
Approximation Algorithms for Scheduling on Multiple Machines

V.S. Anil Kumar 1

Virginia Bio-informatics Institute and
Department of Computer Science

Virginia Tech, Blacksburg, VA 24061
Email: akumar@vbi.vt.edu

Madhav V. Marathe
Virginia Bio-informatics Institute and

Department of Computer Science
Virginia Tech, Blacksburg, VA 24061
Email: mmarathe@vbi.vt.edu

Srinivasan Parthasarathy 2

Department of Computer Science
University of Maryland

College Park, MD 20742
Email: sri@cs.umd.edu

Aravind Srinivasan 2

Dept. of Computer Science & UMIACS
University of Maryland

College Park, MD 20742
Email: srin@cs.umd.edu

Abstract

We develop a single rounding algorithm for schedul-
ing on unrelated parallel machines; this algorithm works
well with the known linear programming-, quadratic
programming-, and convex programming-relaxations for
scheduling to minimize completion time, makespan, and
other well-studied objective functions. We obtain the fol-
lowing applications for the general setting of unrelated par-
allel machines: (i) a bicriteria algorithm for a schedule
whose weighted completion-time and makespan simultane-
ously exhibit the current-best individual approximations for
these criteria (3/2 and 2, respectively); (ii) better-than-
two approximation guarantees for scheduling under the Lp

norm for all 1 < p <∞, improving on the 2-approximation
algorithms of Azar & Epstein; and (iii) the first constant-
factor multicriteria approximation algorithms that handle
the weighted completion-time and any given collection of
integer Lp norms. Our algorithm yields a common gen-
eralization of rounding theorems due to Karp et al. and
Shmoys & Tardos; among other applications, this yields
an improved approximation for scheduling with resource-
dependent processing times studied by Grigoriev et al.

1 Introduction

The complexity and approximability of scheduling prob-
lems for multiple machines is an area of active research

1Work done while at the Los Alamos National Laboratory.
2Research supported in part by NSF Award CCR-0208005 and NSF

ITR Award CNS-0426683.

[14, 17]. A particularly general (and challenging) case in-
volves scheduling on unrelated parallel machines, where
the processing times of jobs depend arbitrarily on the ma-
chines to which they are assigned. That is, we are given n
jobs andmmachines, and each job needs to be scheduled on
exactly one machine; we are also given a collection of inte-
ger values pi,j such that if we schedule job j on machine i,
then the processing time of operation j is pi,j . Three major
objective functions considered in this context are to mini-
mize the weighted completion-time of the jobs, theLp norm
of the loads on the machines, and the maximum completion-
time of the machines, or the makespan (i.e., the L∞ norm
of the machine-loads) [15, 18, 19, 5]. There is no mea-
sure that is considered “universally good”, and therefore
there has been much interest in simultaneously optimizing
many given objective functions: if there is a schedule that
simultaneously has cost Ti with respect to objective i for
each i, we aim to efficiently construct a schedule that has
cost λiTi for the ith objective, for each i. (One typical
goal here is to minimize maxi λi.) Most of the best re-
sults for these single-criterion or multi-criteria problems are
based on constructing fractional solutions by different linear
programming (LP)-, quadratic programming-, and convex
programming-relaxations and then rounding them into in-
tegral solutions. Two major rounding approaches for these
problems are those of [15, 18], and standard randomized
rounding [16] as applied to specific problems in [19, 5].

In this work, we develop a single rounding technique
that works with all of these relaxations, gives improved
bounds for scheduling under the Lp norms, and most im-
portantly, helps develop schedules that are good for multiple
combinations of the completion-time and Lp-norm criteria.
For the case of simultaneous weighted completion time and

makespan objectives, our approach yields a bicriteria ap-
proximation with the best known guarantees for both these
objectives. We start by presenting our applications, and then
discuss our rounding technique.

(i) Simultaneous approximation of weighted completion-
time and makespan. In the weighted completion-time ob-
jective problem, we are given an integral weight wj for
each job; we need to assign each job to a machine, and
also order the jobs assigned to each machine, in order to
minimize the weighted completion-times of the jobs. The
current-best approximations for weighted completion-time
and makespan are 3/2 [19] and 2 [15], respectively. We
construct schedules that achieve these bounds simultane-
ously: if there exists a schedule with (weighted completion-
time, makespan) ≤ (C, T) coordinatewise, our schedule
has a pair ≤ (1.5C, 2T). This is noticeably better than
the bounds obtained by using general bicriteria results for
(weighted completion-time, makespan) such as Stein and
Wein [20] and Aslam et al. [3]: e.g., we would get ≤
(2.7C, 3.6T) using the methods of [20]. More impor-
tantly, note that if we can improve one component of our
pair (1.5, 2) (while worsening the other arbitrarily), we
would improve on the current-best approximation known
for weighted completion-time or makespan.

(ii) Minimizing the Lp norm of machine loads. Note
that the makespan is the L∞ norm of the machine loads,
and that the L1 norm is easily minimizable. The Lp norm
of the machine loads, for 1 < p < ∞, interpolates be-
tween these “minmax” and “minsum” criteria. (See, e.g.,
[6] for an example that motivates the L2 norm in this con-
text.) A very recent breakthrough of [5] improves upon the
Θ(p)-approximation for minimizing the Lp norm of ma-
chine loads [4], by presenting a 2-approximation for each
p > 1, and a

√
2-approximation for p = 2. Our algorithm

further improves upon [5] by giving better-than-2 approx-
imation algorithms for all p, 1 ≤ p < ∞: e.g., we get
approximations of 1.585,

√
2, 1.381, 1.372, 1.382, 1.389,

1.41, 1.436, 1.46, and 1.485 for p = 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5 and 6 respectively.

(iii) Multicriteria approximations for completion time
and multiple Lp norms. There has been much inter-
est in schedules that are simultaneously near-optimal w.r.t.
multiple objectives and in particular, multiple Lp norms
[8, 1, 6, 7, 10, 13] in various special cases of unrelated par-
allel machines. For general unrelated parallel machines, it
is easy to show instances where, for example, any schedule
that is reasonably close to optimal w.r.t. the L2 norm will
be far from optimal for, say, the L∞ norm; thus, such si-
multaneous approximations cannot hold. However, we can
still ask multi-criteria questions. Given an arbitrary (finite,
but not necessarily of bounded size) set of positive inte-
gers p1, p2, . . . , pr, suppose we are given that there exists
a schedule in which: (a) for each i, the Lpi norm of the ma-

chine loads is at most some given Ti, and (b) the weighted
completion-time is at most some given C. We show how to
efficiently construct a schedule in which theLpi norm of the
machine loads is at most 3.2·Ti for each i, and the weighted
completion-time is at most 3.2 · C. To our knowledge, this
is the first such multi-criteria approximation algorithm with
a constant-factor approximation guarantee. We also present
several additional results, some of which generalize our ap-
plication (i) above, and others that improve upon the results
of [6, 10].
(iv). Generalization of the Karp et al. Rounding The-
orem. A basic result of Karp et al. [12], shows that if
A ∈ �m×n is a “column-sparse” matrix, then for any
given real vector x = (x1, x2, . . . , xn)T , we can efficiently
find a rounded counterpart y = (y1, y2, . . . , yn)T such that
‖Ay − Ax‖∞ is “small”. Our approach leads to a prob-
abilistic generalization of this theorem, that achieves the
same bound on ‖Ay − Ax‖∞ with probability 1, with the
additional property that for all j, E[yj] = xj . This yields
the result of [18]; furthermore, we use the ideas behind this
generalization to obtain new multicriteria approximations
in the setting of [12]. We also show a direct application
of our probabilistic generalization to obtain an improved 4-
approximation algorithm for the problem of unrelated paral-
lel machine scheduling with resource-dependent processing
times. The current-best approximation known for this prob-
lem is 4 + 2

√
2 due to Grigoriev et al. [11]. As another ap-

plication, we show that our main rounding algorithm can be
used to obtain a 2-approximate, randomized strategyproof
mechanism for the Q||Cmax problem, matching the bound
of Archer [2].
Our approach in brief. Suppose we are given a fractional
assignment {x∗i,j} of jobs j to machines i; i.e.,

∑
i x

∗
i,j = 1

for all j. Let t∗i =
∑

j pi,jx
∗
i,j be the fractional load on

machine i. We round the xi,j in iterations by a melding

of linear algebra and randomization. Let X(h)
i,j denote the

random value of xi,j at the end of iteration h. For one,

we maintain the invariant that E[X(h)
i,j] = x∗i,j for all i, j

and h. Second, we “protect” each machine i almost until
the end: the load

∑
j pi,jX

(h)
i,j on i at the end of iteration

h equals its initial value t∗i with probability 1, until the re-
maining fractional assignment on i falls into a small set of
simple configurations. Informally, these two properties re-
spectively capture some of the utility of independent ran-
domized rounding [16] and those of [15, 18]. Importantly,
while our algorithm is fundamentally based on linear sys-
tems, in Lemma 4, we show that it has good behavior w.r.t.
a certain family of quadratic functions as well. Similarly,
the precise details of our rounding help us show better-than-
2 approximations for Lp norms of the machine-loads.

Thus, our main algorithm helps improve upon various
basic results in scheduling. In particular, different rounding
techniques have thus far been applied for diverse objective

functions: e.g., the approach of [15, 18] in [5] for general
Lp norms, and independent randomized rounding [16] for
weighted completion time in [19] and for the special case
of the L2 norm in [5]. Our algorithm unifies and strength-
ens all these results. Furthermore, it can be made to work
simultaneously with differing objective functions such as
weighted completion-time and Lp norms of machine loads,
thus leading to simultaneous multicriteria guarantees. We
thus expect our approach to be of use in further contexts
as well. Our main algorithm is presented in Section 2, fol-
lowed by the applications. Due to the lack of space, some
of our proofs are deferred to the full version of this paper.

2 The Main Rounding Algorithm

We now present our rounding algorithm which takes as
input a fractional assignment x∗ of jobs to machines, as well
as the processing time pi,j of each job j on each machine
i, and produces an integral assignment. Let x∗i,j ∈ [0, 1]
denote the fraction of job j assigned to machine i in x∗,
and note that for all j,

∑
i x

∗
i,j = 1. Initialize x = x∗.

Our rounding algorithm iteratively modifies x such that x
becomes integral in the end. At least one coordinate of x
is rounded to zero or one during each iteration; throughout,
we will maintain the invariant “∀j, ∑

i xi,j = 1”. Once a
co-ordinate is rounded to 0 or 1, it is unchanged from then
on.
Notation. Let M denote the set of machines and J denote
the set of jobs; let m = |M | and n = |J |. The (random)

values at the end of iteration h will be denoted X(h)
i,j .

Our algorithm will first go through Phase 1, followed by
Phase 2 (one of these phases could be empty). We start
by saying when we transition from Phase 1 to Phase 2, and
then describe a generic iteration in each of these phases.
Suppose we are at the beginning of some iteration h + 1
of the algorithm; so, we are currently looking at the val-
ues X(h)

i,j . Let a job j be called a floating job if it is cur-
rently assigned fractionally to more than one machine, i.e.,
if there exist machines i1, i2 such that xi1,j, xi2,j ∈ (0, 1).
Let a machine i be called a floating machine if it currently
has at least one floating job assigned to it. Machine i is
called a singleton machine if it has exactly one floating
job assigned to it currently. Let J ′ and M ′ denote the
current set of floating jobs and non-singleton floating ma-
chines respectively. Let n′ = |J ′| and m′ = |M ′|. De-
fine V to be the set of yet-unrounded pairs currently; i.e.,
V = {(i, j) : X

(h)
i,j ∈ (0, 1)}, and let v = |V |. We em-

phasize that all these definitions are w.r.t. the values at the
beginning of iteration (h + 1). The current iteration (the
(h + 1)st iteration) is a Phase 1 iteration if v > m′ + n′;
at the first time we observe that v ≤ m′ + n′, we move to
Phase 2. So, initially we might have some number of iter-
ations at the start of each of which, we have v > m′ + n′;

these constitute Phase 1. Phase 2 starts at the beginning of
the first iteration where we have v ≤ m′ + n′. We next
describe iteration (h+ 1), based on which phase it is in.
Case I: Iteration (h+1) is in Phase 1. Let J ′,M ′, n′,m′, V
and v be as defined above, and recall that v > m′ +
n′. Consider the following linear system: (E1) ∀j ∈
J ′,

∑
i∈M xi,j = 1; and (E2) ∀i ∈M ′,

∑
j∈J′ xi,j ·pi,j =

∑
j∈J′ X

(h)
i,j · pi,j . Note that we only have constraints

(E2) corresponding to non-singleton machines. The point
P = (X(h)

i,j : i ∈ M, j ∈ J ′) is a feasible solution for the
variables {xi,j}, and all the coordinates of P lie in (0, 1).
Crucially, the number of variables v in the linear system
(E1), (E2) exceeds the number of constraints n′ + m′; so,
there exists a v-dimensional unit vector r which can be com-
puted in polynomial time such that starting at point P and
moving along r or −r does not violate (E1) or (E2). Let α
and β be the strictly-positive quantities such that starting at
point P , α and β are the minimum distances to be traveled
along directions r and −r respectively before one of the
variables gets rounded to 0 or 1. We now obtain X(h+1) as
follows. As mentioned before, all values X(h) which lie in
{0, 1}, remain unchanged. For the remaining coordinates,

i.e., for the projection X(h+1)
V of X(h+1) along the coor-

dinates V , we do the following: with probability β
α+β , set

X
(h+1)
V = X

(h)
V +α·r; with the complementary probability

of α
α+β , set X(h+1)

V = X
(h)
V − β · r.

This way, it is easy to observe that the new system
X(h+1) still satisfies (E1) and (E2), has rounded at least
one further variable, and also satisfies E[X(h+1)

i,j] = X
(h)
i,j

(for all i, j).
Case II: Iteration (h+ 1) is in Phase 2. Let J ′,M ′ etc. be
defined w.r.t. the values at the start of this (i.e., the (h+1)st)
iteration. Consider the bipartite graph G = (M,J ′, E) in
which we have an edge (i, j) between job j ∈ J ′ and ma-
chine i ∈ M iff X(h)

i,j ∈ (0, 1). We employ the bipartite
dependent-rounding algorithm of Gandhi et al. [9]. Choose
an even cycle C or a maximal path P in G, and partition
the edges in C or P into two matchings M1 and M2 (it is
easy to see that such a partition exists and is unique). Define
positive scalars α and β as follows.

α = min{γ > 0 : ((∃(i, j) ∈ M1 : X(h)
i,j + γ = 1)

∨ (∃(i, j) ∈ M2 : X(h)
i,j − γ = 0))};

β = min{γ > 0 : ((∃(i, j) ∈ M1 : X(h)
i,j − γ = 0)

∨ (∃(i, j) ∈ M2 : X(h)
i,j + γ = 1))}.

We execute the following randomized step, which rounds at
least one variable to 0 or 1:

With probability β/(α + β), set X(h+1)
i,j :=

X
(h)
i,j + α for all (i, j) ∈ M1, and X(h+1)

i,j :=

X
(h)
i,j − α for all (i, j) ∈ M2;

with the complementary probability ofα/(α+β),
set X(h+1)

i,j := X
(h)
i,j − β for all (i, j) ∈ M1, and

X
(h+1)
i,j := X

(h)
i,j + β for all (i, j) ∈ M2.

This completes the description of Phase 2, and of our algo-
rithm.

Define machine i to be protected during iteration h + 1
if iteration h + 1 was in Phase 1, and if i was not a single-
ton machine at the start of iteration h + 1. If i was then a
non-singleton floating machine, then since Phase 1 respects
(E2), we will have, for any given value of X(h), that

∑

j∈J

X
(h+1)
i,j · pi,j =

∑

j∈J

X
(h)
i,j · pi,j (1)

with probability one. This of course also holds if i had no
floating jobs assigned to it at the beginning of iteration h+1.
Thus, if i is protected in iteration (h + 1), the total (frac-
tional) load on it is the same at the beginning and end of
this iteration with probability 1.

Our algorithm requires some t ≤ mn iterations. Let
X denote the final rounded vector output by our algorithm.
We now present the following three lemmas about our algo-
rithm.

Lemma 1 (i) In any iteration of Phase 2, any floating ma-
chine has at most two floating jobs assigned fractionally
to it. (ii) Let φ and J ′ denote the fractional assignment
and set of floating jobs respectively, at the beginning of
Phase 2. Conditional on any values of these random vari-
ables, we have with probability one that for all i ∈ M ,∑

j∈J′ Xi,j ∈ {
∑j∈J′ φi,j�, �
∑

j∈J′ φi,j
}.

Proof We start by making some observations about the
beginning of the first iteration of Phase 2. Consider the val-
ues v,m′, n′ the beginning of that iteration. At this point,
we had v ≤ n′+m′; also observe that v ≥ 2n′ and v ≥ 2m′

since every job j ∈ J ′ is fractionally assigned to at least
two machines and every machine i ∈M ′ is a non-singleton
floating machine. Therefore, we must have v = 2n′ = 2m′;
in particular, we have that every non-singleton floating ma-
chine has exactly two floating jobs fractionally assigned
to it. The remaining machines of interest, the singleton
floating machines, have exactly one floating job assigned
to them. This proves part (i).

Recall that each iteration of Phase 2 chooses a cycle or a
maximal path. So, it is easy to see that if i had two fractional
jobs j1 and j2 assigned fractionally to it at the beginning of
iteration h+1 in Phase 2, then we haveX(h+1)

i,j1
+X(h+1)

i,j2
=

X
(h)
i,j1

+ X
(h)
i,j2

with probability 1. This equality, combined
with part (i), helps us prove part (ii).

Lemma 2 For all i, j, h, α, E[X(h+1)
i,j

∣∣ (X(h)
i,j = α)] = α.

In particular, E[X(h)
i,j] = x∗i,j for all i, j, h.

Lemma 3 (i) Let machine i be protected during iteration

h + 1. Then ∀h′ ∈ {0, . . . , h + 1},
∑

j∈J X
(h′)
i,j · pi,j =∑

j∈J x
∗
i,j ·pi,j with probability 1. (ii) For all i,

∑
j∈J Xi,j ·

pi,j <
∑

j∈J x
∗
i,j · pi,j + maxj∈J: x∗

i,j
∈(0,1) pi,j with prob-

ability 1.

Proof Part (i) follows from (1), and from the fact that
if a machine was protected in any one iteration, it is also
protected in all previous ones.

For part (ii), if i remained protected throughout the al-
gorithm, then its total load never changes and the lemma
holds. Assume i become a singleton machine when it be-
came unprotected. The total load on i when it became un-
protected is

∑
j∈J x

∗
i,j · pi,j and irrespective of how the

floating job on i gets rounded, the additional load on i is
strictly less than maxj∈J: x∗

i,j
∈(0,1) pi,j . Hence the lemma

holds. Finally, assume that i had two floating jobs j1 and
j2 when it became unprotected (Lemma 1(i) shows that
this is the only remaining possibility); let the fractional
assignments of j1 and j2 on i at this time be φi,j1 and
φi,j2 respectively. Let φi,j1 + φi,j2 ∈ (0, 1]. Hence,
by Lemma 1(ii), at most one of these jobs is finally as-
signed to i. So, the additional load on i is strictly less than∑

j∈J x
∗
i,j · pi,j + maxj∈J: x∗

i,j
∈(0,1) pi,j . A similar argu-

ment holds when φi,j1 + φi,j2 ∈ (1, 2]. Hence, the lemma
holds.

3 Weighted Completion Time and Makespan

We present a (3
2 , 2)-bicriteria approximation algorithm

for (weighted completion time, makespan) with unrelated
parallel machines. Given a pair (C, T), where C is the tar-
get value of the weighted completion time and T , the tar-
get makespan, our algorithm either proves that no sched-
ule exists which simultaneously satisfies both these bounds,
or yields a solution whose cost is at most (3C

2 , 2T). Our
algorithm builds on the ideas of Skutella [19] and those
of Section 2; as we will see, the makespan bound needs
less work, but managing the weighted completion time si-
multaneously needs much more care. Let wj denote the
weight of job j. For a given assignment of jobs to ma-
chines, the sequencing of the assigned jobs can be done op-
timally on each machine i by applying Smith’s ratio rule
(see [19]): schedule the jobs in the order of non-increasing
ratios wj

pi,j
. Let this order on machine i be denoted ≺i.

Given an assignment-vector x and a machine i, let Φi(x) =∑
(k,j): k≺ij

wjxi,jxi,kpi,k. Note that if x is an integral as-
signment, then

∑
i

∑
k: k≺ij

xi,jxi,kpi,k is the amount of

time that job j waits before getting scheduled. Thus, for
integral assignments x, the total weighted completion time
is

(
∑

i,j

wjpi,jxi,j) + (
∑

i

Φi(x)). (2)

Given a pair (C, T), we write the following Integer
Quadratic Program (IQP) motivated by [19]. The xi,j are
the usual assignment variables, and z denotes an upper
bound on the weighted completion time. The IQP is to mini-
mize z subject to “∀j, ∑

i xi,j = 1”, “∀i, j, xi,j ∈ {0, 1}”,
and:

z ≥ (
∑

j wj

∑
i

xi,j(1+xi,j)
2 pi,j) + (

∑
i Φi(x)); (3)

z ≥ ∑
j wj

∑
i xi,jpi,j ; (4)

∀i, T ≥ ∑
j pi,jxi,j ; (5)

∀(i, j), (pi,j > T) ⇒ (xi,j = 0). (6)

The constraint (6) is easily seen to be valid, since we want
solutions of makespan at most T . Next, since u(1+u)/2 =
u for u ∈ {0, 1}, (2) shows that constraints (3) and (4) are
valid: z denotes an upper bound on the weighted comple-
tion time, subject to the makespan being at most T . Cru-
cially, as shown in [19], the quadratic constraint (3) is con-
vex, and hence the convex-programming relaxation (CPR)
of the IQP wherein we set xi,j ∈ [0, 1] for all i, j, is solvable
in polynomial time. Technically, we can only solve the re-
laxation to within an additional error ε that is, say, any pos-
itive constant. As shown in [19], this is easily dealt with by
derandomizing the algorithm. Let ε be a suitably small pos-
itive constant. We find a (near-)optimal solution to the CPR,
with additive error at most ε. If this solution has value more
than C + ε, then we have shown that (C, T) is an infeasible
pair. Else, we construct an integral solution by employing
our rounding algorithm of Section 2 on the fractional as-
signment x. Assuming that we obtained such a fractional
assignment, let us now analyze this algorithm. Let X(h)

denote the (random) fractional assignment at the end of it-
eration h of our rounding algorithm. Our key lemma is:

Lemma 4 For all i and h, E[Φi(X(h+1))] ≤ E[Φi(X(h))].

Proof Fix a machine i and iteration h. Also fix the frac-
tional assignment at the end of iteration h to be some arbi-
trary x(h) = {x(h)

i,j }. So, our goal is to show, conditional on

this fractional assignment, that E[Φi(X(h+1))] ≤ Φi(x(h)).
We may assume that Φi(x(h)) > 0, since E[Φi(X(h+1))] =
0 if Φi(x(h)) = 0. We first show by a perturbation argument
that the value α = E[Φi(X(h+1))]/Φi(x(h)) is maximized
when all jobs with nonzero weight have the same wj

pi,j
ra-

tio. Partition the jobs into sets S1, . . . , Sk such that in each
partition, the jobs have the same wj

pi,j
ratio. Let the ratio for

set Sg be rg and let r1, . . . , rk be in non-decreasing order.
For each job j ∈ S1, we set w′

j = wj + λpi,j where λ has

sufficiently small absolute value so that the relative order-
ing of r1, . . . , rk does not change. This changes the value
of α to a new value α′(λ) = a+bλ

c+dλ , where a, b, c and d are
constants independent of λ, α = a/c, and a, c > 0. Cru-
cially, since α′(λ) is a ratio of two linear functions, its value
depends monotonically (either increasing or decreasing) on
λ, in the allowed range for λ. Hence, there exists an al-
lowed value for λ such that α′(λ) ≥ α, and either r′1 = r2
or r′1 = 0. The terms for jobs with zero weight can be
removed. We continue this process until all jobs with non-
zero weight have the same ratio wj

pi,j
. So, we assume w.l.o.g.

that all jobs have the same value of this ratio; thus we can
rewrite, for some value γ > 0,

Φi(x(h)) = γ ·
∑

{k,j}:k≺ij

pi,jpi,kx
(h)
i,j x

(h)
i,k ;

E[Φi(X(h+1))] = γ · E[
∑

{k,j}:k≺ij

pi,jpi,kX
(h+1)
i,j X

(h+1)
i,k].

(Again, the above expectations are taken conditional on
X(h) = x(h).) There are three possibilities for a machine i
during iteration h+ 1:
Case I: i is protected in iteration h + 1. In this case,
E[Φi(X(h+1))] equals

γ
2 · (E[(

∑
j pi,jX

(h+1)
i,j)2] − ∑

j E[(pi,jX
(h+1)
i,j)2])

= γ
2 · ((∑j pi,jx

(h)
i,j)2 − ∑

j E[(pi,jX
(h+1)
i,j)2])

where the latter equality follows since i is protected in iter-
ation h + 1. Further, for any j, the probabilistic rounding
ensures that there exists a pair of positive reals (u, v) such

that E[(X(h+1)
i,j)2] = v

u+v (x(h)
i,j + u)2 + u

u+v (x(h)
i,j − v)2 ≥

(x(h)
i,j)2. Hence, E[Φi(X(h+1))] ≤ Φi(x(h)) in this case.

Case II: i is unprotected since it was a singleton machine
at the start of iteration h + 1. Let j be the single floating
job assigned to i. Then, Φi(X(h+1)) is a linear function of

X
(h+1)
i,j , and so E[Φi(X(h+1))] = Φi(x(h)) by the linearity

of expectation.
Case III: Iteration h+1 is in Phase 2, and i had two floating
jobs then. (Lemma 1(i) shows that this is the only remain-
ing case.) Let j and j′ be the floating jobs on i. Φi(X(h+1))
has: (i) constant terms, (ii) terms that are linear in X(h+1)

i,j

or X(h+1)
i,j′ , and (iii) the term X

(h+1)
i,j · X(h+1)

i,j′ with a non-
negative coefficient. Terms of type (i) and (ii) are handled
by the linearity of expectation, just as in Case II. Now con-
sider the term X

(h+1)
i,j ·X(h+1)

i,j′ ; we claim that the two fac-
tors here are negatively correlated. Indeed, in each iteration
of Phase 2, there are positive values u, v such that we set
(X(h+1)

i,j , X
(h+1)
i,j′) to (x(h)

i,j + v, x
(h)
i,j′ − v) with probability

u/(u + v), and to (x(h)
i,j − u, x

(h)
i,j′ + u) with probability

v/(u + v). We can verify now that E[X(h+1)
i,j · X(h+1)

i,j′] ≤
x

(h)
i,j · x(h)

i,j′ ; thus, the type (iii) term is also handled.

Lemma 4 leads to our main theorem here.

Theorem 5 Let C′ and T ′ denote the total weighted com-
pletion time and makespan of the integral solution. Then,
E[C′] ≤ (3/2) · (C + ε) for any desired constant ε > 0,
and T ′ ≤ 2T with probability 1; this can be derandomized
to deterministically yield the pair (3C/2, 2T).

Proof For simplicity, we ignore the factor of ε; in the
full version, we will show how it can be dealt with in the
same simple manner as in [19]. The fact that T ′ ≤ 2T with
probability 1 easily follows by applying Lemma 3(ii) with
constraints (5) and (6). Let us now bound E[C′].

Recall that X = {Xi,j} denotes the final random inte-
gral assignment. Lemma 2 shows that E[Xi,j] = x∗i,j . Also,
Lemma 4 shows that E[Φi(X)] ≤ Φi(x∗), for all i. These,
combined with the linearity of expectation, yield

E[(
∑

j

wj

∑

i

pi,jXi,j/2) + (
∑

i

Φi(X))] ≤

(
∑

j

wj

∑

i

pi,jxi,j/2) + (
∑

i

Φi(x)) ≤ z

where the second inequality follows from (3). Similarly, we
have

E[
∑

j

wj

∑

i

Xi,jpi,j] =
∑

j

wj

∑

i

xi,jpi,j ≤ z,

where the inequality follows from (4). As in [19],
we get from (2) that E[C′] = (

∑
i,j wjpi,jE[Xi,j]) +

(
∑

i E[Φi(X))) = E[(
∑

j wj

∑
i pi,jXi,j/2) +

(
∑

i Φi(X))] + E[
∑

j wj

∑
iXi,jpi,j/2] ≤ z + z/2 ≤

3C/2. We can derandomize this algorithm using the
method of conditional probabilities.

4 Minimizing the Lp Norm of Machine Loads

We now consider the problem of scheduling to minimize
the Lp norm of the machine-loads, for some given p > 1.
(The case p = 1 is trivial, and the case where p < 1
is not well-understood due to non-convexity.) We model
this problem using a slightly different convex-programming
formulation than Azar & Epstein [5]. Let {1, . . . , n} and
{1, . . . ,m} denote now the set of jobs and machines re-
spectively. Let T be a target value for the Lp norm objec-
tive. Any feasible integral assignment with an Lp norm of
at most T satisfies the following integer program.

∀j ∈ {1, . . . , n}
m∑

i=1

xi,j ≥ 1 (7)

∀i ∈ {1, . . . ,m}
n∑

j=1

xi,j · pi,j − ti ≤ 0 (8)

m∑

i=1

tpi ≤ T p (9)

m∑

i=1

n∑

j=1

xi,j · pp
i,j ≤ T p (10)

∀(i, j) ∈ {1, . . .m} × {1, . . . n} xi,j ∈ {0, 1} (11)

∀(i, j) ∈ {(i, j) | pi,j > T } xi,j = 0 (12)

We let xi,j ≥ 0 for all (i, j) in the above integer program,
to obtain a convex program. The feasibility of the convex
program can be checked in polynomial time to within an ad-
ditive error of ε (for an arbitrary constant ε > 0): the nonlin-
ear constraint (9) is not problematic since it defines a convex
feasible region [5]. We obtain the minimum feasible value
T ∗ of T , using bisection search. We ignore the additive
error ε in the rest of our discussions since our all our ran-
domized guarantees can be obtained deterministically using
the method of conditional probabilities in such a way that
ε is eliminated from the final cost. We also assume that T
is set to T ∗. We start with two lemmas involving useful
calculations.

Lemma 6 Let a ∈ [0, 1] and p, λ > 0. Define N(a, λ) =
a · (1 + λ)p + (1 − a) and D(a, λ) = (1 + aλ)p +
aλp. Let γ(p) = max(a,λ)∈[0,1]×[0,∞)

N(a,λ)
D(a,λ) . Then,

γ(p) is at most: (i) 1, if p ∈ (1, 2]; (ii) 2p−2, if p ∈
(2,∞); and (iii) O(2p√

p) if p sufficiently large. Further,

for p = 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6, γ(p) is at most
1.12, 1.29, 1.55, 1.86, 2.34, 3.05, 4.0 and 5.36 respectively.

Lemma 7 Let a1, a2 be variables, each taking values in
[0, 1]. Let D

.= (λ0 + a1 · λ1 + a2 · λ2)p + a1λ
p
1 + a2λ

p
2,

where p > 1, λ0 ≥ 0 and λ1, λ2 > 0 are fixed constants.
Define N as follows:
if a1 + a2 ≤ 1, then N = (1 − a1 − a2) · λp

0 + a1 ·
(λ0 + λ1)p + a2 · (λ0 + λ2)p; else if a1 + a2 ∈ (1, 2],
then N = (1 − a2) · (λ0 + λ1)p + (1 − a1) · (λ0 + λ2)p +
(a1 + a2 − 1) · (λ0 + λ1 + λ2)p. Then, the ratio N/D is
maximized when at least one of the variables a1 and a2 be-
longs to {0, 1}; also, the maximum value ofN/D is at most
γ(p), the value from Lemma 6.

We once again round using our algorithm of Section 2,
and analyze the rounding now. We now collect together
some definitions that will be of use in Theorems 8 and 9.

Some useful definitions. We now recall a few definitions,
and also define a few new ones. X denotes the final rounded
assignment, {x∗i,j} the fractional solution to the convex pro-
gram, t∗i =

∑
j pi,jx

∗
i,j is the fractional load on machine i,

and Ti denotes the final (random) load on machine i. Let
µp(x, i) =

∑
j xi,jp

p
i,j for any assignment-vector x; we

hope the two different occurrences of the symbol “p” in
“pp

i,j” do not cause confusion. We will sometimes fix the

machine i, and consider the situation where we currently
have an assignment-vector x, with machine i being unpro-
tected. In such a case, three definitions will be useful. (a)
W.l.o.g., we assume that there are two distinct jobs j1 and
j2 which are floating on machine i in assignment x. The
cases where less than two jobs are floating on i are handled
by introducing artificial new values j1 and/or j2 and set-
ting one or both of the variables {xi,j1 , xi,j2} to zero (or
infinitesimally small); we do not consider these cases in
the rest of our arguments. Note that j1 and j2 are func-
tions of i and x, but we avoid explicitly writing so for
the sake of conciseness. (b) Let Ri(x) =

∑
j: xi,j=1 pi,j

be the “already-rounded load” on i under assignment x.
(c) Define φp(x, i) to be: if xi,j1 + xi,j2 ∈ [0, 1], then
φp(x, i) = (1 − xi,j1 − xi,j2) · Ri(x)p + xi,j1 · (Ri(x) +
pi,j1)p +xi,j2 ·(Ri(x)+pi,j2)p; else if xi,j1 +xi,j2 ∈ (1, 2],
then φp(x, i) = (1− xi,j2) · (Ri(x)+ pi,j1)p + (1− xi,j1) ·
(Ri(x)+pi,j2)p+(xi,j1 +xi,j2−1)·(Ri(x)+pi,j1 +pi,j2)p.

Theorem 8 Given a fixed norm p > 1 and a fractional
assignment whose fractional Lp norm is T , our algorithm
produces an integral assignment whose value Cp satisfies
E[Cp] ≤ ρ(p) · T . Our algorithm can be derandomized in
polynomial time to guarantee that Cp ≤ ρ(p) · T . The ap-

proximation factor ρ(p) is at most the following: (i) 2
1
p ,

for p ∈ (1, 2]; (ii) 21−1/p, for p ∈ [2,∞); and (iii)
2 − Θ(log p/p) for large p. Further, for any fixed value
of p > 2 it is possible to achieve a better factor ρ(p) us-
ing numerical techniques. In particular, the following table
illustrates certain achievable values of ρ(p):

p 2.5 3 3.5 4
ρ(p) 1.381 1.372 1.382 1.389
p 4.5 5 5.5 6
ρ(p) 1.410 1.436 1.460 1.485

Sketch of Proof Fix a machine i. If i was always pro-
tected, then Ti = t∗i . Otherwise, let U = {Ui,j} de-
note the random fractional assignment at the beginning of
the first iteration in which i became unprotected. Recall
the definitions from the paragraph above, and in particular,
those of j1 and j2. By definition of a protected machine,
Ri(U) + Ui,j1 · pi,j1 + Ui,j2 · pi,j2 = t∗i . We claim that
for any assignment-vector u, E[T p

i | U = u] = φp(u, i).
The reasoning is as follows. Recall that X = {Xi,j} de-
notes the final integral assignment. Then, conditional on
“U = u”, we have: (i) Xi,j1 + Xi,j2 ≤ 1 with probability
one since ui,j1 + ui,j2 ∈ [0, 1]; and (ii) E[Xi,j1] = ui,j1 ,
E[Xi,j2] = ui,j2 . In particular, we have

Pr[Xi,j1 = Xi,j2 = 0] = 1 − ui,j1 − ui,j2 .

Using these observations, we get that E[T p
i | U = u] =

φp(u, i). Similarly, in the case where ui,j1 + ui,j2 ∈ (1, 2],

we have Xi,j1 + Xi,j2 ≥ 1 with probability one; identical
arguments show again that E[T p

i | U = u] = φp(u, i).
Recall the function µp(x, i) from the paragraph on defi-

nitions preceding the statement of this theorem. Irrespective
of the value of ui,j1 + ui,j2 , we have

E[T p
i | U = u]

t∗p
i + E[µp(X, i) | U = u]

=
E[T p

i | U = u]
t∗p
i +

∑
j ui,jp

p
i,j

≤

E[T p
i | U = u]

t∗p
i + ui,j1p

p
i,j1

+ ui,j2p
p
i,j2

≤ γ(p).

The last inequality follows from Lemma 7. By rearranging
this expression and unconditioning on the value of U , we
get

E[T p
i] ≤ γ(p)(t∗p

i + E[µp(X, i)])

≤ γ(p)(t∗p
i +

∑

j

x∗i,jp
p
i,j) (by Lemma 2).

So,
∑

i E[T p
i] ≤ 2γ(p) · T p, by (9) and (10). The claims

for ρ(p) follow by noting that ρ(p) ≤ (2γ(p))
1
p and sub-

stituting γ(p) from Lemma 6, and by the fact that for any
non-negative random variable Z , E[Z] ≤ (E[Zp])1/p.

Note that the present proof of Theorem 8 basically uses
the (1/2, 1/2)-convex combination of the constraints (9)
and (10). In the full version of this paper, we will pursue
(slightly) better approximation algorithms for the case of
fixed p > 2, by considering other convex combinations.

5 Multi-criteria optimization for multiple Lp

norms and weighted completion time

We now present our multicriteria optimization results for
a given collection of Lp norms and weighted completion
time.

Theorem 9 Suppose we are given an instance of unrelated-
machine scheduling, and a finite set of positive integer
norms S. Suppose further that there exists an (unknown)
schedule withLp norm of machine-loads at most some given
T (p) for each p ∈ S, and with weighted completion time at
most some givenW ∗. Then, our rounding algorithm of Sec-
tion 2 can be derandomized in polynomial time to guarantee
any one of the following:
1. For every p ∈ S, the rounded norm C(p) ≤ 2.56 ·T (p);
2. The rounded completion time W (X) ≤ 3.2 ·W ∗ and
for every p ∈ S, the rounded norm C(p) ≤ 3.2 · T (p);
3. For any ε > 0, W (X) ≤ 3

2 · (1 + ε)W ∗ and for every
p ∈ S, C(p) ≤ 2(e + 2

ε) · T (p), where e is the base of
natural logarithms;
4. There exists a constant K such that if S = {p}, then
for any ε > 0 and any p ≥ K

ε2 , W (X) ≤ 3
2 (1 + ε) and

C(p) ≤ 2 · T (p).

Sketch of Proof We only discuss the main arguments for
proving guarantee 1 of the Lemma. Specifically, given a
collection of integer norms S and a target Lp norm T (p)
for each p ∈ S, we either prove that no assignment exists
which simultaneously satisfies all these targets or obtain an
integral assignment where the final Lp norm for any p ∈
S is at most 2.56T (p). The convex program we use is a
variant of the one in Section 4. Instead of the constraints
(9) and (10), we have two such constraints for each p ∈ S:∑m

i=1 t
p
i ≤ T (p)p and

∑m
i=1

∑n
j=1 xi,j · pp

i,j ≤ T (p)p.
If the above convex program is infeasible, then we can

clearly declare that no valid assignment exists which re-
spects the targets. Assume that the convex program is
feasible and x∗ is the feasible fractional assignment. We
will describe a derandomization of the algorithm in Sec-
tion 2, in order to get the guarantee for all p ∈ S. Recall
the definitions from the paragraph preceding Theorem 8.
Let X(h) denote the (fractional) assignment vector after
iteration h in our derandomized rounding algorithm; so,
X(0) .= x∗. Given a fractional assignment x that occurs
in our algorithm (i.e., x = X(h) for some h) in which
machine i is unprotected, we define ψp(x, i) as follows:
if p = 1, then ψp(x, i) = φp(x, i); else if p > 1, then

ψp(x, i) = φp(x,i)
γ(p) − t∗p

i . It follows from Lemma 7 that

for all p > 1 and ∀i, φp(x, i) ≤ γ(p)(t∗p
i + µp(x, i)), and

therefore we have:

ψp(x, i) ≤ µp(x, i). (13)

Let M
(h)
1 and M

(h)
2 denote the set of protected and

unprotected machines respectively immediately after it-
eration h. Let Qp(X(h)) =

∑
i∈M

(h)
1

µp(X(h), i) +
∑

i∈M
(h)
2
ψp(X(h), i). We now define the “potential func-

tion” for our derandomization,

Q(X(h)) =
∑

p∈S

Qp(X(h))
f(p) · T (p)p

,

where the positive values f(p) are chosen such that

∑

p∈S

1
f(p)

≤ 1.

Note that

Q(X(0)) =
∑

p∈S

∑
i µp(X(0), i)
f(p) · T (p)p

≤ 1,

where the inequality follows from (10). Our aim is to use
the method of conditional probabilities to ensure that at the
end, we have Q(X) ≤ 1.

We are now ready to describe the derandomized ver-
sion of our rounding algorithm. In iteration h + 1, as in

the randomized version, we have two choices of assign-
ment vectors x1 and x2 and two scalars α1, α2 ≥ 0 and
α1 + α2 = 1 such that α1x1 + α2x2 = X(h). We choose
X(h+1) ∈ {x1, x2} such thatQ(X(h+1)) ≤ Q(X(h)). This
is always possible because Q(x) is a linear function of the
components in x. Next, if a machine i becomes unprotected
at the end of this (h + 1)st iteration, then for all p ∈ S,
we need to replace µp(X(h+1), i) by ψp(X(h+1), i) in the
expression forQ. It follows from (13) that this replacement
does not increase the value of Q.

Since Q(X(h)) is a non-increasing function of h,
Q(X) ≤ Q(X(0)) ≤ 1. Hence, it follows that for each
p ∈ S, Qp(X) ≤ f(p)T (p)p. We now analyze the final
Lp norms for each p. If p = 1, the final cost C(1) =∑

i φ1(X, i) = Q1(X) ≤ f(1)T (1). We now analyze the
value C(p) for norms p > 1. Suppose the algorithm termi-
nates after 	 iterations. (So, X = X(�).) We have

∑

i∈M
(�)
1

T p
i =

∑

i∈M
(�)
1

t∗p
i .

Next, a moment’s reflection shows that for any i ∈ M
(�)
2 ,

T p
i = φp(X, i). So,

∑
i∈M

(�)
2
T p

i =
∑

i∈M
(�)
2
φp(X, i) =

∑
i∈M

(�)
2
γ(p)(ψp(X, i) + t∗p

i) ≤ γ(p)(Qp(X) +
∑

i∈M
(�)
2
t∗p
i) ≤ γ(p)(f(p)T (p)p +

∑
i∈M

(�)
2
t∗p
i). Thus,

letting “
∑

i” denote the sum over all the machines, we get
that C(p)p =

∑
i T

p
i is at most

γ(p)(f(p)T (p)p +
∑

i

t∗p
i) ≤ γ(p)(f(p) + 1)T (p)p.

Hence, Cp ≤ (γ(p)(1 + f(p)))
1
pT (p). We are now left

to show the choice of values f(p) such that f(1) = 2.56,
(γ(p)(1 + f(p)))

1
p ≤ 2.56 for all integers p > 1, and∑∞

p=1
1

f(p) ≤ 1, where the summation is over the set of
positive integers. Let k = 1.28. We choose f(p) as fol-
lows: f(1) = 2k; for p ∈ {2, 3, 4, 5, 6}, f(p) = (2k)p

γ(p) − 1;
for p ≥ 7, f(p) = 4kp − 1. By substituting the min-
imum achievable value γ(p) for each p from Lemma 6,

we have (γ(p)(1 + f(p)))
1
p ≤ 2.56 for every integer p.

Next, observe that
∑∞

p=7
1

f(p) ≤ ∫ ∞
6

dr
4kr−1 = 1

log k ·
log 4k6

4k6−1 . By substituting the value k = 1.28, it follows
that

∑∞
p=1

1
f(p) ≤ 1.

The restricted assignment case of unrelated-machine
scheduling is where for each j, there is a value pj such
that for all i, pi,j ∈ {pj,∞}. The following theorem per-
tains to the approximation ratio of our algorithm in Section
2 for the restricted assignment case. As in [6], we first ob-
tain the unique fractional solution x∗ which is simultane-
ously optimal with respect all norms p ≥ 1. Azar et al. [6]

show that x∗ can be rounded efficiently to get an absolute
2-approximation factor w.r.t. every norm p ≥ 1. (That is,
each Lp norm is individually at most twice optimal). This
result was also independently shown by [10]. We get an
improvement as follows:

Theorem 10 Given an all-norm fractionally optimal as-
signment x∗, and a fixed norm p′ ∈ [1,∞), our rounding
algorithm can be derandomized in polytime to simultane-
ously yield a ρ(p′) < 2 absolute approximation w.r.t. norm
p′ and an absolute 2-approximation w.r.t. all other norms
p > 1, where ρ(p′) is the function from Theorem 8.

6 Generalizing the Karp et al. procedure and
applications

We now employ some of the ideas behind our algo-
rithm of Section 2 to develop two additional applications.
The 2-approximation for makespan minimization in unre-
lated parallel machines [15] was extended in [18] as fol-
lows. Suppose we are given some numbers {ci,j} (where
ci,j corresponds, e.g., to the cost of processing job j on
machine i), a target makespan T , and a fractional assign-
ment x that satisfies the target makespan as well as the
constraint

∑
i,j ci,jxi,j = C for some C. Then, the al-

gorithm of [18] constructs an integral assignment y such
that

∑
j pi,jyi,j ≤ 2T for all i, and

∑
i,j ci,jyi,j ≤ C.

We now describe how a basic rounding theorem of Karp
et al. [12] can be used to obtain the result of [15]. We then
show a probabilistic generalization of this theorem of [12]
(Theorem 11) which yields the result of [18]. We also de-
scribe an extension (Theorem 12) to the setting where we
are given multiple cost objectives and by paying a slightly
larger factor for the makespan, we can bound the abso-
lute deviation for the additional objectives. In the set-
ting of [12], we are given a matrix A ∈ �m×n, with
t denoting maxj{

∑
i:Aij>0Aij ,−

∑
i:Aij<0Aij}. Then,

it is shown in [12] that for any given real vector x =
(x1, x2, . . . , xn)T , we can efficiently find a rounded coun-
terpart y = (y1, y2, . . . , yn)T such that ‖Ay − Ax‖∞ < t.
To see how this yields the result of [15], first, consider the
standard LP: (A1) ∀j, ∑

i xi,j ≥ 1; (A2) ∀i, ∑
j pi,jxi,j ≤

T ; (A3) 0 ≤ xi,j ≤ 1; and (A4) pi,j > T implies xi,j = 0.
If we multiply the constraints (A1) by −T , the parameter
t, in the sense of the Karp et al. result [12], can be taken
to be T , and therefore there is an integral vector y such
that: (i) for each j,

∑
i −yi,j < 0, or

∑
j yi,j ≥ 1 (i.e.,

job j is assigned to some machine), and (ii) for each i,∑
j pi,jyi,j ≤ 2T . We now describe our probabilistic gen-

eralization of the theorem of [12]:

Theorem 11 Given a matrix A ∈ �m×n with t de-
noting maxj{

∑
i:Aij>0Aij ,−

∑
i:Aij<0Aij}, and a frac-

tional vector x, we can in randomized polynomial time con-
struct a vector y such that: (i) ∀j, yj ∈ {
xj�, �xj
} with
probability 1, (ii) ∀i, (Ay)i < (Ax)i + t, with probability
1, and (iii) for each j, E[yj] = xj . In particular, given any
vector
c, we have E[

∑
j cjyj] = C

.=
∑

j cjxj . Further-
more, a vector y for which (i) and (ii) hold, and for which∑

j cjyj ≤ C, can be constructed in deterministic polyno-
mial time.

Proof (Sketch) The result of [12] describes a determinis-
tic algorithm (denoted by A) to obtain a rounded vector y,
satisfying the properties (i) and (ii) of this theorem. We first
recap the main ideas underlying the result of [12]. By sub-
tracting out integer parts, we may assume that xj ∈ [0, 1]
for all j. At any point in A, once we round xj to 0 or 1,
we will never alter it. We keep rounding variables incre-
mentally; suppose S is the current set of indices j such that
xj ∈ (0, 1). Let |S| = s. Thus, x is a point in (0, 1)s,
and we will modify x so that at least one more variable gets
rounded, as follows. Consider the linear system restricted to
the set of variables in S. It is shown in [12] that: (a) either
this system is under-determined, or (b) there exists a row i
(which can be found efficiently) such that no matter how we
round the variables in S to get a final vector y, we will have
(Ay)i < bi + t. If (b) holds, we can keep discarding such
rows i from consideration (since they are “safe” from now
on), until case (a) holds. Now, if case (a) holds, elementary
linear algebra shows that there is a direction
r that we can
follow starting from the current point x ∈ (0, 1)s, such that
all values (Ax)i remain unchanged. Thus, the approach of
[12] is to travel along
r starting from x, until we hit a face
of the s-dimensional cube. The result of [12] follows by
repeating the rounding in this manner.

We now randomize the rounding algorithm A as follows.
Note that there are two opposite directions in which we can
travel along
r starting from x:
r and −
r. Let α and β be
the positive quantities such that the points p1 = x+αr and
p2 = x− βr lie on a face of the s-dimensional cube. Then,
we choose to move to p1 with probability β/(α+β), and to
p2 with the complementary probability of α/(α + β). We
can check that (B1) and (B2) continue to hold with proba-
bility one at the end of this algorithm. The added advantage
of our method is that due to our random choice, the ex-
pected change in any dimension of our vector x is zero; an
easy induction over time then establishes property (ii) of the
statement of Theorem 11. Finally, property (iii) can be es-
tablished by derandomizing this algorithm using the method
of conditional probabilities.

Theorem 11 can be similarly seen to imply the result of
[18]. We also extend Theorem 11 in the following useful
manner: suppose, in addition to the system Ax ≤ b, we
have 	 additional constraints c(k) · x ≤ dk, k = 1, Let
Mk be the maximum absolute value of any component in

c(k), and t be as before. Let ε > 0 be any parameter. We
show:

Theorem 12 Given a system Ax = b as in the setting of
[18], with 	 additional linear constraints, we can, in ran-
domized polynomial time, construct a random vector y such
that: (i) ∀j, yj ∈ {
xj�, �xj
}; (ii) for all row indices i in
A, (Ay)i < bi + t(1 + ε); (iii) for each j, E[yj] = xj; (iv)
for each of the additional constraints c(k) · x ≤ dk, k =
1, . . . , 	, we have |c(k) · y− dk| = O(Mk	/ε), where Mk is
the maximum absolute value of any component in c(k).

Note in particular that for bounded Mk, 	 and ε, we get
a constant additive error for the additional constraints; we
are not aware of any other method that can yield this, even
for small constants 	.

We finally consider the problem of unrelated parallel-
machine scheduling with resource-dependent processing
times. This is a generalization of the standard unrelated par-
allel machine scheduling, where the processing times pi,j

of any machine-job pair can be reduced by utilizing a re-
newable resource (such as additional workers) that can be
distributed over the jobs. Specifically, a maximum num-
ber of k units of a resource may be used to speed up the
jobs, and the available amount of k units of that resource
must not be exceeded at any time. Grigoriev et al. [11] pre-
sented a 4 + 2

√
2 approximation algorithm for minimizing

makespan in this setting. A direct application of Theorem
11 yields an assignment of jobs and resources to machines;
combined with the resource-scheduling algorithm of [11],
we get a 4-approximation for this problem.

Theorem 13 There exists a polynomial-time 4-
approximation algorithm for the problem of minimizing
makespan in unrelated parallel machine scheduling with
resource-dependent processing times.

We will present the details in the full version.

Acknowledgments. We thank David Shmoys for valuable
discussions, Cliff Stein for introducing us to [20], and Yossi
Azar for sending us an early version of [5]. We are thankful
to the anonymous referees for valuable comments.

References

[1] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approx-
imation schemes for scheduling. In Proc. ACM-SIAM Sym-
posium on Discrete Algorithms, pages 493–500, 1997.

[2] A. Archer. Mechanisms for Discrete Optimization with Ra-
tional Agents. PhD thesis, Cornell University, Jan 2004.

[3] J. Aslam, A. Rasala, C. Stein, and N. Young. Improved bi-
criteria existence theorems for scheduling. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages 846–847,
1999.

[4] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krish-
nan, and J. S. Vitter. Load balancing in the Lp norm.
In IEEE Symposium on Foundations of Computer Science,
pages 383–391, 1995.

[5] Y. Azar and A. Epstein. Convex programming for schedul-
ing unrelated parallel machines. In Proc. of the ACM Sym-
posium on Theory of Computing, pages 331–337, 2005.

[6] Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-
norm approximation algorithms. J. Algorithms, 52(2):120–
133, 2004.

[7] Y. Azar and S. Taub. All-norm approximation for scheduling
on identical machines. In SWAT, pages 298–310, 2004.

[8] A. K. Chandra and C. K. Wong. Worst-case analysis of a
placement algorithm related to storage allocation. SIAM J.
on Computing, 4(3):249–263, 1975.

[9] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan.
Dependent rounding in bipartite graphs. In Proc. IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages
323–332, 2002.

[10] A. Goel and A. Meyerson. Simultaneous optimization
via approximate majorization for concave profits or con-
vex costs. Tech. Report CMU-CS-02-203, December 2002,
Carnegie-Mellon University.

[11] A. Grigoriev, M. Sviridenko, and M. Uetz. Unrelated paral-
lel machine scheduling with resource dependent processing
times. In Integer Programming and Combinatorial Opti-
mization (IPCO), pages 182–195, 2005.

[12] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thomp-
son, U. V. Vazirani, and V. V. Vazirani. Global wire routing
in two-dimensional arrays. Algorithmica, pages 113–129,
1987.

[13] J. Kleinberg, E. Tardos, and Y. Rabani. Fairness in routing
and load balancing. J. Comput. Syst. Sci., 63(1):2–20, 2001.

[14] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B.
Shmoys. Sequencing and scheduling: algorithms and com-
plexity. Elsevier, 1993.

[15] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approxima-
tion algorithms for scheduling unrelated parallel machines.
Mathematical Programming, pages 259–271, 1990.

[16] P. Raghavan and C. D. Thompson. Randomized rounding:
a technique for provably good algorithms and algorithmic
proofs. Combinatorica, pages 365–374, 1987.

[17] P. Schuurman and G. J. Woeginger. Polynomial time ap-
proximation algorithms for machine scheduling: Ten open
problems. J. Scheduling, pages 203–213, 1999.

[18] D. B. Shmoys and E. Tardos. An approximation algorithm
for the generalized assignment problem. Mathematical Pro-
gramming, pages 461–474, 1993.

[19] M. Skutella. Convex quadratic and semidefinite relaxations
in scheduling. Journal of the ACM, 46(2):206–242, 2001.

[20] C. Stein and J. Wein. On the existence of schedules that are
near-optimal for both makespan and total weighted comple-
tion time. Operations Research Letters, 21, 1997.

