 and e2 cannot
both transmit successfully during the same time slot. Let
I(e1) denote the set of edges which interfere with edge e1,
i.e., e1 cannot transmit successfully whenever an edge e2 ∈
I(e1) is transmitting. An Interference Model defines the set
I(e1) for each edge e1 in the network. Several such models
have been studied, because of variations in the underlying
technology, protocol, etc. We consider three interference
models in this paper; in the first two models below, ∆ ≥ 0
is a constant that is a parameter of the models.

In the transmitter model (Tx-model) a transmission
from u is successful (i.e. is received correctly by the in-
tended recipient of the transmission) if and only if any other
transmitter w is such that, d(u, w) ≥ (1 + ∆) · (range(u) +
range(w)). This model was introduced by Yi et al. [29] to
analyze capacity of random ad hoc networks. Throughout
this work, we focus on obtaining good performance guar-
antees for the Tx-model. We also show how to extend
our constant factor approximation guarantees to two popu-
lar receiver-based models described next. In the protocol
model [9], if a node u transmits to node v, this transmission
is successfully received by v iff v ∈ range(u) and any other
transmitter w is such that d(w, v) ≥ (1 + ∆) · d(u, v). Fi-
nally, consider the transmitter-receiver Model (Tx-Rx
model) [4, 17]: let e1 = (u, v) ∈ E be an edge along which
there is a transmission. Let D denotes the network distance
(in terms of hop-count) between the edges and nodes in the
network. Specifically, for any two edges e1 and e2, D(e1, e2)
is defined as the least hop-count distance between an inci-
dent node of e1 and an incident node of e2. The transmission
along e1 is successful if and only if any other transmission
along an edge e2 ∈ E is such that D(e1, e2) > 2. In all the
three models above, a node can either receive a message or
transmit a message (and not both) at the same time. Thus

for any edge e = (u, v), all other edges which are incident
on u or v are also included in the set I(e).

We note that the restriction that all nodes lie on a 2-
dimensional (2D) plane is only for ease of analysis. The
modeling and algorithmic techniques developed here easily
extend to 3D as well, as we show for instance in the protocol
model.

3.2 Network Flows
Given a set of flows, with flow i starting at a source node

si and ending at a destination node ti, we will be concerned
with the rates at which data can be sent along these flows. If
the rate for flow i is ri bits per second, then, on an average,
in one time slot, ri bits sent by si are received by ti. In
our LP formulations, rates for each flow i will translate to
a per edge rate, x(e, i) for edge e: this is the rate at which
flow i is routed through edge e. As in [16], we assume an
infinitesimally divisible flow model for data transmission -
this leads to flow conservation constraints for the data. Let ~x
denote the link flow rate vector; this vector associates a link
rate x(e) (the total rate of all flows on link e) with each link
e. Recall that Xe,t is the indicator variable which denotes if
there was a succesful transmission on link e during time t.
By definition, as time t′ → ∞, we have x(e) =

P
t≤t′ Xe,t/t′.

For the link scheduling and the end-to-end scheduling
problems studied here, the central question we are concerned
with is that of stability : a schedule is said to be stable if ev-
ery packet incurs a bounded delay, and consequently, all
buffers have bounded sizes. A stable rate vector is one for
which there exists a stable schedule. In Section 4, given a
link-rate vector ~x, we will either show that ~x is not stable, or
show how to approximate an optimal schedule for vector ~x
by a near optimal schedule with a slightly smaller through-
put. This will serve as a useful building block for our end-
to-end scheduling and throughput maximization techniques
in Sections 5 and 6.

Two of the fundamental end-to-end throughput maximiza-
tion problems we will consider are the maximum multicom-
modity flow problem (MFP) and maximum concurrent flow
problem (MCFP) [1]. In MFP (as defined in the context
of wired networks), given a directed graph G(V, E) and a
collection of source-destination pairs {(si, ti)}, the goal is to
find a stable end-to-end rate vector for the (si, ti) pairs such
that data can be injected into the network by the sources
at these rates without violating individual edge capacities;
the objective is to maximize the total rate of injection for
these pairs; packets injected at such a rate can be sched-
uled in a wired network, since the only constraints are the
edge capacities. Note that this formulation does not con-
sider any notion of fairness among the different flow values;
MCFP incorporates fairness by requiring that the total rate
of injection be maximized subject to the constraint that all
the (si, ti) pairs have the same rate. We note that standard
LP formulations exist for optimally solving both MFP and
MCFP for wired networks. The problems we consider here
for wireless networks are variations of these classical multi-
commodity flow problems wherein, flow on the links that in-
terfere with each other cannot be scheduled simultaneously.
Thus the task of finding optimal multi-commodity flows in
wireless networks becomes considerably more complicated.

4. LINK-FLOW SCHEDULING
In this section, we develop a link-flow scheduling algo-



rithm to schedule a set of flows specified on the links of the
network. We also develop necessary and sufficient conditions
for link flow stability.

4.1 Link-Flow Stability: Necessary Conditions
Recall that for an edge e = (u, v) ∈ E, I(e) denotes the

set of edges which interfere with e. Let I≥(e) be defined as
follows.

Definition 1. I≥(e) = {(p, q) : (p, q) ∈ I(e) and
d(p, q) ≥ d(u, v)}.
I≥(e) is the subset of edges in I(e) which are greater than
or equal to e in length. Recall that Xe,t is the indicator
variable which is 1 iff e transmits successfully during time t.
The following claim holds.

Claim 2. In any link schedule,

∀e ∈ E,∀t Xe,t +
X

f∈I≥(e)

Xf,t ≤ c (2)

where c is a fixed constant that depends only on the inter-
ference model. In particular, for the Tx-model, the value of
c is at most 5.

The intuition behind this claim is as follows. Partition the
set of edges in I≥(e) ∪ {e} into at most c subsets such that
within each subset, each edge interferes with all other edges.
Thus, at most one edge can successfully transmit from each
subset at any time slot, i.e., only c edges in I≥(e) ∪ {e} can
simultaneously transmit successfully, as stated in the claim.

Let ~x be a link-flow vector. We define the congestion on
a link e to be c(e) = x(e) +

P
f∈I≥(e) x(f). The following

lemma imposes a simple necessary condition for link-flow
stability.

Lemma 3. Let c be the constant in Claim 2. ~x is a stable
link-flow only if the following holds:

∀e ∈ E, x(e) +
X

f∈I≥(e)

x(f) ≤ c

Proof. Assume that the flow vector ~x is stable, i.e., there
exists a stable schedule S which achieves the link-rates spec-
ified by ~x. Let Xe,t be the transmission indicator variable
for this schedule for edge e and time t. As time t′ → ∞,
we have

P
t≤t′ Xe,t/t′ → x(e), since x(e) is the link-rate

associated with edge e. The lemma now follows by sum-
ming up equation (2) over time slots [1, . . . , t′] and taking
the average.

4.2 Link-Flow Scheduling Algorithm
In this section we present both centralized and distributed

algorithms for scheduling a link-flow vector ~x. In Section 4.3,
we analyze conditions under which this algorithm yields a
stable schedule (and hence sufficient conditions for link-flow
stability). The algorithm works as follows: time is divided
into uniform and contiguous windows or frames of length w,
where w is a sufficiently large positive integer. (We assume
w.l.o.g. that w is such that for all e, w · x(e) is integral.)
The algorithm employs a subroutine called frame-scheduling
which specifies a schedule for each edge e within each frame.
This schedule is repeated periodically for every frame to
obtain the final schedule. We now present the details of the
frame-scheduling algorithm whose pseudo-code is presented
in Algorithm 1.

Consider a single frame W whose time slots are numbered
{1, . . . , w}. For each edge e, the subroutine assigns a subset
of slots s(e) ⊆ W such that the following hold:

1. |s(e)| = w ·x(e), i.e., each edge receives a fraction x(e)
of time slots.

2. ∀f ∈ I(e), s(f) ∩ s(e) = Φ, i.e., two edges which in-
terfere with each other are not assigned the same time
slot.

For all edges e ∈ E, the set s(e) (set of time slots in W
which are currently assigned to e) is initialized to Φ. Edges
in E are processed sequentially in the non-increasing order
of their lengths. Let the current edge being processed be
e. Let s′(e) denote the set of time slots in W which have
already been assigned to edges in I(e) (and hence cannot be
assigned to e): s′(e) =

S
f∈I≥(e) s(f). In the remaining slots

W \ s′(e), we choose any subset of w · x(e) time slots and
assign them to s(e).

Algorithm 1 SCHEDULE(~x, w)

1: for all e ∈ E do
2: s(e) = Φ
3: end for
4: Sort E in non-increasing order of edge-lengths.
5: for i = 1 to |E| do
6: e = E[i]
7: s′(e) =

S
f∈I(e) s(f)

8: s(e) = any subset of (W \ s′(e)) of size w · x(e)
9: end for

Distributed Frame Scheduling We now present a syn-
chronized distributed implementation of the centralized schedul-
ing algorithm which terminates in polylogarithmic number
of rounds. Our distributed algorithm is based on the ideas
sketched in [17, 4]. We assume that each edge in the net-
work has a target for the number of time slots it needs to
be assigned within a time window. We view the distributed
scheduling problem as a variant of the distributed edge col-
oring problem: the only difference in our context is that
edges are weighted and the number of slots needed by an
edge is proportional to its weight. The pseudo-code for the
distributed algorithm is presented in Algorithm 2. Re-
call that range(u) denotes the transmission range of u. Let
N(v) denote the set of all nodes which can potentially in-
terfere with v in the network. We say that a node v is
finished if slots have been chosen for all its incident edges.
The distributed algorithm proceeds in rounds, and the max-
imum radius of a node that is yet to be finished decreases
sufficiently, with good probability, with each round of the
algorithm. We now present the details of our distributed
algorithm in Algorithm 2.

We note that Step 6 of the distributed algorithm involves a
candidate node v detecting other candidate nodes w ∈ N(v).
The distributed implementation for this candidate detection
step is non-trivial and we defer the details of this step to the
full version.

4.3 Link-Flow Stability: Sufficient Conditions
In this section, we analyze conditions under which the

link-flow scheduling algorithm achieves stability; hence this
also yields sufficient conditions for link-flow stability. Recall



Algorithm 2 Distributed-SCHEDULE

1: for all e ∈ E do
2: s(e) = Φ
3: end for
4: for each round i do
5: For each node v that is yet to be finished, if ∃w′ ∈

N(v) s.t. range(w′) ≥ 2 · range(v) and w′ is yet to
be finished, then v does not participate in this round;
else, it elects to become a candidate with probability
1/d, where d is the number of nodes in N(v) that are
unfinished.

6: If v elects to be a candidate, and some other w ∈ N(v)
also elects to be a candidate, v will not participate in
this round.

7: If node v participates in this round, it chooses slots
greedily for each edge (v, w) for which s(v, w) = Φ, in
the same way as in steps 7-8 of Algorithm 1.

8: end for

that s(e) is the set of time slots assigned to edge e within a
single frame. The following lemma states that our schedul-
ing algorithm produces a conflict-free schedule.

Lemma 4. Algorithm 1 and its distributed implementa-
tion produce a conflict-free schedule, i.e., for any two inter-
fering edges e1, e2 ∈ E, s(e1)

T
s(e2) = Φ.

Proof. Assume w.l.o.g. that e1 is processed before e2

by the algorithm. Since e1 and e2 interfere, it follows that
e1 ∈ I≥(e2), and hence s(e1) ⊆ Sf∈I≥(e2) s(f) = s′(e2).

Since, s(e2) ⊆ W \ s′(e2), the lemma follows.

The following lemma proposes a sufficient condition for which
the link-flow scheduling algorithm yields a valid schedule,
i.e., sufficient number of slots are chosen for each edge within
a frame.

Lemma 5. The link-flow scheduling algorithm and its dis-
tributed implementation produce a valid schedule for ~x if the
following holds:

∀e ∈ E, x(e) +
X

f∈I≥(e)

x(f) ≤ 1.

Suppose we have a set of end-to-end flows fi between each
{si, ti} pair. For each e ∈ E, let x(e) =

P
i fi(e) denote the

total flow on link e where fi(e) is the amount of flow i on
edge e and let ~x denote the link-rate vector. If ~x satisfies
the conditions of lemma 5, the following result shows that
we get a stable schedule, i.e., each packet is delivered in a
bounded amount of time.

Observation 6. If the vector ~x above satisfies the con-
ditions of lemma 5, each packet is delivered in at most Wn
steps.

Proof. Assume that W is such that W fi(e) is integral
for each i and e. Consider any flow i. The number of packets
injected for this flow during the window of size W is exactly
riW . For each edge e, partition the Wx(e) slots into fi(e)W
slots for each i. Then, it is clear that for each flow i, each
packet will move along one edge in W steps.

5. SCHEDULING END-TO-END FLOWS

In this section, we discuss efficient algorithms for schedul-
ing end-to-end flows. Specifically, given a collection of paths
and an associated rate vector R∗, our goal is to find a
stable schedule whose rate is αR∗, where α is the scal-
ing factor whose value we seek to maximize. The basic
idea behind the end-to-end scheduling algorithm is as fol-
lows. Let the vector R∗ induce a set of link flows x∗. Let
κ denote the maximum congestion on any edge: i.e., κ =
maxe(x

∗(e) +
P

e′∈N≥(e′) x∗(e′)). If κ ≤ 1, then Lemma 5

implies that the induced link rate x∗ (and hence the end-to-
end rate R∗) can be stably scheduled by the link schedul-
ing algorithm. Hence, we can achieve a stable end-to-end
scheduling by simply repeating the link schedule periodi-
cally, with the period being the length of the frame. How-
ever, if κ > 1, then we scale the end-to-end rate vector (and
hence the link rates too) by a factor κ−1. Crucially, the new
rates allow us to stably schedule the scaled end-to-end flows
by repeating the link scheduling algorithm periodically. How
good is the scaling factor of α = κ−1? We now turn to the
notion of competitiveness of scheduling algorithms to answer
this question.

5.1 Competitiveness of Scheduling Algorithms
We now introduce the notion of competitiveness for schedul-

ing algorithms; as will be explained next, this metric plays
a key role in understanding the end-to-end efficiency of such
algorithms. Let P be a collection of paths, and for each p ∈
P , let r(p) denote the rate associated with the path p. These
end-to-end flows induce a link-flow vector ~x which specifies
the a rate x(e) for each edge e ∈ E: x(e) =

P
p:e∈p r(p).

In general, the end-to-end flow vector may not be stable,
i.e., there might not exist any scheduling algorithm which
achieves the rates specified by the flow vector. Given a end-
to-end flow scheduling algorithm A, define its throughput
fraction to be the maximum scalar value q = q(A) such
that a rate of q · r(p) can be scheduled by A for each p ∈ P .
Let q∗ be the optimal throughput fraction, i.e., q∗ is the
maximum throughput fraction achievable by any scheduling
algorithm. The competitiveness of the scheduling algorithm
A is defined as q(A)/q∗. The following lemma states that
our scheduling algorithm is α-competitive where α is a con-
stant (which depends only on the interference model). To
our knowledge, this is the first such guarantee known; such
a worst-case guarantee rigorously proves the utility of our
algorithms.

Lemma 7. The end-to-end flow scheduling algorithm is
α-competitive where α > 0 is a constant. For the Tx-model,
the value of α is at least 0.2.

Proof. Given a link rate vector ~x, let q∗ be the optimal
throughput fraction. Thus, the vector q∗~x can be scheduled
by an optimal scheduling algorithm. By Lemma 3, q∗ is
such that for all edges e, q∗(xe +

P
f∈I≥(e) x(f)) ≤ c, where

c is a constant. We now scale down this link rate vector by

the scalar c to obtain the vector ~y = q∗
c

~x. Clearly, we now
have for all edges e, y(e)+

P
f∈I≥(e) x(f) ≤ 1. Therefore by

Lemma 5, the end-to-end scheduling algorithm can schedule
vector ~y. Hence the throughput fraction of algorithm A for

the link vector ~x is at least q∗
cq∗ = 1

c
. Since this is true for all

vectors ~x, the algorithm is α-competitive where α = 1
c

> 0
is a constant. Since Lemma 3 implies that c ≤ 5 for the
Tx-model, α ≥ 0.2 for the Tx-model. This concludes the



proof of the lemma.

6. LINEAR PROGRAMMING FORMULA-
TIONS

We now present the LP formulations for the maximum
flow (MFP) and the maximum concurrent flow (MCFP)
problems in wireless networks. See Section 3.2 for the rele-
vant definitions. Let C = {1, 2, . . . , k} denote a set of com-
modities. For each commodity i, let si and ti represent the
source and destination for the commodity. Let Pi denote
the set of all paths between source si and destination ti of
commodity i. For any p ∈ Pi, let r(p) denote the data rate
associated with the path p: this is the rate at which data
is transferred from si to ti along p. Let ri denote the total
rate at which data is source si injects packets for destination
di: i.e., thus ri =

P
p: p∈Pi

r(p). For any edge e ∈ E, x(e)
denotes the total rate at which data is transferred across
edge e: i.e., x(e) =

P
p: e∈p r(p). As noted in Section 3.2,

in MFP, we would like to maximize the sum of all rates ri

subject to the wireless interference constraints. In MCFP,
we would like to maximize the sum of the rates ri subject
to the additional constraint that all the ri’s are equal.

We now present a generalized LP -formulation, called the
MAXFLOWLP which captures both these problems by in-
corporating end-to-end fairness constraints. The central no-
tion in this formulation is that of the fairness index λ. The
fairness index λ ∈ [0, 1] denotes the ratio between the mini-
mum and maximum rates: λ = mini ri

maxi ri
. Note that λ equal to

0 and 1 correspond to the special cases of MFP and MCFP
respectively. Our formulation is as follows:

max
X
i∈C

ri subject to

∀i ∈ C, ri =
X
p∈Pi

r(p)

∀i ∈ C,∀j ∈ C \ {i}, ri ≥ λrj

∀e ∈ E, x(e) =
X

p: e∈p

r(p)

∀e ∈ E, x(e) +
X

f∈I≥(e)

x(f) ≤ 1

∀i ∈ C,∀p ∈ Pi, r(p) ≥ 0

We make the following observations about this LP formu-
lation. First, we note that the stability conditions derived
in Lemmas 3 and 5 are crucial for modeling the effect of
interference in the LP and still guarantee a constant-factor
performance ratio. This is a significant distinction between
our techniques and those of [13] and [16]: the former does
not guarantee good performance bounds and the latter does
not model wireless interference; Next, we observe that the
size of this program may not be polynomial in the size of
the network G as there could be exponentially many paths
Pi. However, using standard techniques, the same program
could be equivalently stated as a polynomial-size network
flow formulation [1]; we choose to present this standard for-
mulation here for ease of exposition.

The first set of constraints define the total rate ri for each
commodity. The second set of constraints are the fairness
constraint which ensure that the ratio between the minimum
and maximum end-to-end rates is at least λ. The third set

of constraints define the link rates x(e) for each link e. The
fourth set of constraints capture wireless interference. These
constraints along with the end-to-end scheduling algorithm
discussed in Section 5 ensure that the flows computed by
the LP can be feasibly scheduled. Finally, the objective
value of this LP is at most a constant factor away from an
optimal solution: the optimal schedule induces a rate x∗(e)
on each link e; further the rates x∗ also satisfy the conditions
of Lemma 5. Hence, scaling down the optimal end-to-end
rates and hence the link rates by a factor c (the constant
which appears in Lemma 3) results in a feasible solution.
The following lemma formalizes the last two observations.

Theorem 8. The MAXFLOWLP formulation always re-
sults in a solution which can be stably scheduled. Further, the
value of the objective function computed by the MAXFLOWLP
is within a constant factor from the optimal solution to the
corresponding flow problem. This factor is has a value of at
most 5 for the Tx-model.

Additional Constraints Any set of linear constraints can
be added to the LP formulation. Recall that x(e, i) =P

p∈Pi:e∈p r(p) denotes the rate for flow i on edge e. Let

d(e) denote the length of edge e. To bound the total amount
of energy used for the ith flow by some quantity q, we can
add a constraint of the form for each i:X

e

d(e)βx(e, i) ≤ qri (3)

The constant β is the exponent that relates the energy needed
to transmit over a given distance. Similarly, for bounding
the total hops used in a flow by some number h, the follow-
ing constraint can be added for each i:X

e

x(e, i) ≤ hri (4)

7. HEURISTICS FOR PATH SELECTION
Several ad hoc routing protocols such as AODV, DSR,

and DODV use hop-count as the path metric for selecting
routes: whenever a route needs to be established between
a source and destination, amongst all the available routes,
the protocol selects the one with the shortest number of
hops. In general, hop-count based shortest paths do not
optimize network throughput since several shortest paths
could potentially pass through a small region in the network,
resulting in “hot-spots” or regions of heavy congestion in
the network. Several recent approaches have been proposed
for devising path metrics to avoid hot-spots (see [20] for
instance).

Motivated by the theoretical techniques developed in this
paper, we propose some congestion aware path selection
strategies to alleviate hot-spots. The basic idea behind our
path selection strategies is as follows: each link e in the net-
work is associated with a length function l(e) which is an
increasing function of the link-congestion c(e). Recall that
the congestion c(e) as defined in Section 4 takes into ac-
count, the load on e as well as the load on the edges which
interfere with e. In practical settings, this can be estimated
at the MAC layer by passively hearing the transmissions by
neighboring nodes. A simple alternative would be to use the
number of end-to-end flows through a link as a substitute
for the load on the link. The length of the path is the sum
of all the length of its edges. Whenever we need to choose a



route between two nodes s and t, we choose the route with
the least length according to this metric.

Two functions suggest themselves naturally for the length
metric: the linear length metric and the exponential length
metric. In the linear length metric, the length of an edge
l(e) = αc(e) + β, where α > 0 and β ≥ 0 are protocol pa-
rameters. In the exponential length metric, the length of
an edge l(e) = eεc(e), where ε > 0 is a protocol parameter.
In Section 8, we experiment with these link metrics as well
as the hop-count based link metric. Our simulations indi-
cate that both the linear and exponential link metric which
takes into account congestion from interfering links, signifi-
cantly outperform the hop-count based link metric in terms
of network throughput.

8. SIMULATIONS
This section deals with the experimental performance eval-

uation of our algorithms and LP formulations through sim-
ulations. There are two main goals of our simulations: (i)
understand the unconstrained network throughput of a ran-
dom geometric network, as determined by the LP solution,
and the impact of various constraints such as fairness, en-
ergy, and dilation on it, and (ii) a comparison of different
path selection heuristics, which convert the LP based multi-
path routing solution into a single path solution- this also
helps in quantifying the single path vs multi-path tradeoff.
Our simulation setup is described in Figure 1.

8.1 Impact of Network Constraints
We now present our simulations which deal with the im-

pact of the network conditions on the throughput. All the
experiments here were performed on the uniformly random
distribution in the unit square. We study the unconstrained
network throughput as well as throughput subject to fair-
ness, energy and dilation constraints. The objective of each
experiment, the results and an analysis of these results are
presented.

Experiment #1: Study the variation of the maximum
throughput (sum over all rates) as a function of the num-
ber of end-to-end flows subject to wireless interference con-
straints, without any other additional constraints.

Results and Explanation: Figure 2 plots the results of
our experiments averaged over ten runs and for a single run
of the experiment. The maximum aggregate throughput,
on an average increases steadily with the number of end-
to-end pairs. However, observe that the for a single run of
the experiment, the throughput exhibits a step-like behavior
w.r.t. the number of end-to-end flows. This is due to the
fact that the maximum network throughput is achieved at
the cost of assigning a rate of zero to certain end-to-end
flows. In other words, certain flows could be completely
starved so that the maximum possible aggregate throughput
can be achieved by the remaining flows. Also, the total
throughput flattens out, as the number of flows is increased-
signifying that the absolute bound on the total capacity for
the instances is reached at that point.

Experiment #2: Study the variation of aggregate through-
put as a function of end-to-end fairness. Recall the definition
of the fairness index λ from Section 6: λ is the ratio between
the minimum rate and the maximum rate across all flows;
λ = 0 implies complete starvation of flows would be allowed
while λ = 1 implies that all flows have identical throughput.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  5  10  15  20  25  30  35  40

M
ax

im
um

 th
ro

ug
hp

ut

Number of flows

Maximum throughput vs Number of flows

single run
averaged

Figure 2: Experiment # 1: Variation of through-
put w.r.t the number of flows. There is no fairness
constraint.

Results and Explanation: Figure 3 plots the maximum
aggregate throughput as a function of the fairness index λ.
As expected, the aggregate throughput decreases monotoni-
cally as a function of λ; the “fair” throughput is almost half
of the maximum total throughput for the current choice of
parameters. The results of this experiment should be con-
trasted with those of Experiment # 1; they provide a trade-
off between system and user optimum.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.001  0.01  0.1  1

T
hr

ou
gh

pu
t

Fairness index

Throuput vs. Fairness

k=2
k=5
k=7
k=9
k=11

Figure 3: Experiment #2: Variation of throughput
w.r.t fairness.

Experiment #3: Study the variation of throughput w.r.t
the energy consumption and dilation (number of hops tra-
versed) per unit flow respectively.

Results and Explanation: Figures 4(a) and (b) summa-
rize the results. In both these plots, note how the through-
put increases as a concave function of energy and dilation
and reaches an upper limit. The similarity in the trends
observed in these two plots can be explained by the fact
that the constraints which model energy consumption as
well as dilation are both packing constraints and are similar
in structure (see Section 6). Also, in both of these plots, the
throughput flattens out at some point after which allowing
longer paths or paths with more energy does not make any
difference to the throughput.

8.2 Impact of Path Selection Strategies
We now discuss the impact of various path selection strate-

gies on the throughput. In all the measurements in this sub-
section, the fairness index λ = 1, i.e., we maximize aggre-
gate throughput subject to the constraint that all end-to-end
flows have equal rates.



1. Network type: We consider the networks resulting from two types of point distributions. The first
is a random distribution of 245 points in a 7 × 7 square. The second corresponds to a distribution
of cars in a region of downtown Portland, OR, obtained by running the TRANSIMS simulation [27].
Figure 6(a) presents a map of the node distribution in this network. This consists of 500 points in a
3km by 3km region . We will denote it by real-network.

2. Number of flows: We experiment with varying number of end-to-end flows, each of which has a
randomly chosen source and destination node. Also denoted by k.

3. Edge Capacities: All edges have a transmission rate of one unit of data per time unit.

4. All nodes have a unit transmission radius.

5. All data points are averaged over ten runs of the experiment.

Figure 1: Summary of Simulation Setup.
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Figure 4: Results for Experiment #3. (a) Variation of throughput w.r.t energy. Each curve represents the
throughput for a given number of flows (denoted by k). (b) Variation of throughput w.r.t dilation.

Experiment #4: Study the impact of three different path
selection strategies on the aggregate throughput. The three
strategies considered here are the simple hop-count based
shortest path strategy (marked dij; stands for Dijkstra),
the shortest path strategy based on the linear link-metric
(marked lin) and shortest path based on the exponential
link-metric (marked exp).1

Results and Explanation: Figures 5(a) and (b) summa-
rize the results. Figure 5(a) plots the aggregate through-
put w.r.t. the number of flows for the three path selection
strategies. Clearly, both the linear and exponential conges-
tion based strategies outperform the hop-count based short-
est path algorithm significantly. Further, between the linear
and the exponential link metrics, the linear metric seems to
be slightly better than the exponential link metric as the
number of flows increase. It is interesting to compare this
plot with the LP solution in Figure 3. Both these plots are
for the same scenario, but Figure 3 allows multi-path routing
while Figure 5(a) only considers single path routing. This
comparison shows that the capacity drops by more than a
factor of five by restricting the routes to be single paths;
however, multi-path routing protocols clearly incur more
overhead in terms of route maintenance, size of the routing
table, etc. and these factors need to be taken into consid-
eration for any serious comparison between single-path and

1See Section 7 for details of the last two strategies; for the
exponential link-metric, we choose the exponent for each set
of flows which maximizes the throughput

multi-path routing.
Figure 5(b) measures the sensitivity of the throughput to

the value of the exponent (denoted epsilon) in the expo-
nential link metric. In general, note how the throughput
initially increases as a function of epsilon, reaches a peak,
and starts decreases as a function of epsilon. Further, when
the number of flows is higher, observe that the peak value
is attained for a smaller value of epsilon. Intuitively, this
implies that a lower value of epsilon is more effective during
times of heavy traffic than a higher value of epsilon.
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Figure 5: Results for Experiment #4. (a) Variation of throughput vs. number of flows for three path selection
strategies (b) Variation of throughput w.r.t the exponent epsilon.

8.3 Impact of Network Structure
In this subsection, we describe our simulations on re-

alistic ad-hoc network topologies. The network we con-
sider is described earlier and is henceforth referred to as
real-network.

Experiment #5: Study the impact of path selection strat-
egy on the total throughput in real-network. Figure 6(a)
presents a map of the node distribution in this network.
Contrast the node densities with those obtained by random
distribution of nodes.

Results and Explanation: Figures 6(b) and (c) sum-
marize our results. Once again, both the linear and expo-
nential link-metric based strategies significantly outperform
the shortest-path algorithm. In general, the results for this
realistic network seem to be qualitatively the same as those
for the random network.

9. RELATED WORK
There has been much research on determining the optimal

rates to maximize throughput via LP formulations. The first
attempts can be traced back to Hajek and Sasaki [11], and to
Baker et al. [2]. Jain et al. [13] propose LP-formulations for
max-flow and related problems in a wireless network; in fact,
they formulate their constraints in terms of arbitrary conflict
graphs which can incorporate any interference model. Their
formulations do not fully exploit the properties of wireless
interference constraints; further, they do not discuss how
close their LP-formulations are with respect to the optimal
solution, or how actual scheduling protocols can be derived
from the LP solution.

Over the last few years, the capacity of random wireless
ad-hoc networks has been a subject of active research; see
[5, 15, 10, 9, 18, 19, 21, 17, 22] and the references therein.
Researchers have considered random ad-hoc networks, hy-
brid networks wherein one has infrastructure support, en-
ergy constraints, maximum power range constraints and mo-
bility effects.

Our paper builds upon two different results: [16] and [17],
and can be viewed as a synthesis of these two results. The
approach of formulating the interaction between the MAC,
routing and transport layers using linear programming was
first considered by Kodialam and Nandagopal [16], who pro-

pose similar LP-formulations and a scheduling algorithm for
determining the maximum transmission rates for a given
network, and for three specific interference models (PCA,
RCA, TRCA). They also show how to use the approach in
[8] for solving the LPs using a sequence of shortest-path
computations. They do not show how to use the LP solu-
tion to get an actual schedule with provable performance
guarantees. Solving LPs is very time consuming, and an LP
based method is generally impractical, especially for mo-
bile computing applications. To remedy this, Kodialam and
Nandagopal show how to use the framework of Garg and
Konemann [8] to device a combinatorial method of solving
such an LP, within any desired level of accuracy. The work
in [17] formulates the problem of minimizing latency for the
MAC and routing layers together and develops efficient dis-
tributed algorithms for this problem in geometric graphs,
which are a commonly used abstraction of radio transmis-
sion. However, this work only deals with a static setting, i.e.,
when packets are not injected continuously into the network,
and obtaining provable results for the unified protocol de-
sign problem with continuous packet injections has been a
very interesting open problem. De Couto et al. [7] present a
link-metric for shortest-path based routing algorithms which
optimizes the total expected number of transmissions of a
packet. Our link-metrics differ from the one presented in
[7] by accounting for interference between links which may
belong to different routes and by adapting to load changes
on a link and the set of links which interfere with it.

In practice, the problem of transmitting packets between
each source-destination pair in a OSI protocol stack based
model is broken down into sub-problems, the most impor-
tant of which are: (i) choosing routes for each such pair -
a protocol like AODV chooses some sort of (single) shortest
path for each pair, (ii) MAC scheduling of the packets along
these paths - this resolves contention, and determines which
nodes transmit at a given time slot, (iii) actual transmission
of the packets on the physical channel, and (iv) choosing
rates of transmission for each source-destination pair - this
is achieved dynamically by a TCP like protocol, which uses
feedback from the network to regulate the flow. While this
modularity is useful in designing the network, it is almost
impossible to determine the quality of the performance of
such protocols, and how to improve the performance. In
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Figure 6: Results for Experiment #5. (a) Node Distribution in a realistic network real-network. (b) Through-
put variation for various the three path selection strategies for real-network. (c) Throughput variation for
the exponential metric w.r.t epsilon for real-network.

fact, there is a significant interaction between protocols at
different layers [6], and plugging in optimal protocols for
each layer does not lead to optimal overall performance [3,
6, 24, 26]. This has motivated the study of unified protocols,
and unified measures that capture the overall performance.
The work of Anil Kumar et al. [17] presents unified algo-
rithms for routing+scheduling with provable guarantees for
wireless networks under static packet injections.
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APPENDIX

Proof. (For Claim 2) We now prove this claim for
the Tx-model and the protocol model. The proof for the
transmitter-receiver model can be found in [17].
Tx-Model: We first note that unlike the other two mod-
els, in the transmitter model we may treat interference as
occuring between nodes (senders) rather than edges, since
the interference condition depends solely on the transmis-
sion ranges of the senders and the distance between them.
For any node u, define I(u) and I≥(u) analogous to the
definition for edges as follows: I(u) = {w : d(u, w) <

(1+∆)·(range(u)+range(w))}. I≥(u) = {w : range(w) ≥
range(u) and w ∈ I(u)}. For any edge e = (u, u′), I(e) is
now defined as follows: I(e) = {e′ = (w, v) : w ∈ I(u)}.
Similarly, I≥(e) = {e′ = (w, v) : w ∈ I≥(u)}. We now
show that for any node u, at most five nodes in I≥(u) can
simultaneously transmit in any time slot without interfering
with each other.

Consider any node u and a large disc C centered at u
which contains all the nodes in the network. Consider any
sector which subtends an angle of π

3
at u. Let w, w′ ∈ I≥(u)

be two nodes in this sector. W.l.o.g., assume that d(u, w′) ≥
d(u, w). It is easy to see that d(w, w′) ≤ d(u, w′). Further,
we have range(w′) ≥ range(u). Thus, w′ has a bigger range
than u and is closer to w than u. Since u and w interfere with
each other, clearly, w and w′ also each interfere with each
other and hence can not transmit simultaneously. Thus the
angle subtended at u by any two simultaneous transmitters
in the set I≥(u) is strictly greater than π

3
. Hence, there can

be at most five successful transmitters from this set which
proves the claim.
Protocol Model: Consider an edge e = (u, v) of length
r. Let C be a disk of radius r(1+∆) centered at v. We now
pack the disk C with a set of disks S of radius r∆

2
such that

the following hold:

1. The centers of all disks in S are within C.

2. No disk in S is such that its center is within another
disk in S.

3. The union of all the disks in S cover the region covered
by C.

It is easy to construct such a covering: start with the empty
set S; as long as the current set of disks in S do not com-
pletely cover disk C, choose an uncovered point in C, draw
a disk of radius r∆

2
around this point and add this disk to

S. Let e1 = (p, q) and e2 = (r, s) belong to I≥(e). We claim
that if p and r belong to the same disk in S, then e1 and e2

cannot both transmit successfully in the same time slot. To
see this, observe that if p and r belong to the same disk in
S, then d(p, r) ≤ r∆. Hence we have

d(q, r) ≤ d(p, q) + d(p, r) (triangle inequality)

≤ d(p, q) + r∆

≤ d(p, q)(1 + ∆) (since (p, q) ∈ I≥(e))

Hence, by the definition of the protocol model, edges e1 and
e2 interfere with each other.

We now bound the number of disks within S. Imagine
shrinking each disk in S to a smaller disk of radius r∆

4
. It

is easy to see that the areas of the shrunken disks do not
overlap with each other. Also, the total area covered by the
shrunken disks is O(r2(1+∆)2). Since each of the shrunken
disk is of area π( r∆

4
)2, the total number of disks in S is at

most O((1 + 1
∆

)2), which is the required constant c. Hence,
the claim holds.

We note that the above arguments can be easily extended
to 3D in the following way. The disks of radii r, r

2
and r

4
in

the 2D arguments above are replaced by spheres of the re-
spective radii in 3D. The total number of spheres which can
be packed within S is now bound by O((1+ 1

∆
)3), which is a

constant. Hence, the claim extends to 3D wireless networks
as well. Finally, for sake of completeness, we note that the
above arguments can also be extended to higher dimensions
with the constant on the R.H.S. depending exponentially on



the number of dimensions.

Proof. (for Lemma 5) The schedule produced by the
link-flow scheduling algorithm is stable if step 8 in Algorithm
4.2 is well defined, i.e., there are always w·x(e) slots available
in the set W \ s′(e). We now show that this is the case for
all edges. Assume otherwise, i.e., there exists an edge e such
that |W \ s′(e)| < w · x(e). Hence,

|W | < |s′(e)| + w · x(e)

≤ |
[

f∈I≥(e)

s(f)| + w · x(e)

≤
X

f∈I≥(e)

|s(f)| + w · x(e)

≤
X

f∈I≥(e)

w · x(f) + w · x(e)

Dividing both sides above by w and rearranging the terms,
we have

x(e) +
X

f∈I≥(e)

x(f) > 1

which contradicts our assumption. This completes the proof
of the lemma.


