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Abstract

We present polylogarithmic approximations for the R|prec|Cmax and R|prec|∑j wjCj problems,
when the precedence constraints are “treelike” - i.e., when the undirected graph underlying the prece-
dences is a forest. These are the first non-trivial generalizations of the job shop scheduling problem
to scheduling with precedence constraints that are not just chains. These are also the first non-trivial
results for the weighted completion time objective on unrelated machines with precedence constraints
of any kind. We obtain improved bounds for the weighted completion time and flow time for the case of
chains with restricted assignment - this generalizes the job shop problem to these objective functions.
We use the same lower bound of “congestion+dilation”, as in other job shop scheduling approaches (e.g.
[23]). The first step in our algorithm for the R|prec|Cmax problem with treelike precedences involves
using the algorithm of Lenstra, Shmoys & Tardos to obtain a processor assignment with the congestion
+ dilation value within a constant factor of the optimal. We then show how to generalize the random-
delays technique of Leighton, Maggs & Rao to the case of trees. For the special case of chains, we show
a dependent rounding technique which leads to a bicriteria approximation algorithm for minimizing the
flow time, a notoriously hard objective function.

1 Introduction

A very general type of scheduling problem involves unrelated parallel machines and precedence constraints,
i.e., we are given: (i) a set of n jobs with precedence constraints that induce a partial order on the jobs;
(ii) a set of m machines, each of which can process at most one job at any time, and (iii) an arbitrary set
of integer values {pi,j}, where pi,j denotes the time to process job j on machine i. Thus, we need to decide
which machine to schedule each job on, and then run the jobs in some order consistent with the precedence
constraints. Let Cj denote the completion time of job j. Subject to the above constraints, two commonly
studied versions are (i) minimize the makespan, or the maximum time any job takes, i.e. maxj{Cj} -
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this is denoted by R|prec|Cmax, and (ii) minimize the weighted completion time - this is denoted by
R|prec|∑j wjCj . Numerous other variants, involving release dates or other objectives have been studied
(see e.g. [8]). Most such variants are NP-hard; thus, we will focus throughout on approximation algorithms
with improved approximation guarantees. Recall that a ρ-approximation algorithm for a minimization
problem is a polynomial-time algorithm which always produces a feasible solution with objective function
value at most ρ times optimal; ρ is called the approximation guarantee or approximation ratio of such an
algorithm.

Almost-optimal upper and lower bounds on the approximation ratio are known for the versions of the
above problems without precedence constraints (i.e., the R||Cmax and R||∑j wjCj problems) [4, 14, 24], but
very little is known in the presence of precedence constraints. The only case of the general R|prec|Cmax

problem for which non-trivial approximations are known is the case where the precedence constraints
are a collection of node-disjoint chains - this is the job shop scheduling problem [23], which itself has
a long history. The first result for job shop scheduling was the breakthrough work of Leighton et al.
[15, 16] for packet scheduling, which implied a logarithmic approximation for the case of unit processing
costs. Leighton et al. [15, 16] introduced the “random delays” technique, and almost all the results on
the job shop scheduling problem are based on variants of this technique. The result of [15, 16] was
generalized to nonuniform processing costs by Shmoys et al. [23], who obtained an approximation factor of
O(log (mµ) log (min{mµ, pmax})/ log log (mµ)), where pmax is the maximum processing time of any job, and
µ is the maximum length of any chain in the given precedence constraints. These bounds were improved
by an additional log log (mµ) factor by Goldberg et al. [7]; see [6] for additional relevant work. Shmoys et
al. [23] also generalize job-shop scheduling to DAG-shop scheduling, where the operations of each job form
a DAG, instead of a chain, with the additional constraint that the operations within a job can be done only
one at a time. They show how the results for the case of a chain extend to this case also.

The only results known for the case of arbitrary number of processors (i.e., machines) with more general
precedence constraints are for identical parallel machines (denoted by P |prec|Cmax) [8], or for uniformly-
related parallel machines (denoted by Q|prec|Cmax) [5, 2]. The weighted completion time objective has
also been studied for these variants [4, 5, 9]. When the number of machines is constant, polynomial-time
approximation schemes are known [10, 12]. Note that all the discussion here relates to non-preemptive
schedules, i.e., once the processing of a job is started, it cannot be stopped until it is completely processed;
preemptive variants of these problems have also been well studied (see e.g. [21]). Less is known for
the weighted completion time objective in the same setting, as compared to the makespan. The known
approximations are either for the case of no precedence constraints [24], or for precedence constraints with
parallel/related processors [5, 9, 20]. To the best of our knowledge, no non-trivial bound is known on the
weighted completion time on unrelated machines, in the presence of precedence constraints of any kind.

Here, motivated by applications such as evaluating large expression-trees and tree-shaped parallel
processes, we consider the special case of the R|prec|Cmax and R|prec|∑j wjCj problems, where the
precedences form a forest, i.e., the undirected graph underlying the precedences is a forest. Thus, this
naturally generalizes the job shop scheduling problem, where the precedence constraints form a collection
of disjoint chains.

Summary of results. We present the first polylogarithmic approximation algorithms for the R|prec|Cmax

and R|prec|∑j wjCj problems, under “treelike” precedences. Since most of our results hold in the cases
where the precedences form a forest (i.e., the undirected graph underlying the DAG is a forest), we will
denote the problems by R|forest|Cmax, and R|forest|∑j wjCj , respectively, to simplify the description -
this generalizes the notation used by [11] for the case of chains.

(a). The R|forest|Cmax problem. We obtain a polylogarithmic approximation for this problem. We
employ the same lower bound LB (described shortly) used in [15, 23, 7, 6], except that we are dealing
with the more general situation where jobs have not yet been assigned to machines. Given an assignment
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of jobs to machines, let Pmax denote the maximum total processing time along any directed path, and
Πmax be the maximum total processing time needed on any machine. It is immediate that given such
an assignment, max{Pmax,Πmax} is a lower bound on the makespan of any schedule. Let LB denote the
minimum possible value of max{Pmax,Πmax}, taken over all possible legal assignments of jobs to machines;
LB is thus a lower bound on the makespan. Let pmax = maxi,j pi,j be the maximum processing time of any
job on any machine. We obtain an O( log2n

log log n� log min(pmax,n)
log log n �) approximation to the R|forest|Cmax problem.

When the forests are out-trees or in-trees, we show that this polylogarithmic factor can be improved to
O(log n · �log(min{pmax, n})/ log log n�); for the special case of unit processing times, this actually becomes
O(log n). We also show that the lower-bound LB cannot be put to much better use, even in the case of
trees - for unit processing costs, we show instances whose optimal schedule is Ω(LB · log n).

Our algorithm for solving R|forest|Cmax follows the overall approach used to solve the job shop schedul-
ing problem (see, e.g. [23]) and involves two steps: (i) we show how to compute a processor assignment
whose LB value is within a (3+

√
5

2 )–factor of optimal, by extending the approach of [14], and (ii) design
a poly-logarithmic approximation algorithm for the resulting variant of the R|prec|Cmax problem with
pre-specified processor assignment and forest-shaped precedences.

We call the variant of the R|prec|Cmax problem arising in step (ii) above (i.e., when the processor
assignment is pre-specified), the Generalized DAG-Shop Scheduling or the GDSS problem, for brevity.
Note that the job shop scheduling problem is a special case of GDSS, and this problem is different from
the Dagshop scheduling problem defined by [23].5 Our algorithm for treelike instances of GDSS is similar
to one used in [15, 23, 7], namely injecting random delays to the start times of the jobs; this allows for
contention resolution. However, unlike [15, 23, 7], it is not adequate to insert random delays only at the
head of the trees - we actually insert random delays throughout the schedule (here and in the rest of the
paper, the head node or a start node amongst a set of nodes refers to the minimum node / element in that
set, as determined by the partial order). Our algorithm partitions the forest into blocks of chains suitably,
and the problem restricted to a block of chains is simply a job shop problem; also, the decomposition
guarantees that the solutions to these job shop problems can be pasted together to get a complete schedule
- this immediately gives us a reduction from the R|forest|Cmax problem to the job shop problem, with
the quality depending on the number of blocks. We can remove a logarithmic factor when the DAG is
an in-/out-tree, by a different analysis, which does not reduce this problem to a collection of job shop
problems. As in the original approach of [15], we bound the contention by a Chernoff bound. However,
the events we need to consider are not independent, and we need to exploit the variant of this bound from
[19] that works in the presence of correlations.

(b). The R|forest|∑j wjCj problem. We show a reduction from R|prec|∑j wjCj to R|prec|Cmax of
the following form: if there is a schedule of makespan (Pmax + Πmax) · ρ for the latter, then there is an
O(ρ)-approximation algorithm for the former. We exploit this, along with the fact that our approximation
guarantee for R|forest|Cmax is of the form “(Pmax + Πmax) times polylog”, to get a polylogarithmic
approximation for the R|forest|∑j wjCj problem. Our reduction is similar in spirit to that of [5, 20]:
using geometric time windows and appropriate linear constraints. We employ additional ideas here in
order to handle our specific situation (e.g., the reduction in [20] is meant for identical parallel machines
while ours is for unrelated machines).

(c). Minimizing weighted flow time on chains. Given a “release time” for each job (the time at
which it enters the system) and a schedule, the flow time of a job is the time elapsed from its release
time to its completion time. Minimizing the weighted flow time of the jobs is a notoriously hard problem,
and no reasonable approximation algorithm is known even for the special case of job-shop scheduling. We
consider the case of this problem where (i) the forest is a collection of node-disjoint chains, (ii) for each

5In the Dagshop problem [23], the input is a collection of DAGs, but in each DAG, at most one operation can be done at
a time.
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machine i and operation v, pi,v ∈ {pv,∞} (i.e., the restricted-assignment variant), and (iii) all processing
times pv are polynomially-bounded in the input length N . (Note that job shop scheduling, where we have
a collection of node-disjoint chains and where the jobs are pre-assigned to machines, is a special case of
what we consider; however, we also assume that the processing times are polynomially-bounded.) We
describe a natural LP-relaxation and a dependent randomized rounding scheme for this problem. Our
rounding ensures that (i) the precedence constraints are satisfied with probability 1, and (ii) for any (v, t),
the probability of starting v at time t equals its fractional (LP) value zv,t. This result also leads to a
bicriteria (1 + o(1))–approximation for the weighted flow time, using O(log N/ log log N) copies of each
machine.

Organization. We develop the algorithms for the R|forest|Cmax and R|forest|∑j wjCj problems in
Sections 2 and 3, respectively. We then study the weighted flow time for the case of chains in Section 4.
Section 5 concludes with some open problems.

2 The R|forest|Cmax problem

We now present approximation algorithms for the R|forest|Cmax problem, and also study the limitations
of our approach. In the description below, we will use the terms “node” and “job” interchangeably; we
will not use the term “operation” to refer to nodes of a DAG, because we do not have the job shop or dag
shop constraints that at most one node in a DAG can be processed at a time.

Our algorithm for the R|forest|Cmax problem involves the following two steps:

Step 1: Construct a processor assignment for which the value of max{Pmax,Πmax} is within a constant
factor ((3 +

√
5)/2) of the smallest-possible value, LB. This is described in Section 2.1.

Step 2: Solve the GDSS problem we get from the previous step to get a schedule whose length is at most
a polylogarithmic factor away from max{Pmax,Πmax}. This is described in Section 2.2.

2.1 Step 1: A processor assignment whose max{Pmax, Πmax} value is O(LB)

We now describe the algorithm for processor assignment, using some of the ideas from [14]. Let T be our
“guess” for the optimal value LB = min{max{Pmax,Πmax}}. Let J and M denote the set of jobs and ma-
chines, respectively. Let x denote any fractional processor assignment, i.e., the non-negative value xi,j is the
fraction of job j assigned to machine i; we have for all j that

∑
i xi,j = 1. As mentioned before, Pmax denotes

the maximum total processing time along any directed path, i.e., Pmax = maxpath P {
∑

j∈P

∑
i xi,jpi,j}.

Also, Πmax denotes the maximum total load on any machine, i.e., Πmax = maxi{∑j xi,jpi,j}. We now
define a family of linear programs LP (T ), one for each value of T ∈ Z+, as follows:

∀j ∈ J,
∑

i

xij = 1 (1)

∀i ∈ M,
∑
j

xijpij ≤ T (2)

∀j ∈ J, zj =
∑

i

pijxij (3)

∀(j′ ≺ j) cj ≥ cj′ + zj (4)
∀j ∈ J, cj ≤ T (5)

∀(i, j), (pi,j > T ) ⇒ xi,j = 0 (6)
∀(i, j), xi,j ≥ 0

∀j, cj ≥ 0
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The constraints (1) ensure that each job is assigned a machine, and (2) ensures that the maximum fractional
load on any machine (Πmax) is at most T . Constraints (3) define the fractional processing time zj for a
job j, and (4) captures the precedence constraints amongst jobs (cj denotes the fractional completion of
time of job j). We note that maxj cj is the fractional Pmax. Constraints (5) state that the fractional Pmax

value is at most T , and those of (6) are the valid constraints that if it takes more than T steps to process
job j on machine i, then j should not be scheduled on i.

Let T ∗ be the smallest value of T for which LP (T ) has a feasible solution. It is easy to see that T ∗ is
a lower bound on LB. We now present a rounding scheme which rounds a feasible fractional solution to
LP (T ∗) to an integral solution. Let Xij denote the indicator variable which denotes if job j was assigned to
machine i in the integral solution, and let ηj be the integer analog of cj . We first modify the xij values using
filtering [17]. Let K1 = 3+

√
5

2 . For any (i, j), if pij > K1zj , then set xij to zero. This step could result in a
situation where, for a job j, the fractional assignment

∑
i xij drops to a value r such that r ∈ [1 − 1

K1
, 1).

So, we scale the (modified) values of xij by a factor of at most K2 = K1
K1−1 . Let A denote this fractional

solution. Crucially, we note that any rounding of A, which ensures that only non-zero variables in A are
set to non-zero values in the integral solution, has an integral Pmax value which is at most K1T

∗. This
follows from the fact that if Xij = 1 in the rounded solution, then pij ≤ K1zj . Hence, it is easy to see that
by induction, for any job j, ηj is at most K1cj ≤ K1T

∗.

We now show how to round A. Recall that [14] presents a rounding algorithm in the “unrelated parallel
machines and no precedence constraints” context with the following guarantee: if the input fractional
solution has a fractional Πmax value of α, then the output integral solution has an integral Πmax value of
at most α + max(i,j): xij>0 pij. We use A as the input instance for the rounding algorithm in [14]. Note
that A has a fractional Πmax value of at most K2T

∗. Further, max(i,j): xij>0 pij ≤ T ∗ by (6). Thus, the
algorithm of [14] yields an integral solution I whose Pmax value is at most K1T

∗, and whose Πmax value
is at most (K2 + 1)T ∗. Observe that setting K1 = 3+

√
5

2 results in K1 = K2 + 1. Finally, we note that
the optimal value of T can be arrived at by a bisection search in the range [0, npmax], where n = |J | and
pmax = maxi,j pij. Since T ∗ is a lower bound on LB, we have the following result.

Theorem 1 Given an arbitrary (not necessarily forest-shaped) DAG, the above algorithm computes a
processor assignment for each job in which the value of max{Pmax,Πmax} is within a (3+

√
5

2 )–factor away
from LB.

2.2 Step 2: Solving the GDSS problem under treelike precedences

We can now assume that the assignment of jobs to machines is given. We first consider the case when the
precedences are a collection of directed in-trees or out-trees in Section 2.2.1. We then extend this to the
case where the precedences form an arbitrary forest (i.e., the underlying undirected graph is a forest) in
Section 2.2.2. We will use the notation m(v) to denote the machine to which node v is assigned, and the
processing time for node v will be denoted by pv.

2.2.1 GDSS on Out-/In-Arborescences

An out-tree is a tree rooted at some node, say r, with all edges directed away from r; an in-tree is a tree
obtained by reversing the directions of all the arcs in an out-tree. In the discussion below in Section 2.2.1,
we only focus on out-trees; the same results can be obtained similarly for in-trees.

We will need Fact 2, a generalization of the Chernoff bound from [19]. Note that the ordering of the
Xi is important in Fact 2; we make a careful choice of such an ordering in the proof of Lemma 4.
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Fact 2 ([19]) Let X1,X2, . . . ,Xl ∈ {0, 1} be random variables such that for all i, and for any S ⊆
{X1, . . . ,Xi−1}, Pr[Xi = 1|∧j∈S Xj = 1] ≤ qi. (In particular, Pr[Xi = 1] ≤ qi.) Let X

.=
∑

i Xi; note that

E[X] ≤ ∑
i qi. Then for any δ > 0, Pr[X ≥ (1 + δ) · ∑

i qi] ≤ (eδ/(1 + δ)1+δ)
∑

i
qi.

Our algorithm for out-trees requires a careful partitioning of the tree into blocks of chains, and giving
random delays at the start of each chain in each of the blocks - thus the delays are spread all over the
tree. The head of the chain waits for all its ancestors to finish running, after which it waits for an amount
of time equal to its random delay. After this, the entire chain is allowed to run without interruption. Of
course, this may result in an infeasible schedule where multiple jobs simultaneously contend for the same
machine (at the same time). We show that this contention is low and can be resolved by expanding the
infeasible schedule produced above.

Chain Decomposition. We define the notions of chain decomposition of a graph and its chain width.
Given a DAG G(V,E), let din(u) and dout(u) denote the in-degree and out-degree, respectively, of u in G.
A chain decomposition of G(V,E) is a partition of its vertex set into subsets B1, . . . , Bλ (called blocks)
such that the following properties hold:

(P1) The subgraph induced by each block Bi is a collection of vertex-disjoint directed chains, i.e., the
in-degree and out-degree of each node in the induced subgraph is at most one (and there are of course no
cycles); and

(P2) for any u, v ∈ V , let u ∈ Bi be an ancestor of v ∈ Bj. Then, either i < j, or i = j and u and v belong
to the same directed chain of Bi.

The chain-width of a DAG is the minimum value λ such that there is a chain decomposition of the
DAG into λ blocks. (Such a decomposition always exists: trivially, we could take each block to be a
singleton vertex. We also note that the notions of chain decomposition and chain-width are similar to
those of caterpillar decomposition and caterpillar dimension for trees [18]. However, in general, a caterpillar
decomposition need not be a chain-decomposition and vice-versa.)

Well-structured schedules. We now state some definitions motivated by those in [7]. Given a GDSS
instance with a DAG G(V,E) and given a chain decomposition of G into λ blocks, we construct a B-delayed
schedule for it as follows; B is an integer that will be chosen later. Each job v which is the head of a chain
in a block is assigned a delay d(v) in {0, 1, . . . , B − 1}. Let v belong to the chain Ci. Job v waits for d(v)
amount of time after all its predecessors have finished running, after which the jobs of Ci are scheduled
consecutively (of course, the resulting schedule might be infeasible). A random B-delayed schedule is a
B-delayed schedule in which all the delays have been chosen independently and uniformly at random from
{0, 1, . . . , B − 1}. For a B-delayed schedule S, the contention C(Mi, t) is the number of jobs scheduled on
machine Mi in the time interval [t, t + 1). As in [7, 23], we assume w.l.o.g. that all job lengths are powers
of two. This can be achieved by multiplying each job length by at most a factor of two (which affects
our approximation ratios only by a constant factor). A delayed schedule S is well-structured if for each
k, all jobs with length 2k begin in S at a time instant that is an integral multiple of 2k. Such schedules
can be constructed from randomly delayed schedules as follows. First create a new GDSS instance by
replacing each job v = (m(v), pv) by the job v = (m(v), 2pv). Let S be a random B-delayed schedule
for this modified instance, for some B; we call S a padded random B-delayed schedule. From S, we can
construct a well-structured delayed schedule, S′, for the original GDSS instance as follows: insert v with
the correct boundary in the slot assigned to v̂ by S. S′ will be called a well-structured random B-delayed
schedule for the original GDSS instance.

Our algorithm. We now describe our algorithm; for the sake of clarity, we occasionally omit floor and
ceiling symbols (e.g., “B = �2Πmax/ log(npmax)�” is written as “B = 2Πmax/ log(npmax)”). As before let
pmax = maxv pv.
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1. Construct a chain decomposition of the DAG G(V,E) and let λ be its chain width.

2. Let B = 2Πmax/ log(npmax). Construct a padded random B-delayed schedule S by first increasing
the processing time of each job v by a factor of 2 (as described above), and then choosing a delay
d(v) ∈ {0, . . . , B − 1} independently and uniformly at random for each job v which is the head of its
chain in a block.

3. Construct a well-structured random B-delayed schedule S′ as described above.

4. Construct a valid schedule S′′ using the technique from [7] as follows:

(a) Let the makespan of S′ be L.

(b) Partition the schedule S′ into frames of length pmax; i.e., into the set of time-intervals {[ipmax, (i+
1)pmax), i = 0, 1, . . . , �L/pmax� − 1}.

(c) For each frame, use the frame-scheduling technique from [7] to produce a feasible schedule for
that frame. Concatenate the schedules of all frames to obtain the final schedule.

For the sake of completeness, we now describe the frame-scheduling algorithm; the following description
(with the exception of the symbols used) is paraphrased from [7] and shows how to schedule the jobs within
a given frame of length pmax.

“Let Υ be a rooted complete binary tree with pmax leaves. For every node u of Υ, let l(u) and r(u) be
the labels, respectively, of the leftmost and rightmost leaves of the subtree rooted at u. We shall associate
the jobs scheduled during the frame with the nodes of Υ in a natural way. For i = 1, . . . ,m we define ξi(u)
to be those jobs that are scheduled on machine i by Υ for precisely the time interval [l(u), r(u) + 1); each
job scheduled by Υ in the frame is in exactly one ξi(u). Let p(u) = (r(u) − l(u) + 1) ·maxi||ξi(u)||, where
||ξi(u)|| denotes the cardinality of ξi(u). p(u) is the amount of time needed to perform the jobs associated
with u. Let the nodes of Υ be numbered as u1, u2, . . . in the preorder traversal of Υ. Define f(u1) = 0
and for j ≥ 2, let f(uj) =

∑
k<j p(uk). The algorithm simply schedules the jobs in ξi(u) on machine i

consecutively beginning at time f(u) + 1 and concluding by the end of timestep f(u) + p(u).”

The following theorem shows the performance guarantee of the above algorithm, when given a chain
decomposition.

Theorem 3 Given an instance of treelike GDSS and a chain decomposition of its DAG G(V,E) into λ
blocks, the schedule S′′ produced by the above algorithm has makespan O(ρ · (Pmax + Πmax)) with high
probability, where ρ = max{λ, log n} · �log(min{pmax, n})/ log log n�. Furthermore, the algorithm can be
derandomized in polynomial time.

Proof We only analyze the above randomized algorithm. The delays can then be easily seen to be
computable deterministically by the method of conditional probabilities.

First, observe that S has a makespan of at most L
.= 2(Pmax + λΠmax/ log(npmax)): this is because the

maximum processing time along any directed path is at most 2Pmax, and since there are λ points along
any path which have been delayed, the additional delay is at most 2λΠmax/ log (npmax). Clearly, S′ has no
larger makespan. Let C(Mi, t) be the contention of machine Mi at time t under S. The contention on any
machine at any time under S′ is no more than under S.

The following key lemma bounds the contentions:

Lemma 4 There exists a constant c1 > 0 such that ∀i ∈ {1, . . . ,m} ,∀t ∈ {1, . . . , L}, C(Mi, t) ≤ α with
high probability, where α = c1 log(npmax).
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Proof For any job v, define the random variable X(v, i, t) to be 1 if v is scheduled on Mi during the
time interval [t, t + 1) by S, and 0 otherwise. Note that C(Mi, t) =

∑
v:m(v)=Mi

X(v, i, t). Let d(v) be the
random delay given to the chain to which v belongs. Conditioning on all other delays, d(v) can take at
most pv values in the range {0, 1, . . . , B − 1} that will lead to v being scheduled on Mi during [t, t + 1).
Hence, E[X(v, i, t)] = Pr[X(v, i, t) = 1] ≤ pv

B . Hence E[C(Mi, t)] ≤ Πmax
B ≤ log (npmax). Although the

random variables X(v, i, t) are not independent, we will now present an upper-tail bound for C(Mi, t).

Let B1, . . . , Bλ be the blocks in the chain decomposition. Consider the following ordering of nodes in
V : nodes within each Bi are ordered so that if v is an ancestor of w, then v precedes w, and nodes in Bi

are ordered before nodes in Bi+1, for each i. Let π(1), . . . , π(n) be the resulting ordering of nodes. For
any node v, and for any subset W ⊂ V such that ∀v′ ∈ W, π(v′) < π(v), we will argue that Pr[X(v, i, t) =
1 | ∧

v′∈W X(v′, i, t) = 1] ≤ pv/B in such a case. First, observe that if there is a node v′ ∈ W such that v′ is
an ancestor or descendant of v, then X(v, i, t) = 0, since the schedule S′ preserves precedences. Therefore,
assume that for each v′ ∈ W , it is neither an ancestor nor a descendant of v. Let A be the chain containing
v in the chain decomposition. Then, the random delay given at the start node of A does not affect any
of the nodes in W , and conditioned on all other delays, Pr[X(v, i, t) = 1 | ∧

v′∈W X(v′, i, t) = 1] ≤ pv/B
continues to hold. Thus, Fact 2 can now be applied to bound Pr[C(Mi, t) ≥ α], with

∑
i qi = log(npmax)

and δ = c1 − 1. Since eδ/(1 + δ)1+δ decreases with δ for δ ≥ 0 and tends to 0 as δ → ∞, we thus
get Pr[C(Mi, t) ≥ α] ≤ 1/(npmax)c, where the constant c can be made arbitrarily large by taking c1 large
enough. Since the number of events “C(Mi, t) ≥ α log(npmax)” is O((npmax)c

′
) for a constant c′, the lemma

now follows via a union bound.

The above lemma implies that schedule S′ has a low contention for each machine at each time instant,
with high probability. Our final task is to verify that Step 4 of our algorithm gives the desired bounds.
From the observation earlier, S′ has a makespan at most L. By the definition of pmax and the fact that S′

is well-structured, no job crosses over a frame. Given such a well-structured frame of length pmax where the
maximum contention on any machine is at most α, the frame scheduling algorithm of [7] gives a feasible
schedule with the following bounds.

Fact 5 Given a well-structured frame of length pmax where the maximum contention on any machine is
at most α, there exists a deterministic algorithm which delivers a schedule for this frame with makespan
O(pmaxα�log pmax/ log log α�). Hence, concatenating the frames yields a schedule of length O(ρ′(Pmax +
Πmax)), where ρ′ = max{λ, log(npmax)}� log pmax

log log(npmax)�.

Note that if pmax is polynomially bounded in n, then Theorem 3 holds immediately. We now propose
a simple reduction for the case where pmax � n to the case where pmax is polynomial in n. Assume that
in the given instance I, pmax ≥ n10. Create a new instance I ′ which retains only those vertices in I whose
processing times are greater than pmax/n

2. Vertices in the new instance I ′ inherit the same precedence
constraints amongst themselves which they were subject to in I. However, all these vertices have processing
times in the range [pmax/n

2, pmax]. Equivalently, all processing times can be scaled down such that they
are in the range [1, n2]. Hence, Fact 5 implies that we can obtain a schedule S ′ for instance I ′ whose length
is ρ(Pmax + Πmax), where ρ = max{λ, log n} · (log n/ log log n). We note that the total processing time of
all the vertices in I \ I ′ is at most nPmax

n2 = Pmax/n. Hence, these vertices can be inserted into S ′ valid
schedule S for I such the makespan increases by at most Pmax/n, and hence schedule S is also of length
ρ(Pmax + Πmax).

This completes the proof of Theorem 3.

Theorem 6 demonstrates a chain decomposition of width O(log n) for any out-tree: this completes the
algorithm for an out-tree. An identical argument works for the case of a directed in-tree.
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Theorem 6 Given an out-tree, we can construct a chain decomposition of it with chain-width at most
�lg n� + 1, in deterministic polynomial-time.

Proof The construction proceeds in iterations, each of which creates a block of the decomposition.
Define T1(V1, E1) = T (V,E). Let Ti(Vi, Ei) be the remaining tree at the beginning the ith iteration. Let
Si ⊆ Vi be the set of vertices u such that: (i) the subtree rooted at u in Ti is a directed chain, and (ii) the
parent (if any) of u in Ti has out-degree at least two. During the ith iteration, we create a block Bλ+1−i

which contains each u ∈ Si along with its subtree; we then remove all vertices of this block from Ti. It
is easy to see that the graph induced by Vi+1 is an out-tree Ti+1, and this procedure can be run on Ti+1;
therefore, we do obtain a valid chain decomposition.

Claim 7 Let βλ+1−i denote the number of chains induced by Bλ+1−i, in the ith iteration. Then for all i,
βλ+1−i ≥ 2βλ−i.

Proof Consider a leaf vertex u in Ti+1 (and hence belonging to Bλ−i). Vertex u has out-degree zero
in Ti+1 and out-degree of at least two in Ti (otherwise, u would have belonged to Bλ+1−i leading to a
contradiction). Hence, there are at least two chains induced by Bλ+1−i for which u is an ancestor. Further,
each chain in Bλ+1−i has at most one ancestor in Bλ−i which is a leaf. Since any directed chain has a
unique leaf vertex, the claim follows.

Claim 7 implies that βλ ≥ 2λ−1. Since βλ ≤ n, Theorem 6 follows.

Thus we get:

Theorem 8 There is a deterministic polynomial-time approximation algorithm for solving the GDSS prob-
lem when the underlying DAG is restricted to be an in/out tree. The algorithm computes a schedule with
makespan O((Pmax + Πmax) · ρ), where ρ = log n · �log(min{pmax, n})/ log log n�. In particular, we get an
O(log n)–approximation in the case of unit-length jobs.

2.2.2 GDSS on arbitrary forest-shaped DAGs

We now consider the case where the undirected graph underlying the DAG is a forest. The chain decom-
position algorithm described in Theorem 6 does not work for arbitrary forests, and it is not clear how to
make the Lemma 4 work with chain decompositions of arbitrary forests. Instead of following the approach
of Section 2.2.1, we observe that once we have a chain decomposition, the problem restricted to a block of
chains is precisely the job shop scheduling problem. This allows us to reduce the R|forest|Cmax problem to
a set of job shop problems, for which we use the algorithm of [7]. While this is simpler than the algorithm
in Section 2.2.1 for in-/out-trees, we incur another logarithmic factor in the approximation guarantee.

We now show how a good decomposition can be computed for forest-shaped DAGs:

Lemma 9 Given an arbitrary DAG T whose underlying undirected graph is a forest, we can efficiently
construct a chain decomposition of it into γ blocks, where γ ≤ 2(�lg n� + 1).

Proof Add an artificial “root” r to T and add an arc from r to some nodes in T , so that the underlying
undirected graph becomes a tree. If we imagine T hanging down from r, some edges in T will be pointing
away from the root (down) and others will be pointing toward the root (up). Imagine that T is an out-tree
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and perform a chain decomposition as in the proof of Theorem 6 which will result in a decomposition B with
blocks B1, . . . , Bλ and intermediate trees T1, . . . , Tλ. Recall that we process the subtree Tλ+1−i to obtain
block Bi, and then delete the vertices in Bi from Tλ+1−i to obtain Tλ+2−i. We now re-partition the blocks
in B into partitions P1, . . . , P2λ of the chain decomposition P (refer to Figure 1 for an illustration; note
that we use the term blocks for the intermediate decomposition and partitions for the final decomposition).

Consider a “chain” C in Bi. In general, some edges of C will point down and others will point up. For
instance, in Figure 1, nodes a, b, . . . , f form a chain in Bi and so do nodes g, . . . ,m; the edges (a, b) and
(c, b) point down and up respectively. Each node u ∈ Bi can be classified into the two following types and
is put into Pλ+1−i or Pλ+i accordingly. Imagine that the tree is undirected, and consider the sequence of
edges which connect node u to the tree Tλ+2−i. If the first edge e in this sequence (i.e., the edge e which
is incident on u) points up, then u is a type 1 node and put into Pλ+1−i. Otherwise, if e points down,
then u is a type 2 node and put into Pλ+i. This classification is motivated by the following observation:
no node in Tλ+2−i can be the ancestor of a type 1 node or a descendant of a type 2 node; since type 1
nodes belong to Pλ+1−i, type 2 nodes belong to Pλ+i, and nodes in Tλ+2−i belong to partitions Pj where
λ+1− i < j < λ+ i, the precedence conditions in the chain decomposition (as required by property (P2))
are satisfied. We now formally argue that our construction results in a valid chain decomposition.

We first show that Property (P1) of the chain decomposition holds, i.e., in the induced subgraph of
a partition, each node has in and out-degrees of at most one, and there are no cycles. Since T has a tree
structure, the cycle-free property follows immediately. Consider the stage of the decomposition in which
block Bi was created. Let Hi be the induced subgraph of the nodes in block Bi. The total degree (in-degree
+ out-degree) of any node in Hi is at most 2. If a node u has two out-neighbors in Hi, then u must be of
type 1 and at least one of its out-neighbors in Hi must be of type 2 (see node d in Figure 1 for instance).
Hence, node u is in partition Pλ+1−i and one of its out-neighbors in Hi is in partition Pλ+i. It follows from
a similar argument that if u has two in-neighbors in Hi, then u will be in Pλ+i and one of its in-neighbors
in Hi will be in Pλ+1−i. All other nodes nodes have an in-degree and out-degree of at most one in Hi.
Hence, in the induced subgraphs of Pλ+1−i and Pλ+i, each node has an in-degree and out-degree of at most
one, and property (P1) holds.

We now show that property (P2) holds. Let node v be a descendant of node u. We consider the
following cases:
Case 1: Both u and v belong to the same chain in block Bi. If u and v are of the same type, then it is easy
to see that all the nodes in the directed path from u to v are also of the same type as u and v. Hence, all
these nodes will be put in the same partition, and property (P2) holds. If u and v are of different types,
the only possibility is that u is of type 1 and v is of type 2. In this case, u ∈ Pλ+1−i and v ∈ Pλ+i; since
λ + 1 − i < λ + i, property (P2) follows.
Case 2: Nodes u and v belong to different chains in block Bi. In this case, there exists a directed path
from u to a node x in Tλ+2−i, a directed path from node y in Tλ+2−i to v, and a directed path from x to
y in Tλ+2−i. Clearly, node u will be of type 1 and node v will be of type 2 and property (P2) follows due
to the same argument as in Case 1.
Case 3: Node u ∈ Bi and v ∈ Tλ+2−i. In this case, there is a directed path from u ∈ Bi to v ∈ Tλ+2−i, and
hence u is of type 1 and u ∈ Pλ+1−i. Further, since v ∈ Tλ+2−i, v can only be in a partition Pj such that
λ + 1 − i < j < λ + i. Since Tλ+2−i is non-empty, we have i > 1; these facts together yield, λ + 1 − i < j,
and (P2) is satisfied.
Case 4: Node v ∈ Bi and u ∈ Tλ+2−i. Property (P2) is satisfied due to similar arguments as in Case 3.

This completes the proof of the Lemma.

Theorem 10 Given a GDSS instance and a chain decomposition of its DAG G(V,E) into γ blocks, there
is a deterministic polynomial-time algorithm which delivers a schedule of makespan O((Pmax + Πmax) · ρ),

10



Figure 1: Chain-decomposition of a DAG whose underlying structure is a tree: the triangular and rect-
angular nodes are in block Bi while the circular nodes are in the subtree Tλ+2−i. The triangular nodes are
of type 1 and belong to partition Pλ+1−i while the rectangular nodes are of type 2 and belong to partition
Pλ+i. The letters a, . . . ,m to the left of the nodes denote their labels and the numbers to their right in
parentheses denote their types.

where ρ = γ log n
log log n ·

⌈
log min(pmax,n)

log log n

⌉
. Thus, Lemma 9 implies that ρ = O

(
log2 n

log log n ·
⌈

log min(pmax,n)
log log n

⌉)
is

achievable for forest-shaped DAGs.

Proof Consider the chain decomposition of the DAG with γ blocks P1, P2, . . . , Pγ . Each of these
blocks Pi is an instance of job-shop scheduling, since it only consists of chains. These can be solved
using the algorithm of [7] which, given a job-shop instance, produces a schedule with makespan at most
O( (Pmax+Πmax) log n

log log n �log pmax/ log log n�). Also, by the properties of the chain decomposition, there are no
precedence constraints from Pj to Pi, for j > i. Therefore, we can concatenate the schedules for each block,
and this yields a schedule for the GDSS instance with the desired makespan (since, as argued in the proof
of Theorem 3, we may assume without loss of generality that pmax is polynomially bounded in n).

2.3 The Limits of our Lower Bound

Our approach for the GDSS problem uses the fact that max{Pmax,Πmax} is a lower-bound on the length
of any schedule. Any attempt to improve our approximation guarantees must address the issue of how
good a lower-bound is max{Pmax,Πmax}. We now show that in general DAGs, the L .= max{Pmax,Πmax}
lower bound is very weak: there are instances where the optimal makespan is Ω(PmaxΠmax). This leaves
the question for forests- we show that even in this case, there are instances where the optimal makespan
is Ω(L · log n/ log Πmax).

We construct a rooted in-tree T for which the optimal makespan is Ω(L · log n/ log Πmax), for any value
of Πmax that is Ω(log n/ log log n). All nodes (jobs) are of unit length. At level 0, we have the root which is
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assigned to a processor that is not used for any other nodes. Once the level-i nodes are fixed, level-(i + 1)
nodes are fixed in the following manner. For each node v at level i, there are C = Πmax nodes in level
i + 1 that are immediate predecessors of v. All these C nodes are assigned to the same machine that is
never used again. Since there are n nodes in T , it is clear that there are log n/ log C levels, and about n/C
machines are used.

Lemma 11 The optimal makespan for the above instance is Ω((Πmax + Pmax) log n/ log Πmax).

Proof We have C = Πmax. Let Vi denote the set of nodes in level i. Note that D
.= Pmax = log n/ log C+1

is the number of levels in T . We will show by backward induction on i that the earliest time that nodes
in Vi can start is (D − i)C. From this the lemma follows, since C ≥ Ω(log n/ log log n). The base case
i = D is obvious. Now assume this claim is true for levels j ≥ i. Consider v ∈ Vi−1. Let P (v) denote
the immediate predecessors of v in level i. By construction, |P (v)| = C, and by the induction hypothesis,
the earliest time any node in P (v) can start is (D − i)C. All the nodes in P (v) are assigned to the same
processor. Therefore, the earliest time all nodes in P (v) are done is (D − i)C + C = (D − i + 1)C. Note
that v can start only after all of P (v) is completed. This completes the proof for forest-shaped instances.

2.3.1 An Ω(
√

n) gap for general DAGs

In the above instance, the optimal makespan is also Ω(PmaxΠmax), but the ratio of this to Pmax + Πmax

is only O(log n/ log Πmax), because Pmax = log n/ log Πmax. We now show an instance of the general
GDSS problem where the optimal makespan is Ω(PmaxΠmax) and this quantity is Ω(

√
n) times larger than

Πmax + Pmax. This instance has m =
√

n machines and m layers; each layer contains m nodes, each to
be processed on a layer-specific machine with unit processing time (two nodes are assigned to the same
machine if they are on the same layer, and different machines if they are on different layers). Let these
layers be denoted by V1, . . . , Vm. For each i = 1, . . . ,m − 1, all edges in Vi × Vi+1 are present. It is easy
to see that Pmax = Πmax = m in this instance, but the optimal makespan is n = PmaxΠmax. We show in
Section 4 that the natural time-indexed integer program considered therein, also has an Ω(m) gap between
the integral and fractional optima for this instance.

Finally, we remark that while the discussion in this Section (2.3) pertains to the GDSS problem (where
processor assignment is pre-specified), our results can be easily generalized to the case where the processor
assignment is not pre-specified.

3 The R|forest|∑
j wjCj problem

We consider next the objective of minimizing weighted completion time, where the given weight for each
job j is wj ≥ 0. Given an instance of R|prec|∑j wjCj where the jobs have not been assigned their
processors, we now reduce it to instances of R|prec|Cmax with processor assignment. More precisely, we
show the following: let Pmax and Πmax denote the “dilation” and “congestion” as usual; if there exists a
schedule of makespan ρ · (Pmax + Πmax) for R|prec|Cmax, then there is a O(ρ)-approximation algorithm
for R|prec|∑j wjCj. We adapt an approach of [5, 20] for this. Let the machines and jobs be indexed
respectively by i and j; pi,j is the (integral) time for processing job j on machine i, if we choose to process
j on i. We now present an LP-formulation for R|prec|∑j wjCj which has the following variables: for

 = 0, 1, . . ., variable xi,j,� is the indicator variable which denotes if “job j is processed on machine i, and
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completes in the time interval (2�−1, 2�]”; for job j, Cj is its completion time, and zj is the time spent on
processing it. The LP is to minimize

∑
j wjCj subject to:

∀j,
∑
i,�

xi,j,� = 1 (7)

∀j, zj =
∑

i

pi,j

∑
�

xi,j,�

∀(j ≺ k), Ck ≥ Cj + zj

∀j,
∑
i,�

2�−1xi,j,� ≤ Cj ≤
∑
i,�

2�xi,j,� (8)

∀(i, 
),
∑
j

pi,j

∑
t≤�

xi,j,t ≤ 2� (9)

∀
 ∀maximal chains P,
∑
j∈P

∑
i

pi,j

∑
t≤�

xi,j,t ≤ 2� (10)

∀(i, j, 
), (pi,j > 2�) ⇒ (xi,j,� = 0) (11)
∀(i, j, 
), xi,j,� ≥ 0

Note that (9) and (10) are “congestion” and “dilation” constraints respectively. Our reduction proceeds
as follows. Solve the LP, and let the optimal fractional solution be denoted by variables x∗

i,j,�, C∗
j , and z∗j .

We do the following filtering, followed by an assignment of jobs to (machine, time-frame) pairs.

Filtering: For each job j, note from the first inequality in (8) that the total “mass” (sum of xi,j,� values)
for the values 
 such that 2� ≥ 4C∗

j , is at most 1/2. We first set xi,j,� = 0 if 2� ≥ 4C∗
j , and scale each

xi,j,� to xi,j,�/(1 − ∑
�′≥4C∗

j

∑
i xi,j,�′), if 
 is such that 2� < 4C∗

j - this ensures that equation (7) still holds.
After the filtering, each non-zero variable increases by at most a factor if 2. Additionally, for any fixed j,
the following property is satisfied: if 
′ is the largest integer such that xi,j,�′ is non-zero, then 2�′ = O(C∗

j ).
The right-hand-sides of (9) and (10) become at most 2�+1 in the process and the Cj values increase by at
most a factor of two.

Assigning jobs to machines and frames: For each j, set F (j) to be the frame (2�−1, 2�], where 
 is the
index such that 4C∗

j ∈ F (j). Let G[
] denote the set of jobs whose frame has been set to 
. Let Pmax(
)
and Πmax(
) be the maximum fractional congestion and dilation respectively for any job in G[
] . From
constraints (9) and (10), and due to our filtering step, which at most doubles any non-zero variable, it
follows that both Pmax(
) and Πmax(
) are O(2�). We now perform a processor assignment as follows: for
each G[
], we use the processor assignment scheme in Section 2.1 to assign processors to jobs. This ensures
that the integral Pmax(
) and Πmax(
) values are still at most O(2�).

Scheduling: First schedule all jobs in G[1]; then schedule all jobs in G[2], and so on. We can use any
approximation algorithm for makespan-minimization, for each of these scheduling steps. It is easy to see
that we get a feasible solution: for any two jobs j1, j2, if j1 ≺ j2, then C∗

j1 ≤ C∗
j2 – either frame F (j1)

precedes F (j2) or they coincide, and hence j1 gets scheduled before j2.

Theorem 12 Consider any family F of precedence constraints that is closed under taking subsets: i.e.,
if a partial order σ is in F , then any partial order obtained by removing arcs from σ is also in F . If
there exists an approximation algorithm for R|prec|Cmax for all precedence constraints σ ∈ F that yields a
schedule whose makespan is O((Pmax + Πmax) · ρ), then there is also an O(ρ)–approximation algorithm for
R|prec|∑j wjCj for all σ ∈ F . Thus, Theorem 10 implies that an O( log2 n

log log n� log min(pmax,n)
log log n �)-approximation

is achievable for R|forest|∑j wjCj.
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Proof Consider any job j which belongs to G[
]; since both Pmax(
) and Πmax(
) are O(2�), the jobs
in G[
] take a total of O(ρ2�) to complete. Thus, even given the wait for all jobs in G[
′] for 
′ < 
, the
completion time of job j is O(ρ · ∑

�′≤� 2�′) = O(ρ2�). Since 2� = O(C∗
j ), the theorem follows.

4 Minimizing the weighted flow time under precedence-chains

We now study the flow-time objective. We consider the restricted-assignment variant where for every
job v, there is a value pv such that for all machines i, pi,v ∈ {pv,∞}. We focus on the case where the
precedence DAG is a disjoint union of chains with all pu being polynomially-bounded positive integers in
the input-size N . We present a bicriteria approximation algorithm for the weighted flow time.

Let us recall the flow-time objective. In addition to the chain-shaped precedence constraints and the
machine assignment constraints, each job v also has a “release-time” rv and a deadline lv. The release
time specifies the time at which the job v was created and hence it can be started only at times which are
≥ rv. The deadline lv specifies the last time slot at which this job can be started, say. Our goal is to find
a schedule which minimizes the weighted flow time

∑
v wv(Cv − rv) subject to the above constraints. In

general, minimizing the weighted flow time appears very hard to approximate. Leonardi & Raz [13] provide
a O(

√
n log n)-approximation algorithm for this problem and show that it cannot be approximated within

a factor of O(n
1
3
−δ) for any constant δ > 0, unless P = NP . One way of dealing with such intractability is

through resource augmentation, where we allow our solution to use ψ copies of a machine. In this case, we
say that the solution is a ψ-count solution. Let OPT be the cost (total weighted flow time) of the optimal
schedule. We say that a solution is (ψ, γ)-approximate, if its count is ψ and the cost of the solution is
at most γ · OPT . Note that we compare the cost of our ψ-count solution with that of a 1-count optimal
solution. Chekuri et al. [3] study the minimum flow-time scheduling with resource augmentation for the
setting without precedence constraints, and present online algorithms with approximation (competitive)
ratio (1 + ε,O(1

ε )). Here we study flow-time scheduling with resource augmentation in the presence of
precedences; we present an algorithm, which either proves that input instance is has no feasible solution,
or outputs a (ψ, γ)-approximate solution where ψ = O( log N

log log N ) and γ = 1 + o(1) with high probability.
(Recall that N here denotes the input size.)

Let T =
∑

u pu. The values rv and lv could trivially be 1 and ∞, respectively; if lv > T , we reset lv
without loss of generality to T . Let � denote the immediate-predecessor relation, i.e., if u � v, then they
both belong to the same chain and u is an immediate predecessor of v in this chain. Note that if v is the
first job in its chain, then it has no predecessor. Let S(v) denote the set of machines on which v can be
processed: i.e., the set {i : pi,v = pv}. In the time-indexed LP formulation below, we consider the LP
relaxation of the integer program in which the variables have the following interpretation. For each job v
and time t, rv ≤ t ≤ lv, xv,i,t is the indicator for job v being started on machine i at time t, zv,t is the
indicator for job v being started at time t, and Cv is the completion time of v. (Henceforth, any variable
xv,i,t or zv,t where t is not in the range [rv, lv ], is taken to be zero.) The objective is min

∑
v wv(Cv − rv),

subject to:

∀v,
∑

i∈S(v)

∑

t∈[rv ,...,lv]

xv,i,t = 1 (12)

∀ i ∈ [1, . . . m] ∀t ∈ [1, . . . T ],
∑
v

∑

max{rv,t−pv+1}≤t′≤t

xv,i,t′ ≤ 1 (13)

∀v ∀t ∈ [rv, . . . , lv ], zv,t =
∑

i∈[1,...m]

xv,i,t (14)

∀u � v ∀t ∈ [rv, . . . , pu], zv,t = 0 (15)
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∀u � v ∀t ∈ [pu + 1, . . . T ],
∑

t′∈[1,...,t]

zv,t′ ≤
∑

t′∈[1,...,t−pu]

zu,t′ (16)

∀v, Cv =
∑

t∈[1,...T ]

(t + pv − 1) · zv,t (17)

∀v ∀i ∈ S(v) ∀t ∈ [rv, . . . , lv], xv,i,t ≥ 0

The constraints (12) ensure that all jobs are processed completely, and (13) ensure that at most one
job is (fractionally) assigned to any machine at any time. Constraints (15) and (16) are the precedence
constraints and (17) defines the completion time Cv for job v.

Our algorithm proceeds as follows. We first solve the above LP optimally; if there is no feasible solution
(e.g., if the deadlines lv are too restrictive), we announce this and stop. Otherwise, let OPT be the optimal
value of the LP and let x∗, z∗ and C∗ be the vectors denoting the optimal solution-values. We define a
randomized rounding procedure for each chain such that the following three properties hold:

(A1) Let Zv,t be the indicator random variable which denotes if v is started at time t in the rounded
solution. Let Xv,i,t be the indicator random variable which denotes if v is started at time t on machine i
in the rounded solution. Then E[Zv,t] = z∗v,t and E[Xv,i,t] = x∗

v,i,t.
(A2) All precedence constraints are satisfied in the rounded solution with probability one.
(A3) Jobs in different chains are rounded independently.

Our rounding procedure to choose the Zv,t is as follows. For each chain Γ, we choose a value R(Γ) ∈ [0, 1]
uniformly and independently at random. For each job v belonging to chain Γ,

Zv,t′ = 1 iff
t′−1∑
t=1

z∗v,t < R(Γ) ≤
t′∑

t=1

z∗v,t. (18)

Bertsimas et al. [1] show other applications of such rounding techniques. After the Zv,t values have been
determined, we do the machine assignment as follows: if Zv,t = 1, then job v is started on exactly one
machine at time t, with the probability for machine i being (x∗

v,i,t/z
∗
v,t). A moment’s reflection shows that:

• property (A1) holds because the condition on R(Γ) in (18) happens with probability z∗v,t′ ;

• (A2) holds due to the precedence constraints (15) and (16); and

• (A3) is true since the different chains choose the values R(Γ) independently.

In general, this assignment strategy might result in jobs from different chains executing on the same
machine at the same time, and hence in an infeasible schedule. (Jobs from the same chain cannot contend
for the same machine at the same time, since property (A2) holds.) Let Y be the random variable which
denotes the maximum contention of any machine at any time. We obtain a feasible solution by resource
augmentation: deploying Y copies of each machine.

An application of the Chernoff-type bound from Fact 2 yields the following bound on Y , which we state
in general terms without assuming that all the pv are bounded by a polynomial of N :

Lemma 13 Let pmax
.= maxv pv, and define M = max{N, pmax}. Let E denote the event that Y ≤

(α log M/ log log M), where α > 0 is a suitably large absolute constant. Event E occurs after the randomized
machine assignment with high probability: this probability can be made at least 1 − 1/Mβ for any desired
constant β > 0, by letting the constant α be suitably large.
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Proof Let Li,t denote the contention on machine i at time-step t in the infeasible schedule. The number
of such random variables Li,t is at most m · T ≤ mn · pmax, which is bounded by a fixed polynomial of
M . So, it suffices to fix (i, t) arbitrarily, and to show that for any desired constant β′ > 0, a large enough
choice of the constant α ensures that

Pr[Li,t > α log M/ log log M ] ≤ M−β′
; (19)

a union bound over all (i, t) will then complete the proof.

Let us now prove (19). For each chain Γ, note that the total load imposed by Γ on machine i at time
t in the infeasible schedule, is given by

Ui,t(Γ) .=
∑
v∈Γ

∑

max{rv,t−pv+1}≤t′≤t

Xv,i,t′ .

So, Li,t =
∑

Γ Ui,t(Γ). We note some facts:

• By (A1) and by (13), E[Li,t] ≤ 1;

• by (A2), each Ui,t(Γ) lies in {0, 1}; and

• by (A3), the random variables Ui,t(Γ) are independent of each other.

Since Fact 2 directly applies to a sum of independent binary random variables, we get, by setting∑
i qi = 1 in Fact 2, that for any δ > 0,

Pr[Li,t ≥ 1 + δ] ≤ (e/(1 + δ))1+δ .

A simple calculation now shows that (19) is satisfied by choosing 1 + δ = α log M/ log log M for a large
enough constant α.

Finally, we note that we construct a schedule only if the event E occurs. Otherwise, we can repeat
the randomized machine assignment until event E occurs and resource-augment the resultant infeasible
schedule. Since pmax ≤ poly(N) by assumption, the event E implies that Y = O(log N/ log log N). Note
that for any job v, its completion time Cv equals

∑
t(t + pv − 1) · Zv,t; so, E[Cv] equals the fractional

completion time C∗
v , due to (A1) and the linearity of expectation. Thus, the expected value of the flow

time Fv of v, also equals its fractional value F ∗
v = C∗

v − rv. Now, by Lemma 13, even conditional on the
event E ,

E[Fv | E ] ≤ E[Fv]
Pr[E ]

=
F ∗

v

Pr[E ]
= (1 + o(1)) · F ∗

v ,

since Pr[E ] = 1− o(1). So, even conditional on E (which happens with high probability), the expected cost
of our solution is at most (1 + o(1)) · OPT .

Integrality gap for the instance of Section 2.3.1. We now see that the relative of the above time-
indexed formulation performs quite poorly for general DAGs, when applied to the GDSS problem (where
we aim to minimize the makespan). Specifically, consider GDSS instances with all processing times being
unity, as in Section 2.3.1. We first “guess” an upper bound T ′ for the makespan, as in Section 2.1. We
write an LP such as the time-indexed one above, with the following modifications: (i) all the time variables
t take values in {1, 2, . . . , T ′}; (ii) all the values rv and lv are trivial – i.e., rv ≡ 1 and lv ≡ T ′, and (iii) the
constraints (15) and (16) are included for all pairs of nodes (u, v) for which u is constrained to precede v. As
mentioned in Section 2.3.1, the optimal (integral) solution for the instance therein has makespan n = m2,
but here is a fractional solution to this time-indexed formulation which makes T ′ = 2m−1 feasible: if node
v at level Vj has been pre-assigned to machine i, then z∗v,t = x∗

v,i,t = 1/m for t = j, j + 1, . . . , j + m − 1
(and all other z∗v,t, x

∗
v,i,t values are zero). Thus, even this time-indexed formulation has an integrality gap

of Ω(
√

n) for general DAGs.

16



5 Open Questions

The flow-time objective appears difficult in general, and merits further study. As one concrete problem,
it would be interesting to know if we can get a “(poly)logarithmic resource augmentation” result for, say,
job shop scheduling, without the assumption that the processing times are polynomially-bounded.

Can one improve our polylogarithmic approximations to constant, say? Finally, there is of course the
problem of dag-shop scheduling with general DAGs. Semidefinite programming has found use in related
contexts in scheduling; see, e.g., [24]. Can semidefinite programming be a useful approach in our contexts
also?

Acknowledgments. We are thankful to Chandra Chekuri, David Shmoys, and the referees for their
valuable comments.
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[14] J. K. Lenstra, D. B. Shmoys and É. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming, Vol. 46, 259-271, 1990.

[15] F.T. Leighton, B. Maggs and S. Rao. Packet routing and jobshop scheduling in O(congestion +
dilation) Steps, Combinatorica, Vol. 14, 167-186, 1994.

[16] F. T. Leighton, B. Maggs, and A. Richa, Fast algorithms for finding O(congestion + dilation)
packet routing schedules. Combinatorica, Vol. 19, 375-401, 1999.

[17] J. H. Lin and J. S. Vitter. ε-approximations with minimum packing constraint violation. In Pro-
ceedings of the ACM Symposium on Theory of Computing, 1992, pp. 771–782.

[18] N. Linial, A. Magen, and M.E. Saks. Trees and Euclidean Metrics. In Proceedings of the ACM
Symposium on Theory of Computing, 169-175, 1998.

[19] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the
Chernoff-Hoeffding bounds, SIAM Journal on Computing, Vol. 26, 350-368, 1997.

[20] M. Queyranne and M. Sviridenko. Approximation algorithms for shop scheduling problems with
minsum objective, Journal of Scheduling, Vol. 5, 287–305, 2002.

[21] A. Schulz and M. Skutella. The power of α-points in preemptive single machine scheduling. Journal
of Scheduling 5(2): 121 - 133, 2002.

[22] P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for machine
scheduling: Ten open problems. Journal of Scheduling 2:203-213, 1999.

[23] D.B. Shmoys, C. Stein and J. Wein. Improved approximation algorithms for shop scheduling prob-
lems, SIAM Journal on Computing, Vol. 23, 617-632, 1994.

[24] M. Skutella. Convex quadratic and semidefinite relaxations in scheduling. Journal of the ACM,
46(2):206–242, 2001.

18


