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1 PROBLEM DEFINITION

The minimum weighted completion time problem involves (i) a set J of n jobs, a positive weight
wj for each job j ∈ J , and a release date rj before which it cannot be scheduled; (ii) a set of
m machines, each of which can process at most one job at any time, and (iii) an arbitrary set of
positive values {pi,j}, where pi,j denotes the time to process job j on machine i. A schedule involves
assigning jobs to machines and choosing an order in which they are processed. Let Cj denote the
completion time of job j for a given schedule. The weighted completion time of a schedule is defined
as

∑
j∈J wjCj , and the goal is to compute a schedule that has the minimum weighted completion

time.
In the scheduling notation introduced by Graham et al. [7], a scheduling problem is denoted by

a 3-tuple α | β | γ, where α denotes the machine environment, β denotes the additional constraints
on jobs, and γ denotes the objective function. In this article, we will be considered with the α-
values 1, P , R, and Rm which respectively denote one machine, identical parallel machines (i.e.,
for a fixed job j and for each machine i, pi,j equals a value pj that is independent of i), unrelated
machines (pi,j ’s are dependent on both job i and machine j), and a fixed number m (not part of the
input) of unrelated machines. The field β takes on the values rj which indicates that the jobs have
release dates, and the value pmtn which indicates that preemption of jobs is permitted. Further,
the value prec in the field β indicates that the problem may involve precedence constraints between
jobs which poses further restrictions on the schedule. The field γ is either

∑
wjCj or

∑
Cj which

denote total weighted and total (unweighted) completion times respectively.
Some of the simpler classes of the weighted completion time scheduling problems admit optimal

polynomial time solutions. They include the problem P | |
∑

Cj for which the shortest-job-first
strategy is optimal, the problem 1 | |

∑
wjCj for which Smith’s rule [13] (scheduling jobs in their

non-decreasing order of pj

wj
values) is optimal, and the problem R | |

∑
Cj which can be solved

via matching techniques [2, 9]. With the introduction of release dates, even the simplest classes
of the weighted completion time minimization problem becomes strongly NP-hard. In this article,
we focus on the work of Afrati et al. [1] whose main contribution is the design of polynomial-time
approximation schemes (PTASs) for several classes of scheduling problems to minimize weighted
completion time with release dates. Prior to this work, the best solutions for minimizing weighted
completion time with release dates were all O(1)-approximation algorithms (for example, [4, 5, 11]);
the only known PTAS for a strongly NP-Hard problem involving weighted completion time was
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due to Skutella and Woeginger [12] who developed a PTAS for the problem P | |
∑

wjCj . For an
excellent survey on the minimum weighted completion time problem, we refer the reader to Chekuri
and Khanna [3].

2 KEY RESULTS

Afrati et al. [1] were the first to develop PTASs for weighted completion time problems involving
release dates. We now summarize the running times of these PTASs in Table 1.

Problem Running Time of PTAS

1 | rj |
∑

wjCj O(2poly( 1
ε )n + n log n)

P | rj |
∑

wjCj O((m + 1)poly( 1
ε )n + n log n)

P | rj , pmtn |
∑

wjCj O(2poly( 1
ε )n + n log n)

Rm | rj |
∑

wjCj O(f(m, 1
ε )poly(n))

Rm | rj , pmtn |
∑

wjCj O(f(m, 1
ε )n + n log n)

Rm | |
∑

wjCj O(f(m, 1
ε )n + n log n)

Table 1: Summary of results of Afrati et al. [1]

The results presented in Table 1 are obtained through a careful sequence of input-transformations
followed by dynamic programming. The input-transformations ensure that the input becomes well
structured at a slight loss in optimality, while dynamic programming allows efficient enumeration
of all the near-optimal solutions to the well structured instance.

The first step in the input transformation is geometric rounding, in which the processing times
and release dates are converted to powers of 1+ε, with at most 1+ε loss in the overall performance.
More significantly, this step (i) ensures that there are only a small number of distinct processing
times and release dates to deal with; (ii) allows time to be broken into geometrically increasing
intervals, and (iii) aligns release dates with start and end-times of intervals. These are useful
properties that can be exploited by dynamic programming.

The second step in the input transformation is time stretching, in which small amounts of idle
time are added throughout the schedule. This step also changes completion times by a factor of
at most 1 + O(ε), but is useful for cleaning up the scheduling. Specifically, if a job is large (i.e.,
occupies a large portion of the interval where it executes), it can be pushed into the idle time of
a later interval where it is small. This ensures that most jobs have small sizes compared to the
length of the intervals where they execute, which greatly simplifies schedule computation.

The next step is job shifting. Consider a partition of the time interval [0,∞) into intervals of
the form Ix = [(1 + ε)x, (1 + ε)x+1), for integral values of x. The job shifting step ensures that
there is a slightly suboptimal schedule in which every job j gets completed within O(log1+ε(1+ 1

ε ))
intervals after rj . This has the following nice property: if we consider blocks of intervals B0,B1, . . .,
with each block Bi containing O(log1+ε(1 + 1

ε )) consecutive intervals then a job j starting in block
Bi completes within the next block. Further, the other steps in the job shifting phase ensure that
there are not too many large jobs which spill over to the next block; this allows the dynamic
programming to be done efficiently.

The precise steps in the algorithms and their analysis are subtle, and the above description is
clearly an over-simplification. We refer the reader to [1] or [3] for further details.

3 APPLICATIONS

A number of optimization problems in parallel computing and operations research can be formulated
as machine scheduling problems. When precedence constraints are introduced between jobs, the
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weighted completion time objective can generalize the more commonly studied makespan objective,
and hence is important.

4 OPEN PROBLEMS

Some of the major open problems in this area are to improve the approximation ratios for scheduling
on unrelated or related machines for jobs with precedence constraints. The following problems in
particular merit special mention. The best known solution for the 1 | prec |

∑
wjCj problem is

the 2-approximation algorithm due to Hall et al. [8]; improving upon this factor is a major open
problem in scheduling theory. The problem R | prec |

∑
j wjCj in which the precedence constraints

form an arbitrary acyclic graph is especially open - the only known results in this direction are
when the precedence constraints form chains [6], or trees [10].

The other open direction is inapproximability - there are significant gaps between the known
approximation guarantees and hardness factors for various problem classes. For instance, the
R | |

∑
wjCj and R | rj |

∑
wjCj are both known to be APX-hard, but the best known algorithms

for these problems (due to Skutella [11]) have approximation ratios of 3
2 and 2 respectively. Closing

these gaps remain a significant challenge.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.

7 URL to CODE

None is reported.

8 CROSS REFERENCES

See chapters on Flow Time Minimization, List Scheduling, Minimum Flow Time, Minimum Makespan
on Unrelated Machines, Online Load Balancing for other scheduling models and algorithms.

9 RECOMMENDED READING
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