
Dependent Rounding and its Applications to Approximation Algorithms∗

Rajiv Gandhi† Samir Khuller‡ Srinivasan Parthasarathy§ Aravind Srinivasan¶

Abstract

We develop a new randomized rounding approach for fractional vectors defined on the edge-sets
of bipartite graphs. We show various ways of combining this technique with other ideas, leading to
improved (approximation) algorithms for various problems. These include:

• low congestion multi-path routing;

• richer random-graph models for graphs with a given degree-sequence;

• improved approximation algorithms for: (i) throughput-maximization in broadcast scheduling, (ii)
delay-minimization in broadcast scheduling, as well as (iii) capacitated vertex cover; and

• fair scheduling of jobs on unrelated parallel machines.

1 Introduction

Various combinatorial optimization problems include hard cardinality constraints: e.g., a broadcast server
may be able to broadcast at most one topic per time step. One approach to accommodate such constraints
is the elegant deterministic method of Ageev & Sviridenko [1]. In this work, we develop a dependent
randomized rounding scheme to handle such constraints; the term “dependent” underscores the fact that
various random choices we make are highly dependent. We then show applications to several problems by
combining the scheme with new ideas; the rounding approach is also of independent interest. We start by
describing the dependent rounding scheme.

Suppose we are given a bipartite graph (A,B,E) with bipartition (A,B). We are also given a value
xi,j ∈ [0, 1] for each edge (i, j) ∈ E. We provide a randomized polynomial-time scheme that rounds each
xi,j to a random variable Xi,j ∈ {0, 1}, in such a way that the following properties hold.

(P1): Marginal distribution. For every edge (i, j), Pr[Xi,j = 1] = xi,j .

(P2): Degree-preservation. Consider any vertex i ∈ A ∪ B. Define its fractional degree di to be∑
j:(i,j)∈E xi,j , and integral degree Di to be the random variable

∑
j:(i,j)∈E Xi,j . Then, we have Di ∈

∗Earlier versions of this work were presented at the IEEE Symp. on Foundations of Computer Science, 2001 [35], and at
the IEEE Symp. on Foundations of Computer Science, 2002 [22].
†Department of Computer Science, Rutgers University, Camden, NJ 08102. E-mail: rajivg@camden.rutgers.edu. Part

of this work was done when the author was a student at the University of Maryland and was supported by NSF Award
CCR-9820965.
‡Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park,

MD 20742. This research was supported by NSF Award CCR-9820965 and CCR-0113192. E-mail: samir@cs.umd.edu.
§Department of Computer Science, University of Maryland, College Park, MD 20742. Supported in part by NSF Award

CCR-0208005 and NSF ITR Award CNS-0426683. E-mail: sri@cs.umd.edu.
¶Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park,

MD 20742. Supported in part by NSF Award CCR-0208005 and NSF ITR Award CNS-0426683. E-mail: srin@cs.umd.edu.

1

{bdic, ddie}. Note in particular that if di is an integer, then Di = di with probability 1; this will often
model the cardinality constraints in our applications.

(P3): Negative correlation. If f = (i, j) is an edge, let Xf denote Xi,j . For any vertex i and any subset
S of the edges incident on i:

∀b ∈ {0, 1}, Pr[
∧
f∈S

(Xf = b)] ≤
∏
f∈S

Pr[Xf = b]. (1)

An interesting and useful special case of our scheme occurs when the bipartite graph is a star (i.e.,
|A| = 1) and when the sum of the edge weights is an integer (i.e.,

∑
i∈B x1,i is an integer). Simplifying

the notation in this case and letting [s] denote the set {1, 2, . . . , s}, note that the basic problem here is
the following. We are given a sequence P = (x1, x2, . . . , xt) of t reals such that each xi lies in [0, 1], and
such that

∑
i xi is an integer, say `. We want to construct a distribution D(t;P) on {0, 1}t such that if

(X1, X2, . . . , Xt) denotes a vector sampled from D(t;P), then properties (P1), (P2) and (P3) are satisfied.
That is, Pr[Xi = 1] = xi for each i, the Xi add up to ` with probability one, and

∀b ∈ {0, 1} ∀S ⊆ [t], Pr[
∧
i∈S

(Xi = b)] ≤
∏
i∈S

Pr[Xi = b]. (2)

By “constructing D(t;P)”, we mean a randomized algorithm that takes P as input, and generates
(X1, X2, . . . , Xt) in time polynomial in t. We show that for this special star-graph case, our dependent
rounding scheme runs in time linear in t. Although the Xi’s are not independent, the analog (2) of (P3)
helps show that any non-negative linear combination of X1, X2, . . . , Xt is sharply concentrated around its
mean: see Theorem 3.1, which in turn leads to our first application, Theorem 3.2. One may expect that
(P2), which fixes the number of Xi that can equal b, will imply a negative correlation property such as
(2). However, there exists a large class of distributions on {0, 1}t that satisfy (P1) and (P2), but not (P3)
(i.e., they do not satisfy not (2)). Thus, extra care is needed in guaranteeing (P3). We illustrate this
by an example: let xi = `

t for i = 1 . . . t. Suppose t = ` · c for some integer c. We group the variables
into c groups, with ` variables in each group. We randomly pick one group and set all its variables to
1. We now have exactly ` variables that are set to 1, with each variable having probability 1

c . However
the variables in each group are positively corelated. We are not aware of any earlier proof of existence of
distributions such as D(t;P). (Several natural approaches do not work. For instance, consider generating
the Xi independently with Pr[Xi = 1] = xi, and taking the distribution of (X1, X2, . . . , Xt) conditional on
the event “|{i : Xi = 1}| = `”. This can be seen to violate (P1) for P = (0.75, 0.75, 0.5). See [37] for the
relationship of such conditioning to some negative correlation–type results.) If x1,i = `/t for all i, then one
choice for D(t;P) is the hypergeometric distribution (sampling ` elements from [t] without replacement).
This, as well as the case where ` = 1, are two instances of our problem – i.e., of showing that D(t;P)
exists, and sampling efficiently from it – with known solutions.

Our dependent rounding scheme draws on the ideas of [1, 35]. When combined with several other new
ideas, it leads to various applications, especially in the context of routing and scheduling. All of these
applications share the common feature that we solve some natural linear-programming (LP) relaxation of
the problem at hand, and then use dependent rounding in conjunction with additional ideas to round the
fractional solution. In each of these applications, the fact that (P2) is a probability-one guarantee, will prove
to be important. One noteworthy feature of many of these applications is that they offer (probabilistic)
per-user guarantees. In general, for optimization problems with multiple users where each user has her/his
own objectives, it is difficult to simultaneously satisfy all users. On the other hand, individual users may
only require that they receive a certain level of service with a guaranteed probability, and may be less
concerned with other users and with global objective functions. As we describe in Sections 4 and 5, our
approach lets us provide guarantees of the form: each given user is satisfied with a certain guaranteed

2

probability. Furthermore, some of our analyses are fairly involved; see, e.g., the analysis in Section 4.4.
Given the many applications presented in this work, we believe that the dependent rounding technique
and extensions thereof, will be of use in other settings also.

Organization of the paper. The basic dependent rounding scheme, application to random-graph models,
and a strengthening of (P3) for star graphs, are presented in Section 2. The following three sections then
use dependent rounding in conjunction with various new ideas, to develop improved (approximation)
algorithms via LP-rounding. Section 3 considers low-congestion multi-path routing. Section 4 discusses a
collection of problems in the area of broadcast scheduling, where the basic feature is that when a server
broadcasts a topic, all users waiting for that topic get satisfied. Section 5 revisits the classical problem
of “scheduling on unrelated parallel machines” from the viewpoint of per-user guarantees. Section 6 then
compares our work with some related approaches, presents certain recent applications, and concludes with
some open questions. Finally, we present an additional application, the capacitated vertex cover problem,
in Appendix A.

A note to the reader. Our various applications involve several additional ideas. For the reader desiring
a quick understanding of the basic method and of the ways of using it, we recommend Sections 2.1, 3, and
the initial part of Section 4 up to the end of Section 4.2.

2 Dependent Rounding and Some Variants

We start by presenting our basic algorithm in Section 2.1. Next, we consider the special case of star-graphs
in Section 2.2, and show in Theorem 2.4 that our algorithm guarantees a stronger version of (P3) in this
case. We then present an extension of the basic scheme to the non-bipartite case, motivated for instance
by models for massive graphs, in Section 2.3.

2.1 The Dependent Rounding Scheme

We now present the basic dependent rounding scheme, and summarize its main properties in Theorem 2.3.
Suppose we are given a bipartite graph (A,B,E) with bipartition (A,B) and a value xi,j ∈ [0, 1] for each
edge (i, j) ∈ E. Our dependent (randomized) rounding scheme is as follows. Initialize yi,j = xi,j for each
(i, j) ∈ E. We will probabilistically modify the yi,j in several (at most |E|) iterations such that yi,j ∈ {0, 1}
at the end (at which point we will set Xi,j = yi,j for all (i, j) ∈ E). Our iterations will satisfy the following
two invariants:

(I1) For all (i, j) ∈ E, yi,j ∈ [0, 1].

(I2) Call (i, j) ∈ E rounded if yi,j ∈ {0, 1}, and floating if yi,j ∈ (0, 1). Once an edge (i, j) gets rounded,
yi,j never changes.

An iteration proceeds as follows. Let F ⊆ E be the current set of floating edges. If F = ∅, we are done.
Otherwise, find in O(|A|+|B|) steps via a depth-first-search (DFS), a simple cycle or maximal path P in the
subgraph (A,B, F), and partition the edge-set of P into two matchings M1 and M2. The cycle/maximal
path can actually be found in O(|A|+ |B|) time since the first back edge we encounter yields a cycle in the
DFS.

Define

α = min{γ > 0 : ((∃(i, j) ∈M1 : yi,j + γ = 1)
∨

(∃(i, j) ∈M2 : yi,j − γ = 0))};

β = min{γ > 0 : ((∃(i, j) ∈M1 : yi,j − γ = 0)
∨

(∃(i, j) ∈M2 : yi,j + γ = 1))}.

3

Since the edges in M1 ∪M2 are currently floating, it is easy to see that the positive reals α and β exist.
Now, independent of all random choices made so far, we execute the following randomized step:

With probability β/(α + β), set yi,j := yi,j + α for all (i, j) ∈ M1, and yi,j := yi,j − α for
all (i, j) ∈ M2; with the complementary probability of α/(α + β), set yi,j := yi,j − β for all
(i, j) ∈M1, and yi,j := yi,j + β for all (i, j) ∈M2.

This completes the description of an iteration. A simple check shows that the invariants (I1) and (I2) are
maintained, and that at least one floating edge gets rounded in every iteration.

We now analyze the above randomized algorithm. First of all, since every iteration rounds at least one
floating edge, we see from (I2) that we need at most |E| iterations. So,

the total running time is O((|A|+ |B|) · |E|). (3)

Let us prove next that properties (P1), (P2) and (P3) hold.

Lemma 2.1 Property (P1) holds, i.e., For every edge (i, j), Pr[Xi,j = 1] = xi,j.

Proof: Fix an edge (p, q) ∈ E; let Yp,q,k be the random variable denoting the value of yp,q at the beginning
of iteration k. We will show that

∀k ≥ 1,E[Yp,q,k+1] = E[Yp,q,k] (4)

We will then have, Pr[Xp,q = 1] = E[Yp,q,|E|+1] = E[Yp,q,1] = xp,q and (P1) will hold. We now prove
equation (4) for a fixed k.

One of the following two events could occur for the edge (p, q) in iteration k.

Event A: The edge (p, q) is not part of the cycle or maximal path and its value is not modified. Hence
we have E[Yp,q,k+1|(Yp,q,k = v) ∧A] = v.

Event B: The edge (p, q) is part of the cycle or maximal path during iteration k. In this case, w.l.o.g.,
let the edge (p, q) be part of the matching M1. Then, there exist (α, β) such that α+ β > 0 and such that
the edge value gets modified probabilistically as:

Yp,q,k+1 =

{
Yp,q,k + α with probability β/(α+ β)
Yp,q,k − β with probability α/(α+ β)

Let S be the set of all values of (α, β). We say that the event B(α1, β1) occurred if event B occurs and
(α, β) = (α1, β1) for a fixed (α1, β1) ∈ S. We have

E[Yp,q,k+1|(Yp,q,k = v) ∧B(α1, β1)] = (v + α1)

(
β1

α1 + β1

)
+ (v − β1)

(
α1

α1 + β1

)
= v

Since the above equation holds for all values of (α, β), it also holds unconditionally. Thus,
E[Yp,q,k+1|(Yp,q,k = v) ∧B] = v. Hence,

E[Yp,q,k+1|(Yp,q,k = v)] = E[Yp,q,k+1|(Yp,q,k = v) ∧B] · Pr[B] +

E[Yp,q,k+1|(Yp,q,k = v) ∧A] · Pr[A]

= v(Pr[A] + Pr[B]) = v

4

Let V be the set of all possible values of Yp,q,k.

E[Yp,q,k+1] =
∑
v∈V

E[Yp,q,k+1|Yp,q,k = v] · Pr[Yp,q,k = v]

= (
∑
v∈V

v · Pr[Yp,q,k = v]) = E[Yp,q,k]

This completes our proof for Property (P1). 2

Next, showing that (P2) holds is quite easy. Fix any vertex i, with fractional degree di. If i has at most
one floating edge incident on it at the beginning of our dependent rounding, it is easy to verify that (P2)
holds; so suppose i initially had at least two floating edges incident on it. We claim that as long as i has

at least two floating edges incident on it, the value D
(y)
i

.
=
∑
j:(i,j)∈E yi,j remains at its initial value of di.

To see this, first note that if i is not in the cycle/maximal path P chosen in an iteration, then D
(y)
i is not

altered in that iteration. Next, consider an iteration in which i had at least two floating edges incident on
it, and in which i was in the cycle/path P . Then, i must have degree two in P , and so, it must have one
edge in M1 and one in M2. Then, since edges (i, j) ∈M1 have their yi,j value increased/decreased by the

same amount as edges in M2 have their y·,· value decreased/increased, we see that D
(y)
i does not change in

this iteration. Now consider the last iteration at the beginning of which i had at least two floating edges

incident on it. At the end of this iteration, we will have D
(y)
i = di, and i will have at most one floating

edge incident on it. It is now easy to see that (P2) holds.

We next prove:

Lemma 2.2 Property (P3) holds.

Proof: Fix a vertex i, and a subset S of edges incident on i, as in (1). Let b = 1 (the proof for the case
where b = 0 is identical). If f = (i, j), we let Yf,k

.
= Yi,j,k, where Yi,j,k denotes the value of yi,j at the

beginning of iteration k. We will show that

∀k,E

∏
f∈S

Yf,k

 ≤ E

∏
f∈S

Yf,k−1

 (5)

Thus, we will have Pr[
∧
f∈S(Xf = 1)] = E

[∏
f∈S Yf,|E|+1

]
≤ E[

∏
f∈S Yf,1] =

∏
f∈S xf,1 =

∏
f∈S Pr[Xf = 1]

and (P3) will hold.

Let us now prove (5) for a fixed k. In iteration k, exactly one of the following three events occur:

Event A: Two edges in S have their values modified. Specifically, let A(f1, f2, α, β) denote the event that
edges {f1, f2} ⊆ S have their values changed in the following probabilistic way:

(Yf1,k, Yf2,k) =

{
(Yf1,k−1 + α, Yf2,k−1 − α) with probability β/(α+ β)
(Yf1,k−1 − β, Yf2,k−1 + β) with probability α/(α+ β)

Suppose, for each f ∈ S, Yf,k−1 equals some fixed af . Let S1 = S − {f1, f2}. Then,

E[
∏
f∈S

Yf,k|(∀f ∈ S, Yf,k−1 = af) ∧A(f1, f2, α, β)] =

E[Yf1,k · Yf2,k|(∀f ∈ S, Yf,k−1 = af) ∧A(f1, f2, α, β)]
∏
f∈S1

af

5

The above expectation can be written as (ψ + Φ)
∏
f∈S1

af , where

ψ = (β/(α+ β)) · (af1 + α) · (af2 − α), and

Φ = (α/(α+ β)) · (af1 − β) · (af2 + β).

It is easy to show that ψ + Φ ≤ af1af2 . Thus, for any fixed {f1, f2} ⊆ S and for any fixed (α, β), and for
fixed values af , the following holds:

E[
∏
f∈S

Yf,k|(∀f ∈ S, Yf,k−1 = af) ∧A(f1, f2, α, β)] ≤
∏
f∈S

af

Hence, E[
∏
f∈S Yf,k|A] ≤ E[

∏
f∈S Yf,k−1|A].

Event B: Exactly one edge in the set S has its value modified. Let B(f1, α, β) denote the event that edge
f1 ∈ S has its value changed in the following probabilistic way:

Yf1,k =

{
Yf1,k−1 + α with probability β/(α+ β)
Yf1,k−1 − β with probability α/(α+ β)

Thus, E[Yf1,k|(∀f ∈ S, Yf,k−1 = af) ∧ B(f1, α, β)] = af1 . Letting S1 = S − {f1}, we get that
E[
∏
f∈S Yf,k|(∀f ∈ S, Yf,k−1 = af) ∧B(f1, α, β)] equals

E[Yf1,k|(∀f ∈ S, Yf,k−1 = af) ∧B(f1, α, β)]
∏
f∈S1

af =
∏
f∈S

af .

Since this equation holds for any f1 ∈ S, for any values af , and for any (α, β), we have E[
∏
f∈S Yf,k|B] =

E[
∏
f∈S Yf,k−1].

Event C: No edge has its value modified. Hence, E[
∏
f∈S Yf,k|C] = E[

∏
f∈S Yf,k−1].

Thus by the above case-analysis that considers which of events A, B and C occurs, we get that
E[
∏
f∈S Yf,k] ≤ E[

∏
f∈S Yf,k−1]. This completes the proof. 2

In the case of star-graphs, note that there are no cycles, and that any maximal path is of length 1 or
2. So, each iteration in this special case just needs constant time. Thus, recalling (3), we get our main
theorem on dependent rounding:

Theorem 2.3 Given an instance of dependent rounding on a bipartite graph (A,B,E), our algorithm runs
in O((|A|+ |B|) · |E|) time, and guarantees properties (P1), (P2), and (P3). Furthermore, if the bipartite
graph is a star, our algorithm runs in linear time.

2.2 An extension of (P3) for star-graphs

For star-graphs, we now show that our dependent-rounding approach of Section 2.1 has a much stronger
negative correlation property than (P3):

Theorem 2.4 Suppose we are given an instance of dependent rounding where (A,B,E) is a star-graph,
with A = {u} and u connected to all nodes in B. Then for any pair of disjoint subsets S1 and S2 of the
edges incident on u, and any b ∈ {0, 1}, our dependent rounding satisfies

Pr[
∧
f∈S2

(Xf = b) | (
∧

f ′∈S1

(Xf ′ = b))] ≤ Pr[
∧
f∈S2

(Xf = b)].

6

f1 (0.3) f2 (0.65)

f3 (0.8)

f4 (0.45)

f3 (0.8)

f4 (0.45)

x (0.95)

Figure 1: Pairing Trees: The tree on the left is the initial pairing tree. After one iteration, the second
pairing tree is shown on the right. Note that the second pairing tree is the same irrespective of whether
f1 of f2 gets rounded in the first tree.

It is easy to see that Theorem 2.4 implies (P3), but not vice versa. We anticipate that this strong correlation
property will lead to some interesting applications.

Our proof of Theorem 2.4 is inspired by our proof of Lemma 2.2, but is more involved and also uses
the property that for star graphs, at least one floating edge incident on the center of the star gets rounded
in every iteration. For ease of understanding and analysis, we will assume that the dependent rounding
scheme chooses the maximal path in each iteration in the following way. Given a set L of labeled nodes,
define a pairing tree of L to be any tree whose leaf-set is L, and in which each internal node has exactly two
children. Consider any pairing tree whose leaf nodes correspond to the set of edges in the star-graph. We
start with such a pairing tree. We update this tree with each iteration, so that the leaves will correspond
to the current set of floating edges. During an iteration, if only one floating edge remains (this can happen
only in the last iteration), we choose this edge as the maximal path. Otherwise, let two nodes at height
zero in the pairing tree correspond to the edges f1 and f2 in the star. Our maximal path will consist of
exactly these two edges. At the end of the iteration, the pairing tree is updated as follows. The two leaf
nodes at height zero are deleted from the tree. The parent of the deleted nodes (which is now a leaf-node
at height zero) will corresponded to the floating edge in the set {f1, f2}. If both the edges get rounded
during the iteration, we create a new pairing tree whose leaves correspond to the current set of floating
edges in the star-graph and use this tree for the next iteration. Figure 1 presents an illustration of the
pairing tree. We fix such a pairing tree ahead of time, and then run dependent rounding.

Proof: Let b = 0 in Theorem 2.4 (the proof for the case where b = 1 is identical, and is omitted). Let T
be the pairing tree at the beginning of the current iteration in the dependent rounding algorithm. Let lT
denote the number of leaf nodes in T . In the discussion below, for any S ⊆ E, let Pr[S]

.
= Pr[

∧
s∈S Xs = b].

For any pairing tree T , let Pr[S | T]
.
= Pr[S | T is the pairing tree in the current iteration]. Let S1 and S2

be any two disjoint subsets of E. We prove that

∀ pairing trees T,Pr[S1 ∪ S2 | T] ≤ Pr[S1 | T] · Pr[S2 | T] (6)

Setting T to be the initial pairing tree in (6) will then prove the theorem. The proof of (6) is by induction
on lT . The base case for induction is when lT ≤ 2, and this base case is easily seen to follow from (P3).
Let us assume that (6) holds for all T ′ such that lT ′ ≤ k, where k ≥ 2, and prove it for an arbitrary T such
that lT = k + 1. Let p and q, corresponding to edges p1 and q1, be the two nodes at height zero in T . At
the beginning of the next iteration, we have an updated pairing tree T ′ where p and q have been deleted
and their parent x in T is the new node at height zero (if both the edges got fixed in this iteration, we will
have a new tree T ′). In the discussion below, we let Pr

′
[S]

.
= Pr[S | T ′]. One of the following four cases

occurs in the current iteration:

7

Case 1: p1 ∈ S1 and q1 ∈ S2. Let the edge values of p1 and q1 be α and β respectively. If α + β ≥ 1,
one of the edges will get rounded to 1, making the L.H.S of (6) equal to zero. Hence, we will assume that
α+ β < 1. At the end of this iteration, the edge values for (p1, q1) get modified to (α′, β′) respectively as
follows:

(α′, β′) =

{
(α+ β, 0) with probability α/(α+ β)
(0, α+ β) with probability β/(α+ β)

Crucially, irrespective of which of the above events occur, T ′ has a new leaf node x with the corresponding
edge value being equal to α+ β. Let S′1 = S1 \ {p1} and S′2 = S2 \ {q1}. We thus have

Pr[S1 ∪ S2 | T] = Pr
′
[S′1 ∪ S′2 ∪ {x}]

Pr[S1 | T] =
β

α+ β
Pr
′
[S′1] +

α

α+ β
Pr
′
[S′1 ∪ {x}]

Pr[S2 | T] =
α

α+ β
Pr
′
[S′2] +

β

α+ β
Pr
′
[S′2 ∪ {x}]

Therefore,

Pr[S1 | T] · Pr[S2 | T] =

(
α

α+ β

)2

Pr
′
[S′1 ∪ {x}]Pr

′
[S′2] +

(
β

α+ β

)2

Pr
′
[S′1]Pr

′
[S′2 ∪ {x}] +

(
αβ

(α+ β)2

)
· (Pr

′
[S′1]Pr

′
[S′2] + Pr

′
[S′1 ∪ {x}]Pr

′
[S′2 ∪ {x}]). (7)

So, in order to prove (6), we need to show that Pr
′
[S′1 ∪ S′2 ∪ {x}] is at most the r.h.s. of (7). To do so,

we first use the induction hypothesis to get the following two bounds:

Pr
′
[S′1]Pr

′
[S′2 ∪ {x}] ≥ Pr

′
[S′1 ∪ S′2 ∪ {x}] and (8)

Pr
′
[S′1 ∪ {x}]Pr

′
[S′2] ≥ Pr

′
[S′1 ∪ S′2 ∪ {x}] (9)

Therefore, we get

Pr
′
[S′1]Pr

′
[S′2] + Pr

′
[S′1 ∪ {x}]Pr

′
[S′2 ∪ {x}] ≥ 2

√
Pr
′
[S′1] · Pr

′
[S′2] · Pr

′
[S′1 ∪ {x}] · Pr

′
[S′2 ∪ {x}]

= 2
√

(Pr
′
[S′1] · Pr

′
[S′2 ∪ {x}]) · (Pr

′
[S′2] · Pr

′
[S′1 ∪ {x}])

≥ 2Pr
′
[S′1 ∪ S′2 ∪ {x}]. (10)

Plugging (8), (9) and (10) into (7), we get

Pr[S1 | T] · Pr[S2 | T] ≥
[(

α

α+ β

)2

+

(
β

α+ β

)2

+
2αβ

α+ β

]
· Pr

′
[S′1 ∪ S′2 ∪ {x}] = Pr

′
[S′1 ∪ S′2 ∪ {x}],

as required. This completes the proof for Case 1; the remaining three cases are simpler.

Case 2: p1, q1 ∈ S1. Let S′1 = S1 \ {p1, q1}. Again, we can assume that the sum of the edge-values α+ β
is less than one. In this case,

Pr[S1 | T] = Pr
′
[S′1 ∪ {x}]

Pr[S2 | T] = Pr
′
[S2]

Pr[S1 ∪ S2 | T] = Pr
′
[S′1 ∪ S2 ∪ {x}]

8

By the induction hypothesis, Pr
′
[S′1 ∪ S2 ∪ {x}] ≤ Pr

′
[S′1 ∪ {x}]Pr

′
[S2] and hence (6) follows. An identical

argument holds for the case where p1, q1 ∈ S2.

Case 3: p1 ∈ S1 and q1 ∈ E \ (S1 ∪ S2). Let S′1 = S1 \ {p1}. Exactly one of two events happens during
the iteration.

Event A: p1 gets rounded to zero. In this case,

Pr[S1 | T] = Pr
′
[S′1]

Pr[S2 | T] = Pr
′
[S2]

Pr[S1 ∪ S2 | T] = Pr
′
[S′1 ∪ S2]

By the induction hypothesis, Pr
′
[S′1 ∪ S2] ≤ Pr

′
[S′1]Pr

′
[S2] and hence (6) follows.

Event B: p1 does not get rounded to zero. In this case,

Pr[S1 | T] = Pr
′
[S′1 ∪ {x}]

Pr[S2 | T] = Pr
′
[S2]

Pr[S1 ∪ S2 | T] = Pr
′
[S′1 ∪ S2 ∪ {x}]

By the induction hypothesis, Pr
′
[S′1 ∪ S2 ∪ {x}] ≤ Pr

′
[S′1 ∪ {x}]Pr

′
[S2] and hence (6) follows.

Case 4: {p1, q1} ⊆ E \ (S1 ∪ S2). In this case, Pr[S1 | T] = Pr
′
[S1], Pr[S2 | T] = Pr

′
[S2] and Pr[S1 ∪ S2 |

T] = Pr
′
[S1 ∪ S2]; we are done by the induction hypothesis.

This completes the proof of Theorem 2.4. 2

2.3 Random-graph models for massive graphs

Recently, there has been growing interest in modeling the underlying graph of the Internet, WWW, and
other such massive networks; see, e.g., [38, 17]. If we can model such graphs using appropriate random
graphs, then we can sample multiple times from such a model and test candidate algorithms, such as
Web-crawlers [9]. A particularly successful outcome of the study of such graphs has been the uncovering
of the power-law behavior of the vertex-degrees of many such graphs (see, e.g., [10]). Hence, there has
been much interest in generating (and studying) random graphs with a given degree-sequence (see, e.g.,
[23]). Web/Internet measurements capture a lot of connectivity information in the graph, in addition
to the distribution of the degrees of the nodes. In particular, through repeated sampling, these models
capture the probability with which a node of a certain degree d1 might share an edge with a node of
degree d2. Our question here is: since a network is much more than its degree sequence, can we model
connectivity in addition to the degree-sequence? Concretely, given n, values {xi,j ∈ [0, 1] : i < j}, and a
degree-sequence d1, d2, . . . , dn (realized by the values xi,j), we wish to generate an n-vertex random graph
G = ({1, 2, . . . , n}, E) in which: (A1) vertex i has degree di with probability 1, and (A2) the probability
of edge (i, j) occurring is xi,j . (Note that we must have di =

∑
j xi,j .) This is the problem we focus on, in

order to take a step beyond degree-sequences.

Our dependent rounding scheme solves this problem when G is bipartite. However, can we get such a
result for general graphs? Unfortunately, the answer is no: the reader can verify that no such distribution
(i.e., random graph model) exists for the triangle with x1,2 = x2,3 = x1,3 = 1/2 (and hence with d1 =
d2 = d3 = 1). This example has d1 + d2 + d3 being odd, which violates the basic property that the sum
of the vertex-degrees should be even. However, even if the vertex-degrees add up to an even number,
there are simple cases of non-bipartite graphs where there is no space of random graphs which satisfies

9

(A1) and (A2). (Consider two vertex-disjoint triangles with all xi,j values being 1/2, and connect the two
triangles by and edge whose xi,j value is 1.) Thus, we need to compromise – hopefully just a little – for
general graphs. One method in this context is to construct a random graph where each edge (i, j) is put
in independently, with probability xi,j . This preserves (A2), but does not do well with (A1): the only
(high-probability) guarantee we get is that for each i, |Di − di| ≤ O(max{

√
di log n, (log n)1−o(1)}). We

now show that we can do much better than this:

Theorem 2.5 Given a degree-sequence d1, d2, . . . , dn, and values {xi,j ∈ [0, 1] : i < j}, we can efficiently
generate an n-vertex random graph for which (A2) holds, and where the following relaxation of (A1) holds:
with probability one for each vertex i, its (random) degree Di satisfies |Di − di| ≤ 2. Letting m denote the
number of nonzero xi,j, the running time of our algorithm is O(n+m2).

Thus, we get an essentially best-possible result. Recall that, in the bipartite rounding algorithm, if we
encounter an even cycle, we “break” this cycle by probabilistically rounding (at least) one of the edges in
the cycle. Our algorithm for non-bipartite graphs also proceeds by probabilistically breaking cycles in the
graph. We now describe the details of the algorithm.

We start with a graph with vertices 1, 2, . . . , n; for each nonzero value xi,j , we put an edge between
i and j that has a value or label xi,j . We will closely follow our algorithm of Section 2.1, and borrow
notation such as “floating edges” from there. In the following description, we use the terms simple cycle
and linked odd cycles in the following sense: each vertex in a simple cycle has degree two; a pair of linked
odd cycles is a pair of odd cycles sharing a common vertex that has degree four. The algorithm proceeds
in four phases as follows. Throughout the execution of the algorithm, G will denote the subgraph given
by the currently-floating edges of F .

Phase 1: While there exists a simple even cycle in G, do:
Pick a simple cycle C from G. Partition the edges in C into matchings M1 and M2. Probabilistically
modify the edge values of M1 and M2 as in the bipartite rounding algorithm.

Phase 2: While there exists a pair of linked odd cycles in G, do:
Pick a pair of linked odd cycles C from G. Partition the edges in C into two sets M1 and M2 such that
for any given vertex, the number of edges incident upon it in M1 is the same as that in M2. (It is easy to
see that such a partition exists since C is a linked pair of odd cycles). Probabilistically modify the edge
values of M1 and M2 as in the bipartite rounding algorithm (M1 and M2 were matchings in the case of
bipartite graphs.)

Phase 3: While there exists an odd cycle in G, do:
Pick an odd cycle C from G and pick an arbitrary edge e in C. Let Ye be the random variable which
denotes the value of e’s edge-label. Let the current value of Ye be ye. Round Ye to one with probability ye
and to zero with the complementary probability.

Phase 4: All cycles in G have been broken by the previous phases and G is now a forest. Apply the
bipartite rounding algorithm on G.

We now argue that the two properties claimed by Theorem 2.5 hold. For any fixed edge, the expected
value of the edge-label does not change in any of the phases. Hence we see that (A1) holds, by using the
same simple argument as in the proof of Lemma 2.1. Phases 1 and 2 do not change the fractional degree
of any vertex. Crucially, each vertex belongs to at most one odd cycle at the beginning of Phase 3. Thus,
Phases 3 and 4 change the degree of any vertex by at most one each. Hence, at the end of our algorithm,
the integral degree of any vertex differs from its fractional degree by at most two.

10

We now discuss how to implement this algorithm. We first decompose the graph into its biconnected
components [16]. Some biconnected components are trivial, if they consist of a single edge. Other bi-
connected components always contain a cycle. The following proposition shows that it is easy to find an
even cycle in a non-trivial biconnected component. Before we understand the proof, we need to define the
concept of bridges of a graph G = (V,E) with respect to a cycle C. A trivial bridge is an edge of the graph
that connects two nodes on C that are not adjacent in C. These are simply chords on the cycle. Consider
the graph induced by the vertices in V \ C. Let B1, . . . , Bk be the connected components in this graph.
Let Ei be the set of edges that connect vertices in Bi to vertices on C. The edges Ei together with the
component Bi form a bridge in the graph [16]. If an edge (u, v) ∈ Ei with u ∈ Bi and v ∈ C, then v is an
attachment point of the bridge.

Proposition 2.6 A non-trivial biconnected simple graph is either exactly an odd cycle, or must contain
an even cycle.

Proof: Assume that the biconnected component is not exactly an odd cycle. Find a cycle C in the
biconnected component. Assume that the cycle is odd. Consider the bridges of the graph with respect to
the cycle C. Since the graph is biconnected, each bridge has at least two distinct attachment points on C.
This yields a path in the graph that is disjoint from C that connects two nodes u and v on C. Since C
has odd length, the two paths between u and v using edges of C are of opposite parity. Using one of them
along with the path that avoids C we obtain a simple cycle of even length. 2

Phase 1 is implemented as follows. If a biconnected component is trivial, or an odd cycle, we do not
process it for now. We process each remaining component to identify even cycles (the proof of Proposi-
tion 2.6 suggests how to do this algorithmically in linear time). Once we remove an edge of the even cycle,
we further decompose the graph into its biconnected components in linear time. We repeat this until each
biconnected component is either trivial, or exactly an odd cycle.

In Phase 2 we find linked odd cycles. If two components are non-trivial and share a common cut vertex,
they form a pair of linked odd cycles. We can perform the rounding as described above, and delete one edge
to break a cycle. Eventually, all odd cycles are disjoint and we can perform the rounding as in Phase 3.
Finally, when the graph is acyclic, it is bipartite and the rounding can be done as described in Section 2.1.
The total running time of the algorithm is O(n + m2). Phase 1 is the most expensive since each time we
delete one edge, we have to reconstruct the biconnected components, which takes time linear in the size of
the component.

3 Low-congestion Multi-path Routing

For the rest of the paper, we see various applications of our dependent rounding algorithm of Section 2.1, in
the context of approximation algorithms. We start with a routing problem in this section. In this problem,
we are given a graph G = (V,E) with a capacity cf > 0 for each edge f , along with k pairs of vertices
(si, ti). For each i ∈ [k], we are also given: (i) a demand ρi > 0, (ii) a collection Pi of (si, ti)–paths, and
(iii) an integer 1 ≤ `i ≤ |Pi|. The objective is to choose `i paths from Pi for each i, in order to minimize
the relative congestion: the maximum, over all edges f , of (1/cf) times the total demand of the chosen
paths that pass through f . (We make the usual balance assumption [27]: if edge f lies in a path P ∈ Pi,
then cf ≥ ρi.) The case where `i = 1 for all i is a classical problem, and is studied in [32, 27]. Our problem
with arbitrary `i, in addition to its intrinsic interest, is motivated by the following optical networking
problem. Given their high data rates (Gigabits/second and Terabits/second), a key requirement in optical
networks is fast restoration from node/edge failures [29, 36, 13, 33, 11]. Many restoration strategies have
been studied/deployed. A popular scheme that guarantees full recovery from single node/edge failures is

11

variously called 1+1 Dedicated Protection, 1+1 Restoration, etc.: the same signal is transmitted over an
active route and a disjoint backup route, hence being robust to single node/edge failures [13, 33, 11]. The
obvious extension to protect against multiple node/edge failures has also been studied. To generate such
paths in practice, min-cost max-flow is used to generate a large number of disjoint paths for each vertex
pair, and a “suitable” subset of these paths is chosen in some heuristic way to minimize the congestion of the
routing. We present an approximation algorithm for this problem with the same approximation ratio as for
the case where `i = 1 for all i [32, 27]; see Theorem 3.2. (In the above optical routing application, each Pi
is a set of node/edge-disjoint paths; this does not seem to provide any improvement to the approximability,
in our setting as well as in that of [32, 27].)

We start by recalling a result of [31], which shows that the negative correlation property (P3) has
the following interesting large-deviations consequence. Recall from the introduction that D(t;P) denotes
the distributions obtained by our dependent rounding scheme for the special case of star-graphs. Suppose
P = (p1, p2, . . . , pt) is such that

∑
i∈[t] pi = l for some integer l, and that we sample a vector (X1, X2, . . . , Xt)

from D(t;P). Then, for any given sequence a1, a2, . . . , at ∈ [0, 1], the random variable
∑
i aiXi is sharply

concentrated around its mean; in fact, the tail bounds on
∑
i aiXi are at least as good as any bound

obtainable by a Chernoff-type approach [31].

Theorem 3.1 ([31]) Let a1, a2, . . . , at be reals in [0, 1], and X1, X2, . . . , Xt be random variables taking
values in {0, 1}.

(i) Suppose ∀S ⊆ [t] Pr[
∧
i∈S(Xi = 1)] ≤

∏
i∈S Pr[Xi = 1]; also suppose E[

∑
i aiXi] ≤ µ1. Then, for any

δ ≥ 0,

Pr[
∑
i

aiXi ≥ µ1(1 + δ)] ≤
(

eδ

(1 + δ)1+δ

)µ1
.

(ii) Suppose ∀S ⊆ [t] Pr[
∧
i∈S(Xi = 0)] ≤

∏
i∈S Pr[Xi = 0]; also suppose E[

∑
i aiXi] ≥ µ2. Then, for any

δ ∈ [0, 1],

Pr[
∑
i

aiXi ≤ µ2(1− δ)] ≤ e−µ2δ2/2.

Let us return to our low-congestion routing problem. Suppose Pi = {Pi,1, Pi,2, . . .}. There is a natural
integer programming (IP) formulation for the problem, with a variable zi,j for each (i, j): zi,j = 1 if Pi,j
is chosen, and is 0 otherwise. The LP relaxation lets each zi,j lie in [0, 1]. Let the variable C∗ denote the
optimal fractional relative congestion. We have the constraints:

∀i,
∑
j

zi,j = `i; ∀f ∈ E,
∑

(i,j): f∈Pi,j

ρizi,j ≤ cfC∗. (11)

We now prove that we can apply dependent rounding to get a good approximation algorithm:

Theorem 3.2 Let m denote the number of edges in G. We can efficiently round the fractional solution so
that the resultant (integral) relative congestion C satisfies the following, with high probability:

C ≤ O

(
logm

log(2 logm/C∗)

)
if C∗ ≤ logm; (12)

C ≤ C∗ +O(
√
C∗ logm) if C∗ > logm. (13)

Proof: Let |Pi| = ti. Suppose ri = (z∗i,j : j ∈ [ti]) is the vector of values for the zi,j in the optimal
fractional solution. Independently for each i ∈ [k], we sample from D(ti; ri), and select the paths that are

12

chosen (i.e., rounded to 1) by this process. By the first family of constraints in (11) and (P2), we have
with probability 1 that `i paths are chosen for each i. Next, by (P1) and the second family of constraints
in (11), the expected relative congestion on any given edge f is at most C∗. Suppose the constants implicit
in the O(·) notation of (12) and (13) are large enough. Then, (P3) and Theorem 3.1(i) together show that
for any given edge f , the probability that it gets relative congestion more than C is at most 1/(2m). (To
see this, let µ1 = C∗ and C = C∗(1 + δ). A standard calculation shows that if the constants in the O(·)
notation of (12) and (13) are large enough, then the bound of Theorem 3.1(i) is at most 1/(2m).) Adding
over all m edges, we get a relative congestion of at most C, with probability at least 1/2. As usual, this
probability can be boosted by repetition. 2

We are not aware of any other approach that will yield Theorem 3.2. If we round the values z∗i,j
independently, the probability of choosing a sufficient number of paths can be as small as 2−Θ(k). If we
instead try to bin-pack the z∗i,j for each given i and round independently from each bin, the approximation
ratio can be about twice our approximation ratio (e.g., if most of the z∗i,j are just above 1/2, the optimal
bin-packing will need roughly 2`i bins). Note from (13) that we get (1+o(1))–approximations for families of
instances where C∗ grows faster than logm; it appears difficult to get such results from any other approach
that we are aware of.

4 Broadcast Scheduling

In this section, we study three related scheduling problems in a broadcasting model. Traditional scheduling
problems require each job to receive its own chunk of processing time. The growth of (multimedia)
broadcast technologies has led to situations where certain jobs can be batched and processed together: e.g.,
users waiting to receive the same topic in a broadcast setting. For example, all waiting users get satisfied
when that topic is broadcast [6, 26, 14, 21, 4, 5]. The basic features of the model, common to all three
problems, are as follows. There is a set of pages or topics, P = {1, 2, . . . , n}, that can be broadcast by
a broadcast server. We assume that time is discrete; for an integer t, the time-slot (or simply time) t is
the window of time (t− 1, t]. Any subset of the pages can be requested at time t. All users receive every
page that is broadcast; the main problem in all three variants is to construct a good broadcast-schedule.
The default assumption is that the server can broadcast at most one page at any time; in Section 4.4,
we will also consider “2-speed” solutions where the server is allowed to broadcast up to two pages per
time-slot. We work in the offline setting in which the server is aware of all future requests. How does a
user-request get satisfied? Suppose a user requests page p at time t. Then, there is a parameter k such
that this request gets satisfied when page p has been broadcast at k different time-slots t′ that are larger
than t. The “natural” choice for k, as in [26, 14, 21, 4, 5] (and as in the preliminary version of this work
[22]), is 1; this is the choice considered in Section 4.4. However, recent advances in broadcast under lossy
conditions (see, e.g., [30]) motivate us to consider the case of general k, as follows. Suppose the broadcast
medium is lossy, and that packets can get dropped with some probability. A class of interesting “universal
erasure codes” have been presented recently [30]; in our context, they work as follows. Suppose a page
p is composed of some s input symbols. The broadcast server is rateless and can generate an arbitrary
number of encoding symbols; the s required symbols can be recovered from any s + O(

√
s log2 s) of the

symbols received from the server, with high probability [30]. Thus, this is a general scheme that works
with a variety of loss models; it naturally motivates our consideration that k broadcasts of page p suffice
to recover page p with high probability. (We will also study a variant of this in Section 4.3.)

Further problem-specific details will be presented in Sections 4.2, 4.3, and 4.4. Informally, Sections 4.2
and 4.3 deal with maximizing the number of “satisfied” users, while Section 4.4 requires all users to be
satisfied and to have “short” waiting times on the average. All three of these sections make use of a generic
“random offsetting plus dependent-rounding” algorithm, which is described next.

13

4.1 A Generic Algorithm

This algorithm takes as input a fractional solution S, where fractional quantities of pages are broadcast at
each time unit. As far as this section is considered, S is a collection of non-negative values {ypt } where p
indexes pages and t indexes time-slots, such that: (i) in the setting of Sections 4.2 and 4.3,

∑
p y

p
t ≤ 1 for

all t; (ii) in the setting of Section 4.4,
∑
p y

p
t ≤ 2 for all t.

We now give the reader a sense of what the variables ypt will mean, when we later apply the generic
algorithm of this section. Each of Sections 4.2, 4.3, and 4.4 will start with an IP formulation for the
problem at hand, wherein a binary variable ypt is 1 iff page p is broadcast at time slot t. There will be
the further constraint that at most one page can be broadcast at any time: i.e., ∀t,

∑
p y

p
t ≤ 1; additional

constraints (which do not matter for now) will also be present. The LP relaxation will then be solved; in
particular, ypt will be allowed to be a real in the range [0, 1]. A “fractional solution” S will then be fed as
input to the “generic algorithm” that we are going to present next. In Sections 4.2 and 4.3, S will be the
set of values {ypt } in an optimal solution to the LP relaxation; in Section 4.4, S will be the set of values
{ypt } that are twice the values in an optimal solution to the LP relaxation.

Given S, the generic algorithm proceeds in two steps as described below.

Step 1. Construct a bipartite graph G = (U, V,E) as follows. U consists of vertices that represent time
slots. Let ut denote the vertex in U corresponding to time t. Consider a page p and the time instances
during which page p is broadcast fractionally in S. Let these time slots be {t1, t2, . . . , tk} such that ti < ti+1.
We will group these time slots into some number m = m(p) of windows, W p

j , 1 ≤ j ≤ m, such that in each
window except the first and the last, exactly one page p is broadcast fractionally. More formally, we will
define non-negative values bpt,j for each time-slot t and window W p

j , such that for each j: bpt,j is derived
from ypt in a natural way, the values t for which bpt,j 6= 0 form an interval, and

∑
t b
p
t,j = 1 for 2 ≤ j ≤ m−1.

(The first and last windows, W p
1 and W p

m, may broadcast a full page or less.) The grouping of time slots
into windows is done as follows. Choose z ∈ (0, 1] uniformly at random; z represents the amount of service
provided by the first window. (It suffices to use the same z for all pages p.) Intuitively, the windows
represent contiguous chunks of page p broadcast in S. The first chunk is of size z, the last chunk is of size
at most one, and all other intermediate chunks are of size exactly one. Formally, for each time instance th,
we will associate a fraction bpth,j that represents the amount of contribution made by time slot th toward the

fractional broadcast of page p in W p
j . For all h, define bpth,1 and bpth,j , for j ≥ 2 as follows. If

∑h−1
i=1 y

p
ti < z

then bpth,1 = min{ypth , z −
∑
t′<th,t′∈W p

1
bpt′,1}, and 0 otherwise. For all j ≥ 2, if

∑h−1
i=1 y

p
ti < j − 1 + z then

bpth,j = min{ypth − b
p
th,j−1, 1−

∑
t′<th,t′∈W p

j
bpt′,j} and 0 otherwise.

A time slot th belongs to W p
j iff bpth,j > 0. This implies that a window W p

j consists of consecutive time
slots and that the total number of windows mp ∈ {d

∑
t′ y

p
t′e, d

∑
t′ y

p
t′e + 1}. The vertex set V consists of

vertices that represent pages. For each page p, we have vertices vp1 , v
p
2 , . . . , v

p
mp

in V . For all p and j, vpj
is connected to vertices corresponding to timeslots in W p

j . The value of an edge (vpj , uth) is equal to bpth,j .
The above is repeated for all pages p, using the same random value z. This construction is illustrated in
Figure 2, in which a subgraph of G that is induced on the vertices and edges relevant to a particular page
p are shown. For this example we choose z = 1 and ypj , t1 ≤ j ≤ t7, values are 0.3, 0.3, 0.5, 0.5, 0.2, 0.9, 0.8.

Step 2. Perform dependent rounding in G. If an edge (vpk, uth) gets chosen in the rounded solution, then
we broadcast page p at time th.

This concludes the description of the generic algorithm. As we shall see, the use of the “random offset”
z is critical in guaranteeing the performance of the algorithms that follow.

14

.3 .3 .4 .1 .5 .2 .2 .7 .3

W
p
1 W

p
2

W
p
3

v
p
1 v

p
2 v

p
3 v

p
4

.5

W
p
4

U

V

Figure 2: Subgraph of G relevant to page p whose ypj , t1 ≤ j ≤ t7, values are 0.3, 0.3, 0.5, 0.5, 0.2, 0.9, 0.8.
We set z = 1 here.

4.2 Throughput Maximization

This maximization problem is informally as follows. The server can broadcast at most one page at any
time. Our goal is to schedule the broadcast of pages so that a “large” number of the requests are satisfied.

More formally, a request for page p that arrives at time t is denoted (p, t); the request is for k units
of page p, as mentioned at the beginning of Section 4. Each request also has a weight, and all our results
for the unweighted case also hold for the weighted case. The general problem is: given a set of time-
windows in which each of the requests can be processed, to come up with a broadcast-schedule which
maximizes the total weight of satisfied requests. These problems (and several generalizations) have been
shown approximable to within 1/2 [5]. We consider the special case where each request (p, t) comes with
a deadline Dp

t > t. This problem has been shown to be NP -hard by Gailis and Khuller [19]. A time slot
t′ serves (p, t) iff t < t′ ≤ Dp

t ; thus, (p, t) is satisfied iff there are at least k such distinct time-slots t′. We
now present an algorithm based on dependent rounding with the following guarantee: the algorithm either
proves that there is no solution where every user is satisfied, or constructs a schedule in which each user
has a probability at least 3/4 of being satisfied. (In particular, in the latter case, the expected number of
requests satisfied is at least 3/4th of the total.)

Let rpt denote the number of requests (p, t). For clarity of exposition, we assume that all requests
(p, t) have the same deadline Dp

t ; our algorithm works for the case when different requests for page p at
time t have different deadlines. Let T be the time of last request for any page. We use the following IP
formulation. The binary variable ypt′ is 1 iff page p is broadcast at time slot t′; the binary variable xpt is 1 iff
request (p, t) is satisfied at time t′, t < t′ ≤ Dp

t . The first set of constraints ensure that whenever a request
(p, t) is satisfied, k units of page p is broadcast at times t′, t < t′ ≤ Dp

t . The second set of constraints
ensure that at most one page is broadcast at any given time. The last two constraints ensure that the
variables assume integral values. By letting the domain of xpt and ypt′ be 0 ≤ xpt , y

p
t′ ≤ 1, we obtain the LP

relaxation for the problem.

Maximize
∑
(p,t)

rpt · x
p
t Dp

t∑
t′=t+1

ypt′

− kxpt ≥ 0 ∀p, t, t′ > t∑
p

ypt′ ≤ 1 ∀t′

xpt ∈ {0, 1} ∀p, t
ypt′ ∈ {0, 1} ∀p, t′

(14)

15

We solve the LP relaxation of the IP to get an optimal fractional solution. If xpt < 1 for some request
(p, t), we announce that not all requests can be satisfied simultaneously, and halt. Otherwise, we feed
the optimal fractional values {ypt } as input to the generic algorithm of Section 4.1. We now analyze this
algorithm, starting with a simple lemma:

Lemma 4.1 Our algorithm broadcasts at most one page at any time slot.

Proof: The fractional values of the edges incident on any vertex in U sum up to at most 1. Hence, by
property (P2) of dependent rounding, for any vertex ut ∈ U , at most one edge incident on ut gets chosen
in the rounded solution. The lemma follows. 2

The main issue left is to see how many of the requests get satisfied. We may assume that xpt = 1 for
all requests (p, t); if not, we would have announced “infeasible problem” and halted. Consider a request
r = (p, t); we will now lower-bound the probability that there are k broadcasts within its deadline. The
k units of fractional solution received by r can span at most k + 1 adjacent windows. Specifically, the
first and the last window together fractionally provide one unit of page p and the intermediate windows
provide k− 1 units of page p to r. The fraction of page p broadcast at time t′ does not serve r if t′ ≤ t and
belongs to the first of these windows, or if t′ > Dp

t and belongs to the last of these windows. For example,
in Figure 2, suppose the request r = (p, t) arrives at time t = t4. Then, W p

2 is the first window that serves
r; the fraction of page p broadcast at times t3 and t4 (which are 0.1 and 0.5 respectively) do not serve r.
Let Y (r) be the following random variable that is determined by the first step of our generic algorithm:
Y (r) is the fraction of page p broadcast in the first window that serves r. (Hence, the last window serves
a fraction of 1− Y (r) of page p to r.) As just seen, Y (r) = 0.2 + 0.2 = 0.4, if t = t4 in Figure 2.

Let Sr be the indicator random variable that denotes r getting satisfied in the rounded solution; let
Sr(y) denote this random variable when we condition on the event “Y (r) = y”. We now prove a useful
lower-bound on E[Sr(y)] = E[Sr | Y (r) = y]:

Lemma 4.2 For any y, E[Sr(y)] ≥ max{y, 1− y}.

Proof: Let us condition on the event “Y (r) = y”. Let Ay and By denote the set of time slots in the first and
last windows respectively, which serve request r. Let Rpi be the indicator random variable which denotes if
page p was broadcast at time instant i in the rounded solution. Since the number of units of p which serve
r in the rounded solution is k−1+max(

∑
i∈Ay

Rpi ,
∑
i∈By

Rpi), we have Sr(y) = max{
∑
i∈Ay

Rpi ,
∑
i∈By

Rpi }.
Thus,

E[Sr(y)] = Pr[(
∑
i∈Ay

Rpi = 1)
∨

(
∑
i∈By

Rpi = 1)] ≥ max{Pr[(
∑
i∈Ay

Rpi) = 1],Pr[(
∑
i∈By

Rpi) = 1]} = max{y, 1−y}.

2

We now show that each request r has probability at least 3/4 of getting satisfied:

Lemma 4.3 E[Sr] ≥ 3/4.

Proof: Observe that Y (r) is uniformly distributed in (0, 1]. Thus,

E[Sr] =

∫ 1

0
E[Sr(y)] dy =

∫ 1

0
max{y, 1− y} dy =

∫ 1/2

0
(1− y) dy +

∫ 1

1/2
y dy =

3

4
.

2

Thus we get the following theorem, via the linearity of expectation.

16

Theorem 4.4 Given an instance of the throughput-maximization problem, our algorithm: (i) either proves
that not all requests are satisfiable, or (ii) constructs a random schedule in which the expected fraction of
requests satisfied is at least 3/4. Furthermore, in case (ii), any given request is satisfied with probability at
least 3/4.

4.3 Proportional Throughput Maximization

The “proportional throughput maximization” problem is defined as follows. Each request (p, t) requires k
units of page p by its deadline Dp

t . If k′ ≤ k units of page p are broadcast from time t + 1 to Dp
t , then

(p, t) has a benefit of k′/k. At most one page may be broadcast at any time and our goal is to maximize
the sum of the benefits of all requests. (We also consider a “per-user guarantee” variant in Section 4.3.3.)
We consider this model for two reasons. First, it becomes the clean problem of approximating maximum
throughput, in the special case of k = 1. Second, if we have a loss model where k′ broadcasts of page p will
help us recover page p with probability at least k′/k, our current problem serves as a useful model. We use
the generic algorithm of Section 4.1 for this problem and obtain an approximation ratio of (1 − 1/(4k)).
In particular, we get an approximation ratio of 3/4 when k = 1. Bar-Noy et al. [5] consider the case where
k = 1, and present a 1/2–approximation in a general setting.

Two variants are also considered, in Sections 4.3.3 and 4.3.4. Theorem 4.8 summarizes the three main
results we obtain in Section 4.3.

4.3.1 Algorithm

We solve the LP relaxation of the following IP formulation, and input the fractional solution S to the
generic algorithm. Note that this IP is essentially a scaling of IP (14).

Maximize
∑
(p,t)

rpt · x
p
t /k Dp

t∑
t′=t+1

ypt′

− xpt ≥ 0 ∀p, t, t′ > t∑
p

ypt′ ≤ 1 ∀t′

xpt ∈ {0, 1, . . . , k} ∀p, t
ypt′ ∈ {0, 1} ∀p, t′

(15)

The LP relaxation lets all the xpt and ypt to be reals, subject to the constraints 0 ≤ xpt ≤ k and
0 ≤ ypt ≤ 1.

4.3.2 Analysis

Consider a request r = (p, t). Let 0 ≤ xr ≤ k be the fractional amount of service received by r in the
fractional solution. The xr units of service span at most dxre+1 windows. As in Section 4.2, let the amount
of service provided by the first window to r be denoted Y = Y (r). As in Section 4.2, Y is distributed
uniformly at random in the range (0, 1]. Let 0 ≤ Xr ≤ k be the random variable which denotes the number
of integral units of service received by r in the rounded solution. Let Rpi be the indicator random variable
which is one iff page p is broadcast at time i in the rounded solution.

Lemma 4.5 Let xr ≤ k − 1. Then, E[Xr] = xr.

17

Proof: The xr fractional units of page p which serve r in the fractional solution, span at most dxre+ 1 ≤ k
windows. Hence, Xr ≤ k. Therefore, Xr =

∑Dp
t

i=t+1R
p
i . Hence E[Xr] =

∑Dp
t

i=t+1 E[Rpi] =
∑Dp

t
i=t+1 x

p
i = xr. 2

Lemma 4.6 Let xr = k − 1 + f , where f ∈ (0, 1]. Then, E[Xr] ≥ xr − f2

4 .

Proof: Suppose Y equals some value y. There are two cases:

Case 1: f < y ≤ 1. In this case, the xr units of service in the fractional solution span exactly k windows.
By the same arguments as in the proof of Lemma 4.5, we have E[Xr | (Y = y)] = xr in this case.

Case 2: 0 < y ≤ f . In this case, the xr units of service in the fractional solution span exactly k+1 windows.
In addition, the first window provides a service of y, the last window provides a service of f − y and the
intermediate k−1 windows provide k−1 units of service. Let Ay and By denote the set of time slots in the
first and last windows respectively which serve request r. Xr = k if one of the slots in Ay or By broadcasts
p in the rounded solution and Xr = k− 1 otherwise. Thus, Xr = k− 1 + max(

∑
i∈Ay

Rpi ,
∑
i∈By

Rpi). So in
this case,

E[Xr | (Y = y)] = k − 1 + Pr[(
∑
i∈Ay

Rpi = 1)
∨

(
∑
i∈By

Rpi)]

≥ k − 1 + max{Pr[(
∑
i∈Ay

Rpi) = 1],Pr[(
∑
i∈By

Rpi) = 1]}

= k − 1 + max{y, f − y}.

Hence,

E[Xr] ≥
∫ f

0
(k − 1 + max{y, f − y}) dy +

∫ 1

f
xr dy

=

∫ f

0
(k − 1 + max{y, f − y}) dy + (1− f)xr

= (k − 1)f +
3f2

4
+ (1− f)xr

= (k − 1)f + xr − f(k − 1 + f) +
3f2

4

= xr −
f2

4
.

2

Lemma 4.7 Let αr = E[Xr]/xr. Then, αr ≥ 1− 1/(4k). Also, if k = 1, then αr ≥ 1− xr/4 ≥ 3/4.

Proof: If xr ≤ k− 1, then Lemma 4.5 implies this claim. If xr = k− 1 + f for some f ∈ (0, 1], then Lemma
4.6 yields

αr ≥ 1− f2

4xr
≥ 1− f

4(k − 1 + f)
≥ 1− 1

4k
.

If k = 1, then xr = f , and αr ≥ 1− x2r
4xr

= 1− xr/4 ≥ 3/4. 2

Lemma 4.1 shows that the solution is feasible since at most one page is broadcast at any time. Thus
by the linearity of expectation, we have an (1− 1/(4k))–approximation in expectation, for the problem of
proportional throughput maximization.

18

4.3.3 A “per-user guarantee” variant

The discussion above can easily be extended to the following “per-user guarantee” setting. Consider the
case where k = 1; throughput and proportional throughput coincide in this case. Instead of maximizing
(proportional) throughput, suppose we aim for a “fair” schedule, where each individual has a reasonably
large probability of getting its request met within its deadline. More precisely, suppose we have the
“maxmin” problem of maximizing the minimum probability of satisfaction, over all users. Our IP can be
modified to the following LP that models this problem. We now let each xpt and ypt be a real in [0, 1]; we
add a new variable q and add the constraint “xpt ≥ q” for all q, and the objective function is to maximize
q. The semantics of these variables with respect to a randomized schedule, is as follows. xpt denotes the
probability that the request (p, t) gets satisfied, and ypt is the probability that page p is broadcast at time
t. Also, q is the minimum of all the xpt values. It is easy to see that this new LP is a valid relaxation of
our “per-user” problem: if there is a randomized schedule where each (p, t) has a probability at least q′ of
being satisfied, then this new LP indeed has a feasible solution with objective function value at least q′.

We now proceed with the same algorithm as in Section 4.3.1, except that the LP solved now is the one
of the previous paragraph. Let q∗ be the optimal value of the LP. Then, Lemma 4.7 shows that in our final
randomized schedule, each request has probability at least q∗r − (q∗r)

2/4 of getting satisfied. So, we have
a 3/4–approximation to the problem of maxmin fairness; furthermore, under “heavy traffic” conditions
where q∗r can be small, our approximation ratio of 1− q∗r/4 actually approaches one.

4.3.4 Arbitrary time-windows

We now briefly consider the following throughput-maximization problem in the case k = 1. When a request
for a page p arrives at time t, it also specifies a set S(p, t) of time slots larger than t; this request is satisfied iff
page p is broadcast in one of the time-slots that lies in S(p, t). The throughput-maximization problem here
has been shown to be approximable to within 1/2 in a general setting [5]; we now present an (1 − 1/e)–
approximation algorithm. The LP is the same as that of Section 4.3.1, except that the first family of

constraints “

(∑Dp
t

t′=t+1 y
p
t′

)
−xpt ≥ 0” is replaced by the family of constraints “(

∑
t′∈S(p,t) y

p
t′)−x

p
t ≥ 0”. We

solve the LP relaxation, and the randomized rounding is now the following very special case of dependent
rounding. Independently for each time-slot t′, we choose at most one page p: the probability of choosing
page p equals ypt′ . (This is possible since

∑
p y

p
t′ ≤ 1.) Now consider a request for a page p that arrives at

time t. The probability of this request being satisfied is

1−
∏

t′∈S(p,t)

(1− ypt′) ≥ 1− e−
∑

t′∈S(p,t)
yp
t′ ≥ 1− e−x

p
t ≥ (1− 1/e) · xpt .

Thus we get an (1− 1/e)–approximation.

A summary of the main results of Section 4.3 is as follows.

Theorem 4.8 The proportional throughput maximization problem can be approximated to within 1 −
1/(4k), where k is the number of times the requested page needs to be broadcast, in order to satisfy any
given request. Also, for the per-user-guarantee variant of this problem, if q∗ denotes the optimal (i.e.,
maximum) minimum probability of satisfaction for any request, then we can construct a random schedule
in which the probability of satisfaction for each request is at least q∗r − (q∗r)

2/4 ≥ (3/4) · q∗.

In the case where k = 1 and where each request specifies an arbitrary set of time-slots for it to be
satisfied, we can approximate the number of satisfied requests to within (1− 1/e).

19

4.4 Minimizing Average Response Time

We now move on to the case where each request must be satisfied. We are mainly concerned with the
average (equivalently, total) response time for the requests, and deadlines are not important. Thus, for
each request (p, t), its deadline Dp

t equals infinity. The parameter k equals 1, and our goal is to schedule
the broadcast of pages in a way that minimizes the total response time of all requests. The total response
time is

∑
(p,t) r

p
t (S

p
t − t), where for a request (p, t), Spt is the first time instance after t when page p is

broadcast. As before, rpt denotes the number of requests for page p that arrive at time t. An α-speed
broadcast schedule is one in which at most α pages are broadcast at any time instance. Let an (α, β)-
algorithm stand for an algorithm that constructs an α-speed schedule whose expected cost is at most β
times the cost of an optimal 1-speed solution. Gandhi et al. provided approximation algorithms for this
problem which achieved the bounds of (2, 2), (3, 1.5), and (4, 1) [21]. The latter bounds were improved to
(3, 1) via dependent rounding, in a preliminary version of this work [22]. We now improve all these by
providing a bound of (2, 1) using the dependent rounding technique (in the form of the generic algorithm
of Section 4.1). A “per-user fairness” version also holds; see Theorem 4.14. The analysis of the algorithm
is much more involved than in Sections 4.2 and 4.3.

An IP formulation for the problem is given below. The binary variable ypt′ = 1 iff page p is broadcast
at time slot t′. The binary variable xptt′ = 1 iff a request (p, t) is satisfied at time t′ > t; i.e., if ypt′ = 1 and
ypt′′ = 0, t < t′′ < t′. Also, T is the time of last request for any page. It is easy to check that this is a valid
IP formulation.

Minimize
∑
p

∑
t

T+n∑
t′=t+1

(t′ − t) · rpt · x
p
tt′

ypt′ − x
p
tt′ ≥ 0 ∀p, t, t′ > t

T+n∑
t′=t+1

xptt′ ≥ 1 ∀p, t∑
p

ypt′ ≤ 1 ∀t′

xptt′ ∈ {0, 1} ∀p, t, t′
ypt′ ∈ {0, 1} ∀p, t′

(16)

Algorithm. We use the generic broadcast scheduling algorithm described in Section 4.1. The fractional
solution S in this algorithm is a 2-speed solution obtained as follows. We first solve the LP relaxation
optimally. S is obtained by doubling the fraction of each page broadcast at each time slot by the LP
solution. S is then rounded using the generic algorithm.

4.4.1 Analysis

Consider a request r for page p. We assume w.l.o.g. that this request arrives at time 0. Let the cost
incurred by the LP solution to satisfy this request be Or =

∑l
i=1 xiti, where xi > 0 is the fractional

amount of service r receives at time ti and
∑l
i=1 xi = 1. Let 1 ≤ t1 ≤ t2 ≤ · · · ≤ tl. We also assume w.l.o.g.

that there exists a λ ∈ {1, . . . , l} such that
∑λ
i=1 xi = 1/2 (otherwise we can “split” an appropriate xi into

two fractions xλ and xλ′ to achieve this). In general, the time slots t1, . . . , tl will span three consecutive
windows in S; since r arrives at time 0, these are the first three windows in S. Let the random variable
Y denote the fraction of service which r receives from the first window in S. Note that Y is distributed
uniformly in the interval (0, 1]. Let Ar(Y) and Br(Y) be the set of time-slots which belong to the first
and second windows respectively that serve r. Define Xi to be the indicator random variable which is one

20

Ar(Y) Br(Y)

Y 1 1-Y

Figure 3: Variables relevant to request r: vertices on top represent time-slots, and vertices below represent
windows. Values Y and 1 are the amount of service r receives from time slots in Ar(Y) and Br(Y)
respectively.

iff p is broadcast by the rounded solution at time ti. Let Cr be the random variable which denotes the
cost incurred by the request r in the rounded solution. Define si =

∑i
j=1 xj , with s0 = 0. The variables

relevant to request r are illustrated in Figure 3.

Our Approach. Our main goal now is to prove Lemma 4.13, which shows that E[Cr] ≤ Or; as we shall
see, property (P2) will play a critical role. To prove Lemma 4.13, we bound E[Cr] in two different ways.
First, Lemma 4.9 uses the property that whatever the value of Y is, the set of time-slots Br(Y) broadcast
page p with probability 1; thus, it suffices to bound this cost. This bound alone does not suffice for our
purposes; we can only show that E[Cr] ≤ (4− 2

√
2)Or in this manner. So, as a second approach to bound

E[Cr], Lemma 4.10 starts with the observation that r needs to wait for a broadcast of p from Br(Y) only
if the event

E ≡ (page p was not broadcast in Ar(Y))

happens. Now, conditional on E , the distribution of broadcasts in Br(Y) could be quite arbitrary, but (P2)
still ensures that there will be a broadcast of p in Br(Y)! Thus, the worst case is that conditional on E , p is
broadcast in the last time-slot of Br(Y). Lemma 4.10 bounds E[Cr] using this idea. The average of these
two bounds is also an upper-bound on E[Cr]; Lemma 4.12 then shows that in the resulting optimization
problem with the xi as variables, the maximum possible value of E[Cr]/Or is 1.

Lemma 4.9 E[Cr] ≤ 2
∑λ
i=1(2si−1 + xi)xiti + 2

∑l
i=λ+1(2− 2si + xi)xiti.

Proof: Let f(y) =
∑
ti∈Br(y) E[Xi | (Y = y)]ti. Since page p will be transmitted in at least one of the slots

in Br(Y) by (P2), we have Cr ≤
∑
ti∈Br(Y)Xiti with probability 1. Hence E[Cr | (Y = y)] ≤ f(y) and

E[Cr] ≤
∫ 1

0 f(y) dy. We now calculate the contribution of each ti to this integral. There are two cases:
Case 1: i ≤ λ. If Y ≤ 2si−1, then ti fractionally broadcasts 2xi units of p in the second window. If
2si−1 < Y ≤ 2si, then ti fractionally broadcasts (2si − Y) units of p in the second window. If Y > 2si,
then ti does not belong to the second window. All three scenarios are illustrated in the Figure 4.
Case 2: λ < i ≤ l. If Y ≥ 2si − 1, then ti fractionally broadcasts 2xi units of p in the second window. If
2si−1 − 1 ≤ Y < 2si − 1, then ti fractionally broadcasts (Y + 1− 2si−1) units of p in the second window.
Otherwise, ti does not belong to the second window.

By property (P1) of dependent rounding, if ti fractionally broadcasts some a units of p in the second
window, then the probability that page p is broadcast at time ti by our generic algorithm, is exactly a.
Thus,

E[Cr] ≤
∫ 1

0
f(y) dy

21

λ = 8

0.1

0.0

0.2

0.3

0.4

0.5

5 6 9 10 11 12i = 7 λ = 8

0.1

0.0

0.2

0.3

0.4

0.5

5 6 9 10 11 12i = 7 λ = 8

0.1

0.0

0.2

0.3

0.4

0.5

5 6 9 10 11 12i = 7

Figure 4: Contribution of slot i to the integral
∫ 1
0 f(y) dy: slots 5, . . . , 12 fractionally serve request r in the

LP solution. For each slot, the height of the bar indicates the fraction of page p broadcast in that slot in
the 2-speed fractional solution. The request receives exactly one unit of page p from slots 5, . . . , λ = 8.
The fractional broadcasts of page p within the time window Br(Y) is denoted by the shaded regions. The
contribution of slot i to the integral depends on its position relative the start of the shaded region Y . (a)
Y ≤ 2si−1; slot i is completely included in the shaded region. (b) 2si−1 < Y ≤ 2si; slot i is partially
included in the shaded region. (c) Y > 2si; slot i is completely omitted from the shaded region.

=
λ∑
i=1

(
2si−12xiti +

∫ 2si

2si−1

((2si − y)ti) dy

)
+

l∑
i=λ+1

(
(2− 2si)2xiti +

∫ 2si−1

2si−1−1
(y + 1− 2si−1) dy

)

= 2
λ∑
i=1

(2si + xi)xiti + 2
l∑

i=λ+1

(2− 2si + xi)xiti.

2

Lemma 4.10 E[Cr] ≤ 2
∑λ
i=1(1− 2si + xi)xiti + 2

∑l
i=λ+1(2− 2si + xi)xiti.

Proof: Suppose we condition on the event “Y = y”. Let Zr(y) be the indicator random variable which is
one iff Ar(y) does not serve r in the rounded solution. Let Tr(y) be the random variable denoting the last
time slot in Br(y). Since r is served by either the first or the second window in the rounded solution, the
following holds with probability 1:

Cr ≤

 ∑
ti∈Ar(y)

Xiti

+ Zr(y)Tr(y).

So we have

E[Cr | (Y = y)] ≤

 ∑
ti∈Ar(y)

E[Xi | (Y = y)]ti

+ E[Zr(y)]E[Tr(y)].

Since E[Zr(y)] = (1− y),

E[Cr] ≤
∫ y=1

y=0

 ∑
ti∈Ar(y)

E[Xi | (Y = y)]ti

 dy +

∫ y=1

y=0
(1− y)Tr(y) dy.

We now compute the contribution of each ti to each of the two integrals. There are two cases:
Case 1 i ≤ λ: ti never contributes to the second integral since it is never the last time slot in the second
window. If 2si < y ≤ 1 then ti contributes 2xi to the first integral. If 2si−1 < y ≤ 2si then ti contributes

22

2si − y to the first integral. If 0 < y ≤ 2si−1 it contributes nothing to either of the two integrals.
Case 2 i ≥ λ + 1: ti never contributes to the first integral since it is never part of the first window.
Tr(y) = ti iff 2si−1 − 1 < y ≤ 2si − 1.

Thus, we have

E[Cr] =
λ∑
i=1

(
(1− 2si)2xiti +

∫ 2si

y=2si−1

(2si − y)ti dy

)
+

l∑
i=λ+1

∫ 2si−1

y=2si−1−1
(1− y)ti

Simplifying the above expression yields the lemma. 2

Lemma 4.11 E[Cr] ≤
∑λ
i=1 xiti + 2

∑l
i=λ+1(2− 2si + xi)xiti.

Proof: The lemma follows by averaging the bounds given by Lemmas 4.9 and 4.10. 2

The term “2
∑l
i=λ+1(2 − 2si + xi)xiti” is next upper-bounded by Lemma 4.12. For convenience,

Lemma 4.12 relabels the values tλ+1, tλ+2, . . . tl as v1, v2, . . . , vj , and the values xλ+1, xλ+2, . . . xl as
z1, z2, . . . , zj .

Lemma 4.12 Let values 1 ≤ v1 ≤ v2 ≤ · · · ≤ vj be given, and let z1, . . . , zj be real-valued variables.
Consider the problem of maximizing the value f subject to the following constraints:

f =
2
∑j
i=1(2− 2si + zi)zivi∑j

i=1 zivi

si = 1/2 +
i∑

u=1

zu ∀i

∑j
i=1 zi = 1/2

zi ≥ 0 ∀i

The maximum value of f subject to these constraints is at most 1.

Proof: The problem has a maximum, since we have a continuous objective function defined on a compact
domain. Let f∗ be the maximum value, and let the values of the variables in a maximizing solution be z∗i
and s∗i . We start by making some observations about the z∗i values, which hold w.l.o.g. Note first that
those z∗i that are zero can be eliminated from the problem. Next, if vi = vi+1 for some i, it is easy to see
that the objective function does not change if we increment z∗i+1 by z∗i , and reset z∗i to 0; so, we can assume
that 1 ≤ v1 < v2 < · · · < vj . If exactly one of the z∗i values is non-zero, then f∗ = 1. Hence, assume
w.l.o.g. that all z∗i values are non-zero, that there are at least two of these, and that 1 ≤ v1 < v2 < · · · < vj .

Let N = 2
∑j
i=1(2− 2s∗i + z∗i)z∗i vi and D =

∑j
i=1 zivi, so that f∗ = N/D. We now examine the structure

of this solution by perturbing z∗1 and z∗2 . Specifically, increase and decrease the values of z∗1 and z∗2
respectively by an infinitesimal value ε. Clearly, the new solution is still feasible. The value of N changes
by ∆N + O(ε2), where ∆N = 2ε(2− 2s1)(v1 − v2); the value of D changes by ∆D = ε(v1 − v2). Observe
that for f∗ to be the maximum value of the optimization problem, the following is a necessary condition:
f∗ = N/D = ∆N/∆D = 2(2− 2s1).

23

Repeating the above arguments for different z∗i leads to the following: f∗ = 2(2− 2s1) = 2(2− 2s2) =
· · · = 2(2 − 2sj−1) and hence, s1 = s2 = . . . = sj−1. So, there are at most two non-zero z∗i values, which
we take to be z∗1 = 1/2− z and z∗2 = z. We now have

f∗ =
2(2− 2s1 + z∗1)z∗1v1 + 2(2− 2s2 + z∗2)z∗2v2

z∗1v1 + z∗2v2

=
2(1/4− z2)v1 + 2z2v2

v1/2 + z(v2 − v1)

=
v1/2 + 2z2(v2 − v1)

v1/2 + z(v2 − v1)

≤ max{1, 2z}

≤ 1.

2

Recall that Or denotes the cost incurred by the LP solution to serve r. Then, our key lemma is:

Lemma 4.13 E[Cr] ≤ Or.

Proof: Lemma 4.11 implies that

E[Cr]/Or ≤
∑λ
i=1 xiti + 2

∑l
i=λ+1(2− 2si + xi)xiti∑l
i=1 xiti

≤ max

{
1,

2
∑l
i=λ+1(2− 2si + xi)xiti∑l

i=λ+1 xiti

}
.

The lemma now follows from Lemma 4.12. 2

Theorem 4.14 Our rounding scheme yields a 2-speed 1-approximate solution. Furthermore, it leads to
the following per-user guarantee. Suppose each user-request r = (p, t) comes with a delay (response-time)
bound Dr. Then, there is an efficient algorithm that does the following: (i) it either proves that there is no
1-speed solution that satisfies each request within its response-time bound, or (ii) it constructs a randomized
2-speed schedule such that for each request r,

• the expected response time of r is at most Dr, and

• with probability 1, the response time of r is at most 2 ·Dr.

Proof: Our algorithm constructs a 2-speed solution since the fractional value of edges incident on a vertex
in U is at most 2: by property (P2) of dependent rounding, at most two edges will be incident on any
vertex in U in the rounded solution. The claim that we have an 1-approximate solution in expectation,
follows from Lemma 4.13 and the linearity of expectation.

As for the per-user guarantee, we proceed as follows. Given a delay bound Dr for each user r, we start
by modifying our IP. We add the extra constraint

∀r = (p, t),
T+n∑
t′=t+1

(t′ − t) · rpt · x
p
tt′ ≤ Dr.

We also remove the objective function, and simply ask for a feasible solution. We next solve the LP
relaxation. If it has no feasible solution, then we halt, declaring that there is no 1-speed solution that
satisfies each request within its response-time bound. Otherwise, suppose the LP-solver returns a feasible
solution. Then, we proceed as above (doubling the ypt values and running the generic algorithm). Consider
any request r = (p, t). Lemma 4.13 shows that the expected response time of r in the randomized schedule
constructed, is at most Dr. Finally, since at least one of the time-slots in Br(Y) will transmit page p with
probability 1, it is easily seen that with probability 1, the response time of r is at most 2 ·Dr. 2

24

5 Scheduling on Unrelated Parallel Machines

We now consider a more traditional type of scheduling problem, from the standpoint of per-user guarantees.
Given a set J of jobs, a set M of machines, and for each j ∈ J and i ∈ M , the time pij ∈ Z+ required to
process job j on machine i, the problem considered in this section is to schedule the jobs on the machines
so as to minimize the makespan. In their breakthrough work that has had several applications, Lenstra,
Shmoys & Tardos present a 2-approximate solution for this problem [28]; they also show that if the problem
can be approximated better than 3/2, then P = NP . Since their work, the approximation threshold of
the problem has been an intriguing open question; in particular, it has proven difficult to improve the
approximation guarantee of 2. Continuing with our theme of probabilistic per-user guarantees, we are
thus motivated to ask: if we only require a certain guaranteed probability of getting scheduled for each
individual job, can we achieve a better approximation ratio for the makespan? We answer this in the
affirmative, as described next.

Let OPT denote the optimal makespan of a given instance of the problem. A natural “per-user
guarantee”–type question is as follows. Suppose a parameter p, 0 < p ≤ 1, is given. How small a λ can we
exhibit, so that the following two properties are satisfied algorithmically?

(Per-user guarantee) Every individual job gets scheduled with probability at least p, and

(Low makespan) with probability 1, the makespan is at most λ ·OPT .

As mentioned above, the work of [28] exhibits the (p, λ)-pair of (1, 2); as pointed out by Chandra Chekuri
(personal communication), an elegant probabilistic modification of [28] yields the pair (1/2, 1) [7]. Given
these two pairs, it is natural to conjecture that the pair (p, 2p) is achievable for all p ∈ [1/2, 1]. However,
going beyond the two pairs (1, 2) and (1/2, 1) – in particular, achieving any pair of the form (1/2 +
Ω(1), 2−Ω(1)) – seems to require further work and possibly a different approach. By employing a variant
of dependent rounding, we now prove the following:

Theorem 5.1 For any p ∈ (0, 1), the pair (1−e−p, 1+p) is achievable for the per-user/makespan tradeoff:
i.e., we can construct a random schedule in which any given job gets scheduled with probability at least
1 − e−p, and in which the makespan is at most (1 + p) · OPT with probability 1. In particular, the pair
(1− 1/e− ε, 2− Ω(1)) is achievable, for any positive constant ε.

Note that Theorem 5.1 is incomparable with the (1/2, 1) result of [7], if p > ln 2. To prove Theorem 5.1,
we need a weighted notion of dependent rounding, which is described next in Section 5.1; the scheduling
algorithm that underlies Theorem 5.1 is then presented in Section 5.2.

5.1 Weighted dependent rounding

We will use the following notion of weighted dependent rounding (WDR). Fix a machine i. WDR involves
a star graph Gi, where the central vertex of Gi is machine i, with leaves corresponding to the jobs assigned
to i. Recall that pi,j is the processing time for job j, if j gets scheduled on machine i. Suppose we have
a dependent rounding instance on Gi; we modify our dependent rounding as follows. Note that there is
no cycle in Gi, and that a maximal simple path has length at most 2. In dependent rounding, suppose we
pick a path P = 〈j1, i, j2〉; let the values yi,· be the probabilistically changing values as in Section 2. We
now define α to be the smallest positive γ for which either yi,j1 + γ = 1 or yi,j2 − (pij1/pij2) · γ = 0; define
β to be the smallest positive γ for which either yi,j1 − γ = 0 or yi,j2 + (pij1/pij2) · γ = 1. With probability
β/(α+β), increment yi,j1 by α and decrement yi,j2 by (pij1/pij2) ·α; with probability α/(α+β), decrement

25

yi,j1 by β and increment yi,j2 by (pij1/pij2) · β. Finally, suppose the maximal path P is just an edge (i, j);
thus, (i, j) is the only floating edge incident on i at this point. We then randomly round yi,j : round to 1
with probability yi,j and round to 0 with the complementary probability of 1− yi,j .

We call the above scheme “weighted” as it is guided by the “weights” pi,j . The scheme is easily seen
to have the following two properties:

(B1) Let
∑
j pi,j · yi,j be the “load” on i. As long as Gi has at least one yet-unrounded edge, the load on

i remains constant.

(B2) Fix an edge f (f is of the form (i, j) for some j). Let Yf,k denote the value of yf at the end of
iteration k. Then, ∀k, E[Yf,k] = Yf,1; in other words, the expected value of yf remains constant. A
simple induction on k similar to the proof of Lemma 2.1, shows this.

5.2 Algorithm and analysis

We define a family of linear programs LP(T), one for each value of T , where T is a “guess” of the optimal
makespan. Variable xij is 1 iff job j is scheduled on machine i. Let ST = {(i, j)| pij ≤ T}. LP(T) has a
variable xij for each machine i and job j. LP(T) asks for a feasible solution for the following system of
linear constraints: (i)

∑
i xij = 1 for all j; (ii)

∑
j xijpij ≤ T for all i; (iii) xij ≥ 0 for all (i, j) ∈ ST ; and

(iv) xij = 0 for all (i, j) 6∈ ST . It is easy to see that LP(T) has a feasible solution if T is an upper bound
on the makespan. By conducting a bisection (i.e., binary or doubling) search, we can find the smallest
value of T (or a value sufficiently close to optimal) for which LP(T) is feasible. For any T for which LP(T)
is feasible, the work of [28] presents a rounding scheme to construct a schedule of makespan at most 2T ;
in conjunction with the above bisection-search idea, this yields a 2-approximation. We will now present a
different rounding scheme. Let T ∗ denote the smallest value of T for which LP(T) is feasible; also let the
values {xi,j} denote an optimal solution to LP(T ∗).

Given a parameter p ∈ (0, 1), the algorithm proceeds as follows. It first finds the values T ∗ and {xi,j}.
We then set x′i,j = p · xi,j for each (i, j). We now have |M | disjoint instances of WDR, each centered on
some machine i; the initial values yi,j of these instance equal x′i,j . WDR is run independently on these |M |
instances. Property (B1) and the fact “xi,j > 0 implies pi,j ≤ T”, together imply that with probability 1,
the final load on any machine i is at most T ∗p+ T ∗ = T ∗(1 + p). Since the |M | different instances are run
independently, property (B2) shows that for any job j, the probability that it does not get scheduled, is∏

i

(1− pxi,j) ≤ e−
∑

pxi,j = e−p.

Thus we have Theorem 5.1.

6 Discussion

We have presented a dependent rounding scheme, and seen several applications of it. We now briefly survey
some related work. The deterministic pipage rounding method of Ageev & Sviridenko [1] is closely related
to our work. Due to its probabilistic nature, our method can also yield per-user guarantees, which do not
seem possible from deterministic approaches such as pipage rounding. Also, our application of Section 3
does not appear to follow from the work of [1]. Next, following the publication of the preliminary versions
of this work [35, 22], a method of obtaining (P1) and (P2) in the general setting of unimodular matrices,
has been presented in [12]. This approach does not appear to guarantee (P3); in particular, it does not
seem to yield our application of Section 3. Recall from Section 3 that one main use for (P3) is in showing

26

large-deviation bounds; in work unrelated to ours, novel randomized rounding schemes for bipartite graphs
that keep many different linear objective functions close to their mean (with high probability), have been
presented in [18].

The dependent rounding scheme has been employed in approximation algorithms for the partial vertex
cover problem [25], and in efficient random-graph models for large social networks [15]. We view the scheme
as a useful tool that will have further applications in future.

We conclude with some open problems. First, it would be interesting to know how best we can
approximate the problem of minimizing average response-time, if we are constrained to use only 1-speed
solutions. Some recent exciting progress has been made by Bansal et al [2, 3]. Regarding scheduling on
unrelated parallel machines, it seems reasonable to conjecture that our pairs (1−e−p, 1+p) can be improved
to those of the form (p′, 2p′). Finally, it would be very nice to understand the approximability threshold
for scheduling on unrelated parallel machines.

Acknowledgments. This work evolved over a period of time, and benefited much from discussions with
several people. We thank Moses Charikar, Chandra Chekuri, Sanjeev Khanna, Seffi Naor, Iraj Saniee, Peter
Winkler, and Leonid Zosin for helpful discussions. We also thank Eran Halperin and Maxim Sviridenko for
pointing out the work of [1] to us. We thank Chandra Chekuri and David Shmoys for helpful discussions on
[28], and Alan Frieze for his encouragement. Our thanks also to Julia Chuzhoy and Seffi Naor for sending
us an early version of [8]. Finally, we thank the referees for their valuable suggestions.

References

[1] Ageev, A., and Sviridenko, M. Pipage rounding: a new method of constructing algorithms with
proven performance guarantee. Journal of Combinatorial Optimization 8, 3 (2004), 307–328.

[2] Bansal, N., Charikar, M., Khanna, S., and Naor, J. S. Approximating the average response
time in broadcast scheduling. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM Sym-
posium on Discrete Algorithms (Philadelphia, PA, USA, 2005), Society for Industrial and Applied
Mathematics, pp. 215–221.

[3] Bansal, N., Coppersmith, D., and Sviridenko, M. Improved approximation algorithms for
broadcast scheduling, 2004. IBM Tech Report RC23468.

[4] Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., and Schieber, B. A unified approach
to approximating resource allocation and scheduling. J. ACM 48, 5 (2001), 1069–1090.

[5] Bar-Noy, A., Guha, S., Katz, Y., Naor, J., Schieber, B., and Shachnai, H. Throughput
maximization of real-time scheduling with batching. In Proc. Thirteenth annual ACM-SIAM Sympo-
sium on Discrete Algorithms (2002), pp. 742–751.

[6] Bartal, Y., and Muthukrishnan, S. Minimizing maximum response time in scheduling broad-
casts. In Proc. Eleventh annual ACM-SIAM Symposium on Discrete Algorithms (2000), pp. 558–559.

[7] Chekuri, C., and Khanna, S. A PTAS for the multiple knapsack problem. In Proc. Eleventh
annual ACM-SIAM Symposium on Discrete Algorithms (2000), pp. 213–222.

[8] Chuzhoy, J., and Naor, J. Covering problems with hard capacities. In Proc. IEEE Symposium on
Foundations of Computer Science (2002), pp. 481–489.

[9] Cooper, C., and Frieze, A. Crawling on simple models of web graphs. Internet Mathematics 1
(2003), 57–90.

27

[10] Cooper, C., and Frieze, A. A general model of web graphs. Random Struct. Algorithms 22, 3
(2003), 311–335.

[11] Davis, R. D., Kumaran, K., Liu, G., and Saniee, I. Spider: a simple and flexible tool for
design and provisioning of protected lightpaths in optical networks. Bell Labs Technical Journal 6
(January–June 2001).

[12] Doerr, B. Non-independent randomized rounding. In Proc. ACM-SIAM Symposium on Discrete
Algorithms (2003), pp. 506–507.

[13] Doshi, B. T., Dravida, S., Harshavardhana, P., Hauser, O., and Wang, Y. Optical network
design and restoration. Bell Labs Technical Journal, Issue on Optical Networking 4 (January–March
1999).

[14] Erlebach, T., and Hall, A. Np-hardness of broadcast scheduling and inapproximability of single-
source unsplittable min-cost flow. Journal of Scheduling 7 (may 2004), 223 – 241.

[15] Eubank, S., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., and Wang, N. Structural
and algorithmic aspects of massive social networks. In Proc. ACM-SIAM Symposium on Discrete
Algorithms (2004), pp. 711–720.

[16] Even, S. Graph Algorithms. Computer Science Press, 1979.

[17] Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships of the internet
topology. In SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures,
and protocols for computer communication (New York, NY, USA, 1999), ACM Press, pp. 251–262.

[18] Frieze, S. A. A., and Kaplan, H. A new rounding procedure for the assignment problem with
applications to dense graph arrangement problems. Mathematical Programming (2002), 1–36.

[19] Gailis, R., and Khuller, S. Broadcast scheduling with deadlines.
http://www.cs.umd.edu/users/samir/grant/renars.ps.

[20] Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., and Srinivasan, A. An improved
approximation algorithm for vertex cover with hard capacities. In Proc. International Colloquium on
Automata, Languages, and Programming (2003), pp. 164–175.

[21] Gandhi, R., Khuller, S., Kim, Y., and Wan, Y. C. Algorithms for minimizing response time in
broadcast scheduling. Algorithmica, 4 (January 2004), 597–608.

[22] Gandhi, R., Khuller, S., Parthasarathy, S., and Srinivasan, A. Dependent rounding in
bipartite graphs. In Proc. IEEE Symposium on Foundations of Computer Science (2002), pp. 323–
332.

[23] Graham, F. C., and Lu, L. Connected components in random graphs with given degree sequences.
Annals of Combinatorics 6 (2002), 125–145.

[24] Guha, S., Hassin, R., Khuller, S., and Or, E. Capacitated vertex covering. J. of Algorithms
(2003), 257–270.

[25] Halperin, E., and Srinivasan, A. Improved approximation algorithms for the partial vertex cover
problem. In Proc. Fifth International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (2002), pp. 161–174.

28

[26] Kalyanasundaram, B., Pruhs, K., and Velauthapillai, M. Scheduling broadcasts in wireless
networks. In Proc. European Symposium of Algorithms, LNCS 1879, Springer-Verlag (2000), pp. 290–
301.

[27] Kleinberg, J. Approximation algorithms for disjoint paths problems. Ph.D. Thesis, Department of
Electrical Engineering and Computer Science, MIT (1996).

[28] Lenstra, J. K., Shmoys, D. B., and Tardos, E. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming 46 (1990), 259–271.

[29] Logothetis, D., and Trivedi, K. The effect of detection and restoration times for error recovery
in communication networks. Journal of Network and Systems Management 5 (1997), 173–195.

[30] Luby, M. LT codes. In Proc. IEEE Symposium on Foundations of Computer Science (2002), pp. 271–
282.

[31] Panconesi, A., and Srinivasan, A. Randomized distributed edge coloring via an extension of the
chernoff-hoeffding bounds. SIAM J. Comput. 26 (1997), 350–368.

[32] Raghavan, P., and Thompson, C. D. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica 7 (1987), 365–374.

[33] SDH frequently asked questions. http://www1.biz.biglobe.ne.jp/∼worldnet/faq/sdh.html.

[34] Shmoys, D. B., and Tardos, E. An approximation algorithm for the generalized assignment
problem. Mathematical Programming (1993), 461–474.

[35] Srinivasan, A. Distributions on level-sets with applications to approximation algorithms. In Proc.
IEEE Symposium on Foundations of Computer Science (2001), pp. 588–597.

[36] Stern, T. E., and Bala, K. Multiwavelength optical networks: a layered approach. Prentice Hall,
1999.

[37] Trotter, W. T., and Winkler, P. Ramsey theory and sequences of random variables. Combina-
torics, Probability and Computing 7 (1998), 221–238.

[38] Yook, S., Jeong, H., and Barabasi, A. Modeling the internet’s large-scale topology. Proceedings
of the National Academy of Sciences (2002), 13382–13386.

Appendix

A Capacitated Vertex Cover

Let G = (V,E) be an undirected graph with vertex set V = {1, ..., n} and edge set E. Recall that an
orientation of the edges of G is the process of replacing each edge {i, j} by one of the two directed edges
(i, j) or (j, i). In the problem at hand, each vertex v comes with three non-negative values: a weight wv,
a capacity kv, and a maximum number of allowed-copies bv. The values kv and bv will be integers. A
capacitated vertex cover is a collection of values xv ∈ {0, 1, . . . , bv} for each v and an orientation of the
edges of G in which the number of edges directed into vertex v ∈ V is at most kvxv. These edges are said to
be covered by or assigned to v. So, the problem is to choose an integral number of copies (bounded by bv)
of each vertex v and to assign each edge to one of its two end-points, such that each vertex has sufficient

29

capacity for all of its assigned edges. The weight of the cover is
∑
v∈V xvwv. The minimum capacitated

vertex cover problem is that of computing a minimum weight capacitated cover. The problem generalizes
the minimum weight vertex cover problem which can be obtained by setting kv = |V | − 1 for every v ∈ V .
The main difference is that in vertex cover, by picking a node v in the cover we can cover all edges incident
to v, while in this problem we can only cover a subset of at most kv edges incident to node v. Clearly, the
problem is NP-hard since it generalizes a well-known NP-hard problem.

This problem has received a good deal of attention recently; in particular, the case where all the bv
are infinite is quite different from the case where some of the bv could be finite. Let us call these the
“unbounded” and “bounded” case respectively. The unbounded case has been studied by Guha, Hassin,
Khuller & Or [24]: they present a 4-approximation using LP rounding, and a primal-dual 2-approximation.
The bounded case has been studied by [8], who showed that this case is: (i) as hard to approximate as
set cover if the vertex-weights wv are arbitrary, and (ii) can be approximated to within 3 if the vertex-
weights wv are all 1. (To our knowledge, this is one of the very few problems demonstrating such a
difference between the weighted and unweighted scenarios.) This result (ii) has been improved by [20] to
a 2-approximation.

Thus, we ask: if we do have general vertex-weights wv and still desire a 2-approximation for the
objective function, how much of a violation of the “xv ≤ bv” constraints is sufficient? We show that we can
obtain a 2-approximation wherein xv ≤ 2 · bv for all v. (Our algorithm is simple to describe, but somewhat
nontrivial to analyze; it involves a random thresholding followed by dependent rounding.) Even for the
unbounded case, we obtain an improvement over [24] as follows. Analogous to the generalization of [28]
that is investigated in [34] by considering assignment-costs, we consider a generalization in Section A.2,
and present a 2-approximation for this generalization also.

A.1 IP formulation and rounding scheme

We denote by δ(v) the edges in E which are incident to v. An IP formulation of the minimum capacitated
vertex cover problem is to minimize

∑
v wvxv subject to:

yeu + yev ≥ 1 ∀e = {u, v} ∈ E

kvxv −
∑
e∈δ(v)

yev ≥ 0 ∀v ∈ V (17)

xv ≥ yev ∀v ∈ e ∈ E

yev ∈ {0, 1} ∀v ∈ e ∈ E

xv ∈ {0, 1, . . . , bv} ∀v ∈ V

In this formulation, yev = 1 denotes that the edge e ∈ E is covered by vertex v. Clearly, the values (x, y)
in a feasible solution correspond to a capacitated cover. While we do not need the constraints xv ≥ yev for
the IP formulation, they will play an important role in the LP relaxation: this relaxation lets each yev to
be a real in [0, 1], and each xv to be a real in [0, bv]. We present our algorithm next. In the algorithm, we
first do a (random) thresholding: we choose a “random” α, and for all pairs (e, v) such that yev ≥ α, we
assign e to v. Informally, this takes care of pairs (e, v) where yev was “large”, to start with. The remaining
unassigned edges are then handled by dependent rounding.

Algorithm Threshold-and-Round:

1. Solve the LP relaxation of the above IP to obtain an optimal fractional solution (x, y). We will assume
w.l.o.g. that for all e = (u, v), yeu + yev = 1.

30

2. Pick a value α uniformly at random in the interval [1
2 , 1].

3. For each edge e = (u, v) if yeu ≥ α then set y∗eu = 1, else if yev ≥ α then set y∗ev = 1. (Note that
with probability one, at most one of these two assignments will happen for an edge e in this step, since
yeu + yev = 1.)

4. For the remaining edges (where yeu < α and yev < α) we will use dependent rounding. Let the set of
remaining edges be E′.

5. Create a bipartite graph as follows. Let one side contain a vertex corresponding to each edge in E′. The
other side contains a vertex corresponding to each vertex in V . There is an edge from e ∈ E′ to u ∈ V if e
is incident on u. The weight of this edge is yeu. As mentioned above, we have w.l.o.g. that yeu + yev = 1.

We now use dependent rounding to round the yeu values to integers y∗eu. We define x∗u =

⌈∑
e∈E(u)

y∗eu
ku

⌉
.

In other words, after rounding the yeu values to {0, 1} we simply define the x∗u value to be the number of
copies of u that are required to cover all the edges assigned to it.

This completes the description of the algorithm. As a first step in our analysis, we estimate the
probability of an edge getting assigned to a particular end-point:

Lemma A.1 For any edge e and for each endpoint v of e, E[y∗ev] ≤ (4− 2
√

2)yev.

Proof: If yev < 1/2, then the only way for e to get assigned to v is in the dependent rounding step; since
dependent rounding will do such an assignment with probability yev, we get E[y∗ev] ≤ yev ≤ (4− 2

√
2)yev.

Next suppose yev ≥ 1/2. We have

E[y∗ev] = E[y∗ev | α ≤ yev] · Pr[α ≤ yev] + E[y∗ev | α > yev] · Pr[α > yev]

= 2(yev −
1

2
) + 2yev(1− yev)

= (4− 2
√

2)yev − (
√

2yev − 1)2

≤ (4− 2
√

2)yev.

2

Our two main goals are to show that no x∗v is much more than bv, and to bound the weight of the cover
constructed (i.e., to bound the approximation ratio). Recall that the results of [8] show that if we desire
any constant-factor approximation, some blowup in the values bv is necessary. We start by showing that
x∗v ≤ 2bv with probability 1:

Lemma A.2 For each vertex v, x∗v ≤ 2dxve with probability 1. In particular, Pr[x∗v ≤ 2bv] = 1.

Proof: We define some quantities relative to v. Let Lv denote the set of edges e incident on v such that
yev ≥ 1/2, and let Sv denote the set of remaining edges incident on v. (Lv and Sv stand for “large” and
“small” respectively.) In the worst case, all edges in Lv can get assigned to v in Step 3, and all edges in
Sv will participate in the dependent rounding. It is sufficient to show that in such a case, 2dxve copies of
v suffice. Let `v = |Lv|, and sv =

∑
e∈Sv

yev. Note that in this worst case, the number of edges assigned to
v is `v + dsve. We aim to show that

`v + dsve ≤ 2kvdxve. (18)

We have by (17) that `v/2 + sv ≤ kvxv, i.e.,

`v + 2sv ≤ 2kvdxve. (19)

31

Our desired bound (18) holds as a consequence of (19), as follows. If sv ≥ 1/2, then we are done since
dsve ≤ 2sv. If 0 < sv < 1/2, then since `v and 2kvdxve are integers, bound (19) implies that `v ≤ 2kvdxve−1,
which establishes (18). 2

Fix any vertex v. Our next main goal is to prove that E[x∗v] ≤ 2xv, which will then establish an
expected approximation ratio of 2. We now show that E[x∗v] ≤ 2xv through Lemmas A.3, A.4 and A.5,
each of which works for a certain set of values of xv. We start with the first case, where xv is either quite
small or quite large:

Lemma A.3 If xv < 1/2 or if xv ≥ 1+
√

2
2 , then E[x∗v] ≤ 2xv.

Proof: First suppose xv < 1/2. Consider any edge e = (u, v) incident on v. Since yev ≤ xv < 1/2, e cannot
get assigned to v in Step 3. Furthermore, if α ≤ yeu, then e will get assigned to u in Step 3. Note that
yeu = 1 − yev ≥ 1 − xv. So, if α ≤ 1 − xv, then all edges incident on v will get assigned to their other
end-points in Step 3. Thus, a necessary condition for some edges to get assigned to v is that α > 1− xv,
which happens with probability 2xv. Now, Lemma A.2 shows that x∗v takes values only in {0, 1}. Thus,
E[x∗v] ≤ (2xv) · 1 = 2xv.

Next suppose xv ≥ 1+
√

2
2 . Let the random variable Rv denote the number of edges assigned to v.

Lemma A.1 and the linearity of expectation show that

E[Rv] ≤
∑

e=(v,u)

(4− 2
√

2)yev ≤ (4− 2
√

2)kvxv,

where the second inequality is a consequence of (17). Therefore,

E[x∗v] = E

[⌈
Rv
kv

⌉]
≤ E[Rv]

kv
+ 1 ≤ (4− 2

√
2)xv + 1 ≤ 2xv,

where the last inequality holds since xv ≥ 1+
√

2
2 . 2

Lemma A.4 If 1
2 ≤ xv < 1 then E[x∗v] ≤ 2xv.

Proof: Case (1): α > xv. No edge e can have yev ≥ α. So, if an edge gets assigned to v, this has to happen
in the dependent rounding step. Let av + fv =

∑
e∈δ(v) yev, where 0 ≤ fv < 1 and av is an integer. The

maximum number of edges assigned to v is av+1. Note from (17) that av+fv ≤ kvxv < kv. So, av ≤ k−1,
and at most one copy of vertex v in needed. Thus, x∗v ≤ 1 in this case.

Case (2): α ≤ xv. Here, we get from Lemma A.2 that x∗v ≤ 2. So,

E[x∗v] = E[x∗v | α > xv] · Pr[α > xv] + E[x∗v | α ≤ xv] · Pr[α ≤ xv]

≤ 2(1− xv) + 2(xv −
1

2
)2 ≤ 2xv.

2

The remaining range of values for xv is covered by:

Lemma A.5 If 1 ≤ xv ≤ 1.5, then E[x∗v] ≤ 2xv.

32

Proof: Case (1): α ≤ xv
2 . In this case, we use the bound x∗v ≤ 3 which follows from Lemma A.2.

Case (2): α > xv
2 . Consider any such fixed value for α. Let Lv denote the set of edges e incident on

v such that yev ≥ α, and let Sv denote the set of remaining edges incident on v. All edges in Lv will get
assigned to v in Step 3, and in the worst case, all edges in Sv will participate in the dependent rounding.
We will now prove that in such a case, 2 copies of v suffice. Let `v = |Lv|, and write

∑
e∈Sv

yev as av + fv,
where av is an integer and 0 ≤ fv < 1. Note that in this worst case,

x∗v ≤ d
`v + av + 1

kv
e. (20)

Since each e ∈ Lv has yev ≥ α > xv
2 , bound (17) shows that xv

2 `v + av + fv < kvxv. This implies that
`v + 2

xv
(av + fv) < 2kv; so, `v + av < 2kv. Since `v, av and kv are integers, we get from (20) that x∗v ≤ 2.

Combining the above two cases,

E[x∗v] = E[x∗v | α ≤
xv
2

] · Pr[α ≤ xv
2

] + E[x∗v | α >
xv
2

] · Pr[α >
xv
2

]

≤ 2(
xv
2
− 1

2
)3 + 2(1− xv

2
)2

= 1 + xv ≤ 2xv.

2

Lemmas A.3, A.4 and A.5 collectively prove that that for any value of xv, E[x∗v] ≤ 2xv. This fact, along
with the linearity of expectation and Lemma A.2, yields our result for capacitated vertex cover:

Theorem A.6 The expected cost of the integral solution produced by Algorithm Threshold-and-Round
is at most 2 · OPTLP , where OPTLP is the cost of the minimum fractional solution to the relaxation.
Furthermore, the integral solution has x∗v ≤ 2bv for all vertices v, with probability one.

A.2 Assignment Costs

We can generalize the problem in the following way: in addition to having weights on the vertices, we have
an assignment cost ceu for assigning an edge e to vertex u. In the IP, the only change that we make is
to add

∑
e∈E

∑
u∈e ceuyeu to the objective function. Our rounding algorithm remains the same. Suppose

that in the optimal solution of the linear program, the optimum cost is OPTLP = OPT vLP +OPT eLP which
represents the optimum fractional cost due to the weighted sum of chosen vertices and the assignment
cost of edges. Now, Lemma A.1 shows that the expected assignment cost is at most (4 − 2

√
2)OPT eLP .

Combining this with Theorem A.6 where we bound the expected cost of the weighted sum of the chosen
vertices by 2 ·OPT vLP , we obtain an integral solution that is a 2-approximation for the problem where our
objective is the sum of the weighted cost of vertices and the assignment costs.

Theorem A.7 Algorithm Threshold-and-Round finds a solution (x∗, y∗) such that the expected weight of
vertices is at most 2 · OPT vLP and the expected assignment cost is at most (4 − 2

√
2)OPT eLP . Thus this

gives a 2-approximation for the problem with vertex weights and assignment costs (since the total cost is
at most 2 ·OPTLP).

33

