Scheduling on Unrelated Machines under
Tree-Like Precedence Constraints

V.S. Anil Kumar!, Madhav V. Marathe?, Srinivasan Parthasarathy®, and
Aravind Srinivasan?

! Basic and Applied Simulation Science (CCS-DSS), Los Alamos National
Laboratory, MS M997, P.O. Box 1663, Los Alamos, NM 87545. Email:
anil@lanl.gov”

2 Virginia Bio-informatics Institute and Department of Computer Science Virginia
Tech, Blacksburg 24061. Email: mmarathe@vbi.vt.edu
3 Department of Computer Science, University of Maryland, College Park, MD
20742. Email: {sri,srin}@cs.umd.edu **

Abstract. We present polylogarithmic approximations for the R|prec|Cmax
and R|prec| Zj w;C; problems, when the precedence constraints are
“treelike” - i.e., when the undirected graph underlying the precedences
is a forest. We also obtain improved bounds for the weighted completion
time and flow time for the case of chains with restricted assignment - this
generalizes the job shop problem to these objective functions. We use the
same lower bound of “congestion+dilation”, as in other job shop schedul-
ing approaches. The first step in our algorithm for the R|prec|Cmaz prob-
lem with treelike precedences involves using the algorithm of Lenstra,
Shmoys and Tardos to obtain a processor assignment with the conges-
tion + dilation value within a constant factor of the optimal. We then
show how to generalize the random delays technique of Leighton, Maggs
and Rao to the case of trees. For the weighted completion time, we show
a certain type of reduction to the makespan problem, which dovetails
well with the lower bound we employ for the makespan problem. For the
special case of chains, we show a dependent rounding technique which
leads to improved bounds on the weighted completion time and new
bicriteria bounds for the flow time.

1 Introduction

The most general scheduling problem involves unrelated parallel machines and
precedence constraints, i.e., we are given: (i) a set of n jobs with precedence
constraints that induce a partial order on the jobs; (ii) a set of m machines, each
of which can process at most one job at any time, and (iii) an arbitrary set of
integer values {p; ;}, where p; ; denotes the time to process job j on machine 1.
Let C; denote the completion time of job j. Subject to the above constraints,

* Research supported by the Department of Energy under Contract W-7405-ENG-36.
** Research supported in part by NSF Award CCR-0208005 and NSF ITR Award
CNS-0426683.

two commonly studied versions are (i) minimize the makespan, or the maximum
time any job takes, i.e. max;{C;} - this is denoted by R|prec|Cpaq, and (ii)
minimize the weighted completion time - this is denoted by R[prec|}_; w;C;.
Numerous other variants, involving release dates or other objectives have been
studied (see e.g. Hall [7]).

Almost optimal upper and lower bounds are known for the versions of the
above problems without precedence constraints (i.e., the R||Cqz and R|| 3, w;C;
problems) [3,13, 23], but very little is known in the presence of precedence con-
straints. The only case of the general R|prec|Cy,q. problem for which non-trivial
approximations are known is the case where the precedence constraints are chains
- this is the job shop scheduling problem (see Shmoys et al. [22]), which itself
has a long history. The first result for job shop scheduling was the breakthrough
work of Leighton et al. [14, 15] for packet scheduling, which implied an O(logn)
approximation for the case of unit processing costs. Leighton et al. [14, 15] intro-
duced the “random delays” technique, and almost all the results on the job shop
scheduling problem [22,6,5] are based on variants of this technique. Shmoys
et al. [22] also generalize job-shop scheduling to DAG-shop scheduling, where
the operations of each job form a DAG, instead of a chain, with the additional
constraint that the operations within a job can be done only one at a time.

The only results known for the case of arbitrary number of processors with
more general precedence constraints are for identical parallel machines (de-
noted by P|prec|Cpaqe; Hall [7]), or for related parallel machines (denoted by
Q|prec|Cmaz) [4,2]. The weighted completion time objective has also been stud-
ied for these variants [3, 8]. When the number of machines is constant, polynomial
time approximation schemes are known [9,11]. Note that all of the above dis-
cussion relates to non-preemptive schedules, i.e., once the processing of a job is
started, it cannot be stopped until it is completely processed; preemptive vari-
ants of these problems have also been well studied (see e.g. Schulz and Skutella
[20]).

Far less is known for the weighted completion time objective in the same
setting, instead of the makespan. The known approximations are either for the
case of no precedence constraints [23], or for precedence constraints with identi-
cal/related processors [8, 19]. To the best of our knowledge, no non-trivial bound
is known on the weighted completion time on unrelated machines, in the presence
of precedence constraints of any kind.

Here, motivated by applications such as evaluating large expression-trees and
tree-shaped parallel processes, we consider the special case of the R|prec|Crax
and R|prec]| Zj w;C; problems, where the precedences form a forest, i.e., the
undirected graph underlying the precedences is a forest. Thus, this naturally
generalizes the job shop scheduling problem, where the precedence constraints
form a collection of disjoint directed chains.

Summary of results We present the first polynomial time approximation al-
gorithms for the R|prec|Cinas and Rlprec|_;w;C; problems, under “treelike”
precedences. As mentioned earlier, these are the first non-trivial generalizations
of the job shop scheduling problems to precedence constraints which are not

chains. Since most of our results hold in the cases where the precedences form
a forest (i.e., the undirected graph underlying the DAG is a forest), we will
denote the problems by R|forest|Cpaz, and R|forest| Zj w;C}, respectively,
to simplify the description - this generalizes the notation used by Jansen and
Solis-oba [10] for the case of chains.

1. The R)|forest|Cpaq: problem. We obtain a polylogarithmic approximation
for this problem in Section 2. We employ the same lower bound used in [14,
22,6,5]: LB = max{Pnax, Imax}, where Ppax is the maximum processing time
along any directed path and IT,.x is the maximum processing time needed by
any machine, for a fixed assignment of jobs to machines. Let ppqr = max; ; p; ;
be the maximum processing time of any job on any machine. We obtain an
(lol‘g)%jgn [g 'E)iggg g‘;’:"")ﬂ approximation to the R|forest|Cy,q, problem. When
the forests are out-trees or in-trees, we show that this factor can be improved to
O(logn - [log(min{pmax,n})/loglogn]); for the special case of unit processing
times, this actually becomes O(logn). We also show that the lower-bound LB
cannot be put to much better use: even in the case of trees - for unit processing
costs, we show instances whose optimal schedule is 2(LB -logn).
Our algorithm for solving R|forest|Cy,q. follows the overall approach used to
solve the job shop scheduling problem (see, e.g. Shmoys et al. [22]) and involves

two steps: (1) We show how to compute a processor assignment within a (%)7
factor of LB, by extending the approach of Lenstra et al. [13], and, (2) We
design a poly-logarithmic approximation algorithm for the resulting variant of
the R|prec|Ciaz problem with pre-specified processor assignment, and forest
shaped precedences.

2. The R|[forest|}_;w;C; problem. In Section 3, We show a reduction from
Rlprec| 3> ; w;Cj to R|prec|Crmax of the following form: if there is a schedule of
makespan (Pmax + ITmax) - p for the latter, then there is an O(p)-approximation
algorithm for the former. We exploit this, along with the fact that our approxima-
tion guarantee for R|forest|Cpaz is of the form “(Ppax + Ilmax) times polylog”,
to get a polylogarithmic approximation for the R|forest| >, w;C; problem. Our
reduction is similar in spirit to that of Queyranne and Sviridenko [19]: both re-
ductions employ geometric time windows and linear constraints on completition
times for bounding congestion and dilation. However, the reduction in [19] is
meant for identical parallel machines while our reduction works for unrelated
machines. Further, [19] works for job-shop and dag-shop problems under the
assumption that no two operations from the same DAG can be executed concur-
rently, although no precedence relation might exist between the two operations;
in contrast, we do not impose this restriction and allow concurrent processing
subject to precedence and assignment constraints being satisfied.

3. Minimizing weighted completion time and flow time on chains. For
a variant of the R|forest|_; w;C; problem where (i) the forest is a collection
of chains (i.e., the weighted completion time variant of the job shop schedul-
ing problem), and (ii) for each machine ¢ and operation v, p;, € {py, o0}
(i.e., the restricted-assignment variant), we show a better approximation of
O(logn/loglogn) to the weighted completion time in Section 4. Our result en-

sures that (i) the precedence constraints are satisfied with probability 1, and (ii)
for any (v,t), the probability of scheduling v at time ¢ equals its fractional (LP)
value x, .. This result also leads to a bicriteria (1 + o(1))-approximation for
weighted flow time variant of this problem, using O(logn/loglogn) copies of
each machine.

Due to space limitations, several proofs and algorithm details are omitted
here and are deferred to the full version this paper.

2 The R|forest|Cpqz problem

Consider a (fractional) assignment x of jobs to machines, where x; ; is the frac-
tion of job j assigned to machine i. In the description below, we will use the
terms “node” and “job” interchangably; we will not use the term “operation”
to refer to nodes of a DAG, because we do not have the job shop or dag shop
constraints that at most one node in a DAG can be processed at a time. As
before, P,,q; denotes the maximum processing time along any directed path,
i,e., Ppaz = maxpath P{ZjeP > i TijPij}- Also, I, denotes the maximum
load on any machine, i.e., Il 4, = maxi{zj xi jpij}. Our algorithm for the
R| forest|Crpaz problem involves the following two steps:

Step 1: We first construct a processor assignment for which the value of
max{ Puax, Tmax} is within a constant factor ((3 4+ v/5)/2) of the smallest-
possible. This is described in Section 2.1.

Step 2: Solve the GDSS problem we get from the previous step to get a schedule
of length polylogarithmically more than max{Pnax, [Imax}. This is described in
Section 2.2.

2.1 Step 1: A processor assignment within a constant factor of
maX{Pmaxa Hmax}

We now describe the algorithm for processor assignment, using some of the
ideas from Lenstra et al. [13]. Let T be our “guess” for the optimal value of
LB = max{Pmax, [Imax}. Define St = {(4, j) | pi; < T'}. Let J and M denote the
set of jobs and machines, respectively. We now define a family of linear programs
LP(T), one for each value of T € Z", as follows: (A1) Vj € JY , x;; =1, (A2)
Vi € ME]» TijPij <T, (A3) VJ S JZj = Zi PijTij, (A4) V(j/ < j)Cj > ¢+ 24,
(A5) Vj € J¢j < T. The constraints (Al) ensure that each job is assigned
a machine, constraints (A2) ensure that the maximum fractional load on any
machine (ITyax) is at most T'. Constraints (A3) define the fractional processing
time z; for a job j and (A4) capture the precedence constraints amongst jobs
(¢; denotes the fractional completion of time of job j). We note that max; ¢; is
the fractional P,,,,. Constraints (A5) state that the fractional Pyax value is at
most T'.

Let T* be the smallest value of T for which LP(T') has a feasible solution. It
is easy to see that T is a lower bound on LB. We now present a rounding scheme
which rounds a feasible fractional solution LP(T*) to an integral solution. Let

Xi; denote the indicator variable which denotes if job j was assigned to machine
i in the integral solution, and let C; be the integer analog of c¢; and z;. We first

modify the z;; values using filtering (Lin and Vitter [16]). Let p = % For
any (i,7), if p;; > pz;, then set z;; to zero. This step could result in a situation
where, for a job j, the fractional assignment), x;; drops to a value r such
that 7 € [1 — l%, 1). So, we scale the (modified) values of z;; by a factor of at
most v = —£5. Let A denote this fractional solution. Crucially, we note that
any rounding of A, which ensures that only non-zero variables in A are set to
non-zero values in the integral solution, has an integral Pp.x value which is at
most pI™. This follows from the fact that if X;; = 1 in the rounded solution,
then p;; < pz;. Hence, it is easy to see that by induction, for any job j, C; is at
most pc; < puT™.

We now show how to round A. Recall that Lenstra et al. [13] present a
rounding algorithm for unrelated parallel machines scheduling without prece-
dence constraints with the following guarantee: if the input fractional solution
has a fractional I, value of x, then the output integral solution has an inte-
gral IT,,x value of at most = + maxy, o pij. We use A as the input instance for
the rounding algorithm of Lenstra et al. [13]. Note that A has a fractional ITj,ax
value of at most 7. Further, max,,;~op;; < T*. This results in an integral
solution I whose Py ax value is at most p7™, and whose I1,,x value is at most
(v+1)T*. Observe that, setting u = 3”'2—‘/5 results in g = v + 1. Finally, we note
that the optimal value of T' can be arrived at by a bisection search in the range
[0, nPpmax], where n = |J| and pmax = max; j p;;. Since T* is a lower bound on
LB, we have the following result.

Theorem 1. The above algorithm computes a processor assignment for each job
such that the value of max{ Puax, IImax} for the resulting assignment is within a

(%)ffactor of the optimal.

2.2 Step 2: Solving the GDSS problem under treelike precedences

We first consider the case when the precedences are a collection of directed in-
trees or out-trees. We then extend this to the case where the precedences form
an arbitrary forest (i.e., the underlying undirected graph is a forest). Since the
processor assignment is already specified in the GDSS problem, we will use the
notation m(v) to denote the machine to which node v is assigned. Also, since
the machine is already fixed, the processing time for node v is also fixed, and is
denoted by p,.

GDSS on Out-/In-Arborescences An out-tree is a tree rooted at some node,
say r, with all edges directed away from r; an in-tree is a tree obtained by
reversing all the directions in an out-tree. In the discussion below, we only focus
on out-trees; the same results can be obtained for in-trees. The algorithm for out-
trees requires a careful partitioning of the tree into blocks of chains, and giving
random delays at the start of each chain in each of the blocks - thus the delays are

spread all over the tree. The head of the chain waits for all its ancestors to finish
running, after which it waits for an amount of time equal to its random delay.
After this, the entire chain is allowed to run without interruption. Of course, this
may result in an infeasible schedule where multiple jobs simultaneously contend
for the same machine (at the same time). We show that this contention is low
and can be resolved by expanding the infeasible schedule produced above.
Chain Decomposition We define the notions of chain decomposition of a graph
and its chain width; the decomposition for an out-directed arborescence is illus-
trated in Figure 1. Given a DAG G(V, E), let d;in(u) and deye(u) denote the in-
degree and out-degree, respectively, of u in G. A chain decomposition of G(V, E)
is a partition of its vertex set into subsets Bi,..., By (called blocks) such that
the following properties hold: (i) The subgraph induced by each block B; is a
collection of vertex-disjoint directed chains, (i) For any u,v € V, let u € B; be
an ancestor of v € Bj. Then, either ¢ < j, or 4 = j and v and v belong to the
same directed chain of By, (iil) If doye(u) > 1, then none of u’s out-neighbors
are in the same block as u. The chain-width of a DAG is the minimum value A
such that there is a chain decomposition of the DAG into A blocks.

Figure 1. Chain decomposition of an out-directed arborescence. The vertices enclosed
within the boxes in figures 1(a) and 1(b) are in blocks B3 and B respectively while
the remaining vertices are in block Bj.

‘Well structured schedules. We now state some definitions motivated by those
in Goldberg et al. [6]. Given a GDSS instance with a DAG G(V, E) and given a
chain decomposition of G into A blocks, we construct a B-delayed schedule for it
as follows; B is an integer that will be chosen later. Each job v which is the head
of a chain in a block is assigned a delay d(v) in {0,1,..., B — 1}. Let v be the
head of chain C;. Job v waits for d(v) amount of time after all its predecessors
have finished running, after which the jobs of C; are scheduled consecutively (of
course, the resulting schedule might be infeasible). A random B-delayed schedule
is a B-delayed schedule in which all the delays have been chosen independently

and uniformly at random from {0,1,...,B — 1}. For a B-delayed schedule S,
the contention C(M;,t) is the number of jobs scheduled on machine M; in the
time interval [t,t + 1). As in [6,22], we assume w.l.o.g. that all job lengths are
powers of two. This can be achieved by multiplying each job length by at most a
factor of two (which affects our approximation ratios only by a constant factor).
A delayed scheduled S is well-structured if for each k, all jobs with length 2%
begin in S at a time instant that is an integral multiple of 2¥. Such schedules can
be constructed from randomly delayed schedules as follows. First create a new
GDSS instance by replacing each job v = (m(v),p,) by the job & = (m(v), 2p,).
Let S be a random B-delayed schedule for this modified instance, for some B;
we call S a padded random B-delayed schedule. From S, we can construct a well-
structured delayed schedule, S’, for the original GDSS instance as follows: insert
v with the correct boundary in the slot assigned to © by S. S’ will be called a
well-structured random B-delayed schedule for the original GDSS instance.
Our algorithm. We now describe our algorithm; for the sake of clarity, we
occasionally omit floor and ceiling symbols (e.g., “B = [2I1hax/ 10g(nPmax)]” is
written as “B = 21 .x/ log(npmax)”). As before let ppax = max, p,.

1. Construct a chain decomposition of the DAG G(V, E) and let A be its chain
width.
2. Let B = 211,45/ 10g(npmax). Construct a padded random B-delayed sched-
ule S by first increasing the processing time of each job v by a factor of
2 (as described above), and then choosing a delay d(v) € {0,...,B — 1}
independently and uniformly at random for each v.
3. Construct a well-structured random B-delayed schedule S’ as described
above.
4. Construct a valid schedule S” using the technique from Goldberg et al. [6]
as follows:
(a) Let the makespan of S’ be L.
(b) Partition the schedule S into frames of length pmax; i.e., into the set of
time-intervals {[ipmax; (¢ + 1)Pmax), ¢ =0,1,...,[L/Pmax| — 1}
(c) For each frame, use the frame-scheduling technique from [6] to produce a
feasible schedule for that frame. Concatenate the schedules of all frames
to obtain the final schedule.

The following theorem shows the performance guarantee of the above algo-
rithm, when given a chain decomposition.

Theorem 2. Let pmax = max; j pij. Given an instance of treelike GDSS and a
chain decomposition of its DAG G(V, E) into X blocks, the schedule S” produced
by the above algorithm has makespan O(p - (Pmax + Hmax)) with high probabil-
ity, where p = max{\,logn} - [log(min{pmax,n})/loglogn]. Furthermore, the
algorithm can be derandomized.

The proof of Theorem 3 demonstrates a chain decomposition of width O(log n)
for any out-tree: this completes the algorithm for an out-tree. An identical ar-
gument would work for the case of a directed in-tree. We note that the notions

of chain decomposition and chain-width for the out-directed arborescences are
similar to those of caterpillar decomposition and caterpillar dimension for trees
(see Linial et al. [17]). However, in general, a caterpillar decomposition for an
arborescence need not be a chain-decomposition and vice-versa.

Theorem 3. There is a deterministic polynomial-time approximation algorithm
for solving the GDSS problem when the underlying DAG is restricted to be an
in/out tree. The algorithm computes a schedule with makespan O((Pmax+maz)-
p), where p = logn - [log(min{pmax,n})/loglogn|. In particular, we get an
O(log n)—approzimation in the case of unit-length jobs.

GDSS on arbitrary forest-shaped DAGs We now consider the case where
the undirected graph underlying the DAG is a forest. The chain decomposition
algorithm described for in/out-trees does not work for arbitrary forests: instead
of following the approach for in/out-trees, we observe that once we have a chain
decomposition, the problem restricted to a block of chains is precisely the job
shop scheduling problem. This allows us to reduce the R|forest|Cy,q. problem
to a set of job shop problems, for which we use the algorithm of Goldberg et
al. [6]. While this is simpler than the algorithm for in/out-trees, we incur another
logarithmic factor in the approximation guarantee.

The following lemma and theorem show that a good decomposition can be
computed for forests which can be exploited to yield a good approximation ratio.

Lemma 1. Every DAG T whose underlying undirected graph is a forest, has a
chain decomposition into v blocks, where v < 2([lgn] + 1).

Theorem 4. Given a GDSS instance and a chain decomposition of its DAG
G(V, E) into v blocks, there is a deterministic polynomial-time algorithm which

delivers a schedule of makespan O((Pmax+Imax)-p), where p = U080 [logmin(pmaxn)]

loglogn loglogn
log? n ’—log min(pmax,n)
loglogn loglogn

Thus, Lemma 1 implies that p = O(1) is achievable.

3 The R|forest|) ; w;C; problem.

We now consider the objective of minimizing weighted completion time, where
the given weight for each job j is w; > 0. Given an instance of R|prec|)_; w;C;
where the jobs have not been assigned their processors, we now reduce it to in-
stances of R|prec|Cpax with processor assignment. More precisely, we show the
following: let Ppax and ITyax denote the “dilation” and “congestion” as usual; if
there exists a schedule of makespan p- (Pyax + IImax) for the latter, then there is
a O(p)-approximation algorithm for the former. Let the machines and jobs be in-
dexed by i and j; p; ; is the (integral) time for processing job j on machine i, if we
choose to process j on i. We now present an LP-formulation for R|prec| Zj w;C}
which has the following variables: for £ = 0,1, ..., variable z; ;¢ is the indicator
variable which denotes if “job j is processed on machine 7, and completes in the
time interval (2¢=1, 2¢]”; for job 7, C; is its completion time, and z; is the time

spent on processing it. The objective is to minimize). w,;C; subject to: (1)
Vi, ie@ige =1, (2) Vi, 25 = 32 pij 2 Tige, (3) V(i < k), Crw = Cj + 25,
(4) Vis 2202 i < Cp <30, 2% g0, (B) V(s 6), 20 Pig Ypey it < 2°,
(6) V¢ Vmaximal chains P, 3 . p > Pij D pcp Tijit < 2L, (7) V(i 4,0), (pij >
22) = Tij0 = O; (8) V(Z,], 6)’ Ti g >0

Note that (5) and (6) are “congestion” and “dilation” constraints respec-
tively. Our reduction proceeds as follows. Solve the LP, and let the optimal
fractional solution be denoted by variables T s C7, and z7. We do the fol-
lowing filtering, followed by an assignment of jobs to (machine, time-frame)
pairs.
Filtering: For each job j, note from the first inequality in (4) that the total
“mass” (sum of x; ;¢ values) for the values 2¢ > 4C7, is at most 1/2. We first

—0ifo!
set ;0 = 0 if 2° > 4C7, and scale each z; ;¢ to ;j/(1 — 25,240; D i Tiger)s

if £ is such that 2 < 4C7 - this ensures that equation (1) still holds. After the
filtering, each non-zero variable increases by at most a factor if 2. Additionally,
for any fixed j, the following property is satisfied: consider the largest value of
¢ such that z; ;¢ is non-zero; let this value be ¢'; then, 2! = O(C7). The right-
hand-sides of (5) and (6) become at most 27! in the process and the C; values
increase by at most a factor of two.

Assigning jobs to machines and frames For each j, set F'(j) to be the frame
(2671, 2¢], where £ is the index such that 4C7 € F(j). Let G[{] denote the sub-
problem which is restricted to the jobs in this frame. Let Pyax(¢) and ITax(€)
be the fractional congestion and dilation, respectively, for the sub-problem re-
stricted to G[¢]. From constraints (5) and (6), and due to our filtering step,
which at most doubles any non-zero variable, it follows that both Ppax(¢) and
oy (0) are O(2%). We now perform a processor assignment as follows: for each
G[¢], we use the processor assignment scheme in Section 2.1 to assign processors
to jobs. This ensures that the integral Ppax(¢) and Ilax(€) values are at most
a constant times their fractional values.

Scheduling: First schedule all jobs in G[1]; then schedule all jobs in G[2], and
so on. We can use any approximation algorithm for makespan-minimization, for
each of these scheduling steps. It is easy to see that we get a feasible solution:
for any two jobs j1, j2, if j1 < jo2, then C} < C}, and frame F'(ji) occurs before
F(j2) and hence gets scheduled first.

Theorem 5. If there exists an approximation algorithm which yields a schedule
whose makespan is O((Ppax+Imax)p), then there is also an O(p)—approximation
algorithm for minimizing weighted completion time. Thus, Theorem 4 implies

— log® n_rlogmin(pmax,n) 7y .
that p = O(gtoem | — Toglonn—— 1) 15 achievable.

Proof. Consider any job j which belongs to G[{]; both Ppax(¢) and ITmax(€)
are O(2°), the final completion time of job j is O(p2°). Since 2¢ = O(C7), the
theorem follows.

4 Weighted completion time and flow time on Chains

We now consider the case of R|prec|>_; w;Cj, where the processor-assignment is
not prespecified. We consider the restricted-assignment variant of this problem
[13,21], where for every job v, there is a value p, such that for all machines ¢,
Div € {py,0}. Let S(v) denote the set of machines such that p;, = p,. We
focus on the case where the precedence DAG is a disjoint union of chains with
all p, being polynomially-bounded positive integers in the input-size N.

We now present our approximation algorithms for weighted completion time.
The algorithm and proof techniques for flow time is similar to weighted comple-
tition time and is omitted from this version.

Weighted Completion Time Recall that N = max,{n,m,p,} denote the
“input size”. In this section, we obtain an O(log N/ loglog N)-approximation al-
gorithm for the minimum weighted completion time problem. We first describe
an LP relaxation. Let T = " p,. In the following LP, for ease of exposition,
we assume that all the p, values are equal to one. Our algorithm easily gener-
alizes to the case where the p, values are arbitrary positive integers, and the
LP is polynomial-sized if all p, values are polynomial in N. Let < denote the
immediate predecessor relation, i.e., if u < v, then they both belong to the
same chain and v is an immediate predecessor of v in this chain. Note that if
v is the first job in its chain, then it has no predecessor. In the time-indexed
LP formulation below, the variable x, ;: denotes the fractional amount of job
v that is processed on machine i at time ¢. The objective is min), w(v)C(v),
subject to: (B1) Vv, 3" c o) 2otep,. 1 Tvat = 1, (B2) Vi e [l,...m],V t €
(L. T], Yy@eae <1, (B3) Vo, Vit el[l,... T, 2ot = Dicp, m Tvits
(B4) Vu <noVitell. Tl Zt'e[l,...,t] CORTIIS Zt’e[l,...,t—l] Zu,tr, (BS)
Vo,C(v) = X ien, mt- 2o, (B6) Vo, Vi€ Sv), VEe[l,....T], zyi¢=>0.

The constraints (B1) ensure that all jobs are processed completely, and (B2)
ensure that at most one job is (fractionally) assigned to any machine at any
time. The variable z,; denotes the fractional amount of job v that has been
processed on all machines at time ¢. Constraints (B3) and (B4) are the precedence
constraints and (B6) define the completion time C(v) for job v.

Our algorithm proceeds as follows. We first solve the above LP optimally.
Let OPT be the optimal value of the LP and let z and z denote the optimal
solution values in the rest of the discussion. We define a rounding procedure for
each chain such that the following hold:

1. Let Z, . be the indicator random variable which denotes if v is executed at
time ¢ in the rounded solution. Let X, ; + be the indicator random variable which
denotes if v is executed at time ¢ on machine i in the rounded solution. Then
E[Zv,t] = Zu,t and E[Xv,i,t] = Tu,it-

2. All precedence constraints are satisfied in the rounded solution.

3. Jobs in different chains are rounded independently.

After the Z,; values have been determined, we do the machine assignment
as follows: if Z,; = 1, then job v is assigned to machine ¢ with probability
(®v,i.t/7v+). In general, this assignment strategy might result in jobs from dif-

ferent chains executing on the same machine at the same time, and hence an
infeasible schedule. Let C7 denote the cost of this infeasible solution. Property
1 above ensures that E[Cy] = OPT. Let Y be the random variable which de-
notes the maximum contention of any machine at any time. We obtain a feasible
solution by “expanding” each time slot by a factor of Y.

We now show our rounding procedure for the jobs of a specific chain such
that properties 1 and 2 hold; different chains are handled independently as
follows: for each chain I', we choose a value r(I") € [0,1] uniformly and in-
dependently at random. For each job v belonging to chain I', Z, = 1 iff
Z::ll Zot < r(I) < E:/:l Zv,t- Bertsimas et al. [1] show other applications for
such rounding techniques. A moment’s reflection shows that property 1 holds
due to the randomized rounding and property 2 holds due to Equation (B4).
A straight forward application of the Chernoff-type bound from [18] yields the
following lemma:s:

Lemma 2. Let £ denote the event that Y < (alogN/loglog N), where o >
0 is a suitably large constant. Event £ occurs after the randomized machine
assignment with high probability: this probability can be made at least 1 —1/NP
for any desired constant B > 0, by letting the constant o be suitably large.

Finally, we note that we expand an infeasible schedule only if the event &
occurs. Otherwise, we can repeat the randomized machine assignment until event
& occurs and expand the resultant infeasible schedule. Let the final cost of our
solution be C. We now have an O(log N/ loglog N)-approximation from:

log N log N E[C4] log N
E <E —_ - < . < — | -OPT.
clel <0 () Gl so(pi) gl <o (e) 0

Acknowledgments. We are thankful to David Shmoys and the anonymous
APPROX 2005 referees for valuable comments.

References

1. D. Bertsimas, C.-P. Teo and R. Vohra. On Dependent Randomized Rounding
Algorithms. Operations Research Letters, 24(3):105-114, 1999.

2. C. Chekuri and M. Bender. An Efficient Approximation Algorithm for Min-
imizing Makespan on Uniformly Related Machines. Journal of Algorithms,
41:212-224, 2001.

3. C. Chekuri and S. Khanna. Approximation algorithms for minimizing weighted
completion time. Handbook of Scheduling, 2004.

4. F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different
speeds. Journal of Algorithms, 30(2):323-343, 1999.

5. U. Feige and C. Scheideler. Improved bounds for acyclic job shop scheduling.
Combinatorica, 22:361-399, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

L.A. Goldberg, M. Paterson, A. Srinivasan and E. Sweedyk. Better approxi-
mation guarantees for job-shop scheduling. STAM Journal on Discrete Mathe-
matics, Vol. 14, 67-92, 2001.

L. Hall. Approzimation Algorithms for Scheduling. in Approximation Algo-
rithms for NP-Hard Problems, Edited by D. S. Hochbaum. PWS Press, 1997.
L. Hall, A. Schulz, D.B. Shmoys, and J. Wein. Scheduling to minimize average
completion time: Offline and online algorithms. Mathematics of Operations
Research, 22:513-544, 1997.

K. Jansen and L. Porkolab, Improved Approximation Schemes for Scheduling
Unrelated Parallel Machines. Proc. ACM Symposium on Theory of Computing
(STOC), pp. 408-417, 1999.

K. Jansen and R. Solis-oba. Scheduling jobs with chain precedence constraints.
Parallel Processing and Applied Mathematics, PPAM, LNCS 3019, pp. 105-
112, 2003.

K. Jansen, R. Solis-Oba and M. Sviridenko. Makespan Minimization in Job
Shops: A Polynomial Time Approzimation Scheme. Proc. ACM Symposium
on Theory of Computing (STOC), pp. 394-399, 1999.

S. Leonardi and D. Raz. In Approxzimating total flow time on parallel machines.
In Proc. ACM Symposium on Theory of Computing, 110-119, 1997.

J. K. Lenstra, D. B. Shmoys and E. Tardos. Approzimation algorithms for
scheduling unrelated parallel machines. Mathematical Programming, Vol. 46,
259-271, 1990.

F.T. Leighton, B. Maggs and S. Rao. Packet routing and jobshop scheduling
in O(congestion + dilation) Steps, Combinatorica, Vol. 14, 167-186, 1994.

F. T. Leighton, B. Maggs, and A. Richa, Fast algorithms for finding
O(congestion + dilation) packet routing schedules. Combinatorica, Vol. 19,
375-401, 1999.

J. H. Lin and J. S. Vitter. e-approximations with minimum packing constraint
violation. In Proceedings of the ACM Symposium on Theory of Computing,
1992, pp. 771-782.

N. Linial, A. Magen, and M.E. Saks. Trees and Fuclidean Metrics. In Proceed-
ings of the ACM Symposium on Theory of Computing, 169-175, 1998.

A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an
extension of the Chernoff-Hoeffding bounds, SIAM Journal on Computing, Vol.
26, 350-368, 1997.

M. Queyranne and M. Sviridenko. Approzimation algorithms for shop schedul-
ing problems with minsum objective, Journal of Scheduling, Vol. 5, 287-305,
2002.

A. Schulz and M. Skutella. The power of a-points in preemptive single machine
scheduling. Journal of Scheduling 5(2): 121 - 133, 2002.

P. Schuurman and G. J. Woeginger. Polynomial time approzimation algorithms
for machine scheduling: Ten open problems. Journal of Scheduling 2:203-213,
1999.

D.B. Shmoys, C. Stein and J. Wein. Improved approzimation algorithms for
shop scheduling problems, STAM Journal on Computing, Vol. 23, 617-632, 1994.
M. Skutella. Convex quadratic and semidefinite relazations in scheduling. Jour-
nal of the ACM, 46(2):206-242, 2001.

