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Abstract: We develop a rounding method based on random walks in polytopes, which leads to im-
proved approximation algorithms and integrality gaps for several assignment problems that arise in
resource allocation and scheduling. In particular, it generalizes the work of Shmoys & Tardos on the
generalized assignment problem in two different directions, where the machines have hard capacities,
and where some jobs can be dropped. We also outline possible applications and connections of this
methodology to discrepancy theory and iterated rounding.
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1 Introduction
The “relax-and-round” paradigm is a well-

known approach in combinatorial optimization.
Given an instance of an optimization problem, we
enlarge the set of feasible solutions I to some set
I ′ ⊃ I – often the linear-programming (LP) re-
laxation of the problem; we then map an (effi-
ciently computed, optimal) solution x∗ ∈ I ′ to
some “nearby” x ∈ I and prove that x is near-
optimal in I . This second “rounding” step is of-
ten a crucial ingredient, and many general tech-
niques have been developed for it. In this work, we
present a new rounding methodology which leads
to several improved approximation algorithms in
scheduling, and which, as we explain, appears to
have connections and applications to other tech-
niques and problems, respectively.

We next present background on (randomized)
rounding and a fundamental scheduling problem,
before describing our contribution.

Our work generalizes various dependent ran-
domized rounding techniques that have been de-
veloped over the past decade or so. Recall that
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in randomized rounding, we use randomization to
map x∗ = (x∗1, x

∗
2, . . . , x

∗
n) back to some x =

(x1, x2, . . . , xn) [39]. Typically, we choose a
value α that is problem-specific, and, indepen-
dently for each i, define xi to be 1 with proba-
bility αx∗i , and to be 0 with the complementary
probability of 1 − αx∗i . Independence can, how-
ever, lead to noticeable deviations from the mean
for random variables that are required to be very
close to (or even be equal to) their mean. A fruit-
ful idea developed in [27, 32, 45] is to carefully in-
troduce dependencies into the rounding process: in
particular, some sums of random variables are held
fixed with probability one, while still retaining ran-
domness in the individual variables and guaran-
teeing certain types of negative-correlation prop-
erties among them. See [1] for a related determin-
istic approach that precedes these works. These
dependent-rounding approaches lead to numerous
improved approximation algorithms in scheduling
and packet-routing [1, 27, 32, 45].

We now introduce a fundamental scheduling
model, which has spurred many advances and ap-
plications in combinatorial optimization, including
linear-, quadratic- & convex-programming relax-
ations and new rounding approaches [6, 8, 10, 15,
21, 29, 32, 34, 41, 43]. This model, scheduling
with unrelated parallel machines (UPM) – and its
relatives – play a key role in this work. Herein, we
are given a set J of n jobs, a set M of m machines,
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and non-negative values pi,j (i ∈ M, j ∈ J):
each job j has to be assigned to some machine,
and assigning it to machine i will impose a pro-
cessing time of pi,j on machine i. (The word “un-
related” arises from the fact that there may be no
pattern among the given numbers pi,j .) Variants
such as the type of objective function(s) to be op-
timized in such an assignment, whether there is an
additional “cost-function”, whether a few jobs can
be dropped, and situations where there are release
dates for, and precedence constraints among, the
jobs, lead to a rich spectrum of problems and tech-
niques. We now briefly discuss two such highly-
impactful results [34, 41]. The primary UPM ob-
jective in these works is to minimize the makespan
– the maximum total load on any machine. It is
shown in [34] that this problem can be approxi-
mated to within a factor of 2; furthermore, even
some natural special cases cannot be approximated
better than 1.5 unless P = NP [34]. Despite
much effort, these bounds have not been improved.
The work of [41] builds on the upper-bound of
[34] to consider the generalized assignment prob-
lem (GAP) where we incur a cost ci,j if we sched-
ule job j on machine i; a simultaneous (2, 1)–
approximation for the (makespan, total cost)-pair
is developed in [41], leading to numerous applica-
tions (see, e.g., [2, 17]).

We generalize the methods of [1, 27, 31, 32, 45],
via a type of random walk toward a vertex of
the underlying polytope that we outline next. We
then present several applications in scheduling and
bipartite matching through problem-specific spe-
cializations of this approach, and discuss further
prospects for this methodology.

The rounding approaches of [1, 27, 31, 45] are
generalized to linear systems as follows in [32].
Suppose we have an n-dimensional constraint sys-
tem Ax ≤ b with the additional constraints that
x ∈ [0, 1]n. This will often be a LP-relaxation,
which we aim to round to some y ∈ {0, 1}n such
that some constraints in “Ay ≤ b” hold with prob-
ability one, while the rest are violated “a little”
(with high probability). Given some x ∈ [0, 1]n,
the rounding approach of [32] is as follows. First,
we assume without loss of generality that x ∈
(0, 1)n: those xj that get rounded to 0 or 1 at
some point, are held fixed from then on. Next,
we “judiciously” drop some of the constraints in

“Ax ≤ b” until the number of constraints becomes
smaller than n, thus making the system linearly-
dependent – leading to the efficient computation
of an r ∈ <n that is in the nullspace of this re-
duced system. We then compute positive scalars α
and β such that x1 := x + αr and x2 := x − βr
both lie in [0, 1]n, and both have at least one com-
ponent lying in {0, 1}; we then update x to a ran-
dom Y as: Y := x1 with probability β/(α + β),
and Y := x2 with the complementary probability
α/(α + β). Thus we have rounded at least one
further component of x, and also have the useful
property that for all j, E[Yj ] = xj . Different ways
of conducting the “judicious” reduction lead to a
variety of improved scheduling algorithms in [32].
The setting of [27, 45] on bipartite b-matchings can
be interpreted in this framework.

We further generalize the above-sketched ap-
proach of [32]. Suppose we are given a poly-
tope P in n dimensions, and a non-vertex point
x belonging to P . An appropriate basic-feasible
solution will of course lead us to a vertex of P ,
but we approach (not necessarily reach) a vertex
of P by a random walk as follows. Let C de-
note the set of constraints defining P which are
satisfied tightly (i.e., with equality) by x. Then,
note that there is a non-empty linear subspace S
of <n such that for any nonzero r ∈ S, we can
travel up to some strictly-positive distance f(r)
along r starting from x, while staying in P and
continuing to satisfy all constraints in C tightly.
Our broad approach to conduct a random move
Y := x + R by choosing an appropriately random
R from S, such that the property “E[Yj ] = xj”
of the previous paragraph still holds. In particular,
let RandMove(x,P) – or simply RandMove(x)
if P is understood – be as follows. Choose a
nonzero r ∈ S arbitrarily, and set Y := x + f(r)r
with probability f(−r)/(f(r)+f(−r)), and Y :=
x − f(−r)r with the complementary probability
of f(r)/(f(r) + f(−r)). Note that if we repeat
RandMove, we obtain a random walk that finally
leads us to a vertex of P; the high-level idea is
to intersperse this walk with the idea of “judi-
ciously dropping some constraints” from the pre-
vious paragraph, as well as combining certain con-
straints together into one. Three major differences
from [32] are: (a) the care given to the tight con-
straints C, (b) the choice of which constraint to
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drop being based on C, and (c) clubbing some con-
straints into one. As discussed next, this recipe ap-
pears fruitful in a number of directions in schedul-
ing, and as a new rounding technique in general.

Capacity constraints on machines, random match-
ings with sharp tail bounds. Handling “hard ca-
pacities” – those that cannot be violated – is gen-
erally tricky in various settings, including facility-
location and other covering problems [19, 26, 36].
Motivated by problems in crew-scheduling [22,
40] and by the fact that servers have a limit on
how many jobs can be assigned to them, the nat-
ural question of scheduling with a hard capacity-
constraint of “at most bi jobs to be scheduled on
each machine i” has been studied in [18, 48, 50–
52]. Most recently, the work of [18] has shown
that this problem can be approximated to within
a factor of 3 in the special case where the ma-
chines are identical (job j has processing time pj

on any machine). In § 2, we use our random-
walk approach to generalize this to the setting of
GAP and obtain the GAP bounds of [41] – i.e.,
approximation ratios of 2 and 1 for the makespan
and cost respectively, while satisfying the capac-
ity constraints: the improvements are in the more-
general scheduling model, adding the cost con-
straint, and in the approximation ratio. We an-
ticipate that such a capacity-sensitive generaliza-
tion of [41] would lead to improved approxima-
tion algorithms for several applications of GAP,
and present one such in Section 5.

Theorem 1 generalizes such capacitated prob-
lems to random bipartite (b-)matchings with target
degree bounds and sharp tail bounds for given lin-
ear functions; see [23] to applications to models
for complex networks. Recall that a (b)-matching
is a subgraph in which every vertex v has degree at
most b(v). Given a fractional (b)-matching x in a
bipartite graph G = (J,M, E) of N vertices and
a collection of k linear functions {fi} of x, many
works have considered the problem of construct-
ing (b-)matchings X such that fi(X) is “close”
to fi(x) simultaneously for each i [3, 27, 28, 38].
The works [28, 38] focus on the case of constant
k; those of [3, 27] consider general k, and require
the usual “discrepancy” term of Ω(

√
fi(x) log N)

in |fi(X) − fi(x)| for most/all i; in a few cases,
o(N) vertices will have to remain unmatched also.
In contrast, Theorem 1 shows that if there is one

structured objective function fi with bounded co-
efficients associated with each i ∈ M , then in fact
all the |fi(X)−fi(x)| can be bounded independent
of N . This appears to be the first such result here,
and helps with equitable max-min fair allocations
as discussed below.

Scheduling with outliers: makespan and fairness.
Note that the (2, 1) bicriteria approximation that
we obtain for GAP above, generalizes the results
of [41]. We now present such a generalization
in another direction: that of “outliers” in schedul-
ing [29]. For instance, suppose in the “processing
times pi,j and costs ci,j” setting of GAP, we also
have a profit πj for choosing to schedule each job
j. Given a “hard” target profit Π, target makespan
T and total cost C, the LP-rounding method of
[29] either proves that these targets are not simul-
taneously achievable, or constructs a schedule with
values (Π, 3T, C(1 + ε)) for any constant ε > 0.
Using our rounding approach, we improve this to
(Π, (2 + ε)T, C(1 + ε)) in § 3. (The factors of ε in
the cost are required due to the hardness of knap-
sack [29].) Also, fairness is a fundamental issue
in dealing with outliers: e.g., in repeated runs of
such algorithms, we may not desire long starvation
of individual job(s) in sacrifice to a global objec-
tive function. Theorem 7 accommodates fairness
in the form of scheduling-probabilities for the jobs
that can be part of the input.

Max-Min Fair Allocation. This problem, also
known as the Santa Claus problem, is the max-
min version of UPM, where we aim to maximize
the minimum “load” (viewed as utility) on the ma-
chines; it has received a good deal of attention re-
cently [4, 5, 8, 10, 15, 24]. We are able to employ
dependent randomized rounding to near-optimally
determine the integrality gap of a well-studied LP
relaxation. Also, Theorem 1 lets us generalize a
result of [14] on max-min fairness to the setting of
equitable partitioning of the jobs; see § 4.

Directions for the future: some potential con-
nections and applications. Distributions on struc-
tured matchings in bipartite graphs is a topic that
models many scenarios in discrete optimization,
and we view our work as a useful contribution
to it. We explore further applications and con-
nections in § 6. A general question involving
“rounding well” is the lattice approximation prob-
lem [39]: given A ∈ {0, 1}m×n and p ∈ [0, 1]n,
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we want a q ∈ {0, 1}n such that ‖A · (q − p)‖∞
is “small”; the linear discrepancy of A is defined
to be lindisc(A) = maxp∈[0,1]n minq∈{0,1}n ‖A ·
(q − p)‖∞. The field of combinatorial discrep-
ancy theory [13] has developed several classical
results that bound lindisc(A) for various matrix
families A; column-sparse matrices have received
much attention in this regard. Section 6 discusses
a concrete approach to use our method for the
famous Beck-Fiala conjecture on the discrepancy
of column-sparse matrices [12], in the setting of
random matrices. § 6 also suggests that there
may be deeper connections to iterated rounding,
a fruitful approach in approximation algorithms
[25, 30, 33, 42, 49]. We view our approach as
having broader connections/applications (e.g., to
open problems including capacitated facility loca-
tion [36]), and are studying these directions.

2 Random Matchings with Linear
Constraints, and GAP with Capac-
ity Constraints

We develop an efficient scheme to generate
random subgraphs of bipartite graphs that satisfy
hard degree-constraints and near-optimally satisfy
a collection of linear constraints:

THEOREM 1 Let G = (J,M, E) be a bipartite
graph with “jobs” J and “machines” M . Let F
be the collection of edge-indexed vectors y (with
yi,j denoting ye where e = (i, j) ∈ E). Suppose
we are given: (i) an integer requirement rj for each
j ∈ J and an integer capacity bi for each i ∈ M ;
(ii) for each i ∈ M , a linear objective function
fi : F → < given by fi(y) =

∑
j: (i,j)∈E pi,jyi,j

such that 0 ≤ pi,j ≤ `i for each j, and (iii) a vec-
tor x ∈ F with xe ∈ [0, 1] for each e. Then, we
can efficiently construct a random subgraph of G
given by a binary vector X ∈ F , such that: (a)
with probability one, each j ∈ J has degree at
least rj , each i ∈ M has degree at most bi, and
|fi(X) − fi(x)| < `i ∀i; and (b) for all e ∈ E,
E
[
Xe

]
= xe.

We will now prove an important special case of
Theorem 1: GAP with individual capacity con-
straints on each machine. This special case cap-
tures much of the essence of Theorem 1; the full
proof of Theorem 1 is deferred to the final ver-
sion of this work. The capacity constraint specifies

the maximum number of jobs that can be sched-
uled on any machine, and is a hard constraint.
Formally the problem is as follows, where xi,j

is the indicator variable for job j being sched-
uled on machine i. Given m machines and n
jobs, where job j requires a processing time of
pi,j in machine i and incurs a cost of ci,j if as-
signed to i, the goal is to minimize the makespan
T = maxi

∑
j xi,jpi,j , subject to the constraint

that the total cost
∑

i,j xi,jci,j is at most C and
for each machine i,

∑
j xi,j ≤ bi. C is the given

upper bound on total cost and bi is the capacity of
machine i, that must be obeyed.

Our main contribution here is an efficient algo-
rithm Sched-Cap that has the following guarantee,
generalizing the GAP bounds of [41]:

THEOREM 2 There is an efficient algorithm
Sched-Cap that returns a schedule maintaining all
the capacity constraints, of cost at most C and
makespan at most 2T , where T is the optimal
makespan with cost C that satisfies the capacity
constraints.

We guess the optimum makespan T by binary
search as in [34]. If pi,j > T , xi,j is set to 0. The
solution to the following integer program gives the
optimum schedule:

∑

i,j

ci,jxi,j ≤ C (Cost)

∑

i,j

xi,j = 1 ∀j (Assign)

∑

j

pi,jxi,j ≤ T ∀i (Load)

∑

j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j
xi,j = 0 if pi,j > T

We relax the constraint “xi,j ∈ {0, 1} ∀(i, j)”
to “xi,j ∈ [0, 1] ∀(i, j)” to obtain the LP relax-
ation LP-Cap. We solve the LP to obtain the op-
timum LP solution x∗; we next show how Sched-
Cap rounds x∗ to obtain an integral solution within
the approximation guarantee.

Note that x∗i,j ∈ [0, 1] denotes the “fraction” of
job j assigned to machine i. Initialize X = x∗.
The algorithm is composed of several iterations.
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The random value of the assignment-vector X at
the end of iteration h of the overall algorithm is de-
noted by Xh. Each iteration h conducts a random-
ized update using the RandMove on the polytope
of a linear system constructed from a subset of the
constraints of LP-Cap. Therefore, by induction on
h, we will have for all (i, j, h) that E

[
Xh

i,j

]
= x∗i,j .

Let J and M denote the set of jobs and ma-
chines, respectively. Suppose we are at the begin-
ning of some iteration (h + 1) of the overall algo-
rithm: we are currently looking at the values Xh

i,j .
We will maintain four invariants:
(I1) Once a variable xi,j gets assigned to 0 or 1, it

is never changed;
(I2) The constraints (Assign) always hold; and
(I3) Once a constraint in (Capacity) becomes

tight, it remains tight.
(IV) Once a constraint is dropped in some itera-

tion, it is never reinstated.
Iteration (h + 1) of Sched-Cap consists of three
main steps:
1. Since we aim to maintain (I1), let us remove
all Xh

i,j ∈ {0, 1}; i.e., we project Xh to those co-
ordinates (i, j) for which Xh

i,j ∈ (0, 1), to obtain
the current vector Y of “floating” (to-be-rounded)
variables; let S ≡ (AhY = uh) denote the current
linear system that represents LP-Cap. (Ah is some
matrix and uh is a vector; we avoid using “Sh” to
simplify notation.) In particular, the “capacity” of
machine i in S is its residual capacity b′i, i.e., bi mi-
nus the number of jobs that have been permanently
assigned to i thus far.
2. Let Y ∈ <v for some v; note that Y ∈ (0, 1)v .
Let Mk denote the set of all machines i for which
exactly k of the values Yi,j are positive. We will
now drop some of the constraints in S:
(D1) for each i ∈ M1, we drop its load and capac-

ity constraints from S;
(D2) for each i ∈ (M2 ∪ M3) for which both its

load and capacity constraints are tight in S ,
we drop its load constraint from S.

3. Let P denote the polytope defined by this re-
duced system of constraints. A key claim that is
proven in Lemma 3 below is that Y is not a vertex
of P . We now invoke RandMove(Y,P); this is
allowable if Y is indeed not a vertex of P .
The above three steps complete iteration (h + 1).
It is not hard to verify that the invariants (I1)-
(I4) hold true (though the fact that we drop the

all-important capacity constraint for machines i ∈
M1 may look bothersome, a moment’s reflection
shows that such a machine cannot have a tight
capacity-constraint since its sole relevant job j has
value Yi,j ∈ (0, 1)). Since we make at least one
further constraint tight via RandMove in each it-
eration, invariant (I4) shows that we terminate, and
that the number of iterations is at most the ini-
tial number of constraints. Let us next present
Lemma 3, a key lemma:

LEMMA 3 In no iteration is Y a vertex of the cur-
rent polytope P .

Proof. Suppose that in a particular iteration, Y
is a vertex of P . Fix the notation v, Mk etc. w.r.t.
this iteration; let mk = |Mk|, and let n′ denote
the remaining number of jobs that are yet to be as-
signed permanently to a machine. Let us lower-
and upper-bound the number of variables v. On
the one hand, we have v =

∑
k≥1 k ·mk, by def-

inition of the sets Mk; since each remaining job j
contributes at least two variables (co-ordinates for
Y ), we also have v ≥ 2n′. Thus we get

v ≥ n′ +
∑

k≥1

(k/2) ·mk. (1)

On the other hand, since Y has been assumed to
be a vertex of P , the number t of constraints in
P that are satisfied tightly by Y , must be at least
v. How large can t be? Each current job con-
tributes one (Assign) constraint to t; by our “drop-
ping constraints” steps (D1) and (D2) above, the
number of tight constraints (“load” and/or “ca-
pacity”) contributed by the machines is at most
m2 + m3 +

∑
k≥4 2mk. Thus we have

v ≤ t ≤ n′ + m2 + m3 +
∑

k≥4

2mk. (2)

Comparison of (1) and (2) and a moment’s re-
flection shows that such a situation is possible only
if: (i) m1 = m3 = 0 and m5 = m6 = · · · = 0; (ii)
the capacity constraints are tight for all machines
in M2∪M4 – i.e., for all machines; and (iii) t = v.
However, in such a situation, the t constraints in P
constitute the tight assignment constraints for the
jobs and the tight capacity constraints for the ma-
chines, and are hence linearly dependent (since the
total assignment “emanating from” the jobs must
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equal the total assignment “arriving into” the ma-
chines). Thus we reach a contradiction, and hence
Y is not a vertex of P . 2

We next show that the final makespan is at most
2T with probability one:

LEMMA 4 Let X denote the final rounded vec-
tor. Algorithm Sched-Cap returns a schedule,
where with probability one: (i) all capacity-
constraints on the machines are satisfied, and
(ii) for all i,

∑
j∈J Xi.jpi,j <

∑
j x∗i,jpi,j +

maxj∈J: x∗i,j∈(0,1)pi,j .

Proof. Part (i) mostly follows from the fact that
we never drop any capacity constraint; the only
care to be taken is for machines i that end up in M1

and hence have their capacity-constraint dropped.
However, as argued soon after the description of
the three steps of an iteration, note that such a ma-
chine cannot have a tight capacity-constraint when
such a constraint was dropped; hence, even if the
remaining job j got assigned finally to i, its capac-
ity constraint cannot be violated.

Let us now prove (ii). Fix a machine i. If at all
its load-constraint was dropped, it must be when
i ended up in M1,M2 or M3. The case of M1 is
argued as in the previous paragraph. So suppose
i ∈ M` for some ` ∈ {2, 3} when its load con-
straint got dropped; we know from (I3) and (D2)
that its capacity-constraint must be tight at some
integral value u at that point, and that this capacity-
constraint was preserved until the end. Let us first
consider the case ` = 2; since Y ∈ (0, 1)v , the
only possibility is that u = 1. Thus, the two jobs
fractionally assigned on i at that point have pro-
cessing times (p1, p2) and fractional assignments
(y1, y2) on i, where 0 ≤ p1, p2 ≤ T , and 0 <
y1, y2 < 1 with y1 + y2 = c = 1. We know from
(I3) that at the end, the assignment vector X will
have exactly one of X1 and X2 being one (with
the other being 0). Simple algebra now shows that
p1X1 + p2X2 < p1y1 + p2y2 + max{p1, p2} as
required. Next suppose ` = 3; we must have c = 1
or 2 here. Let us just consider the case c = 2;
the case of c = 1 is similar. Here again, sim-
ple algebra yields that if 0 ≤ p1, p2, p3 ≤ T and
0 < y1, y2, y3 < 1 with y1 + y2 + y3 = c = 2,
then for any binary vector (X1, X2, X3) of Ham-
ming weight c = 2, p1X1 + p2X2 + p3X3 <
p1y1 + p2y2 + p3y3 + max{p1, p2, p3}. 2

Finally we have the following lemma.

LEMMA 5 Algorithm Sched-Cap can be deran-
domized to create a schedule of cost at most C.

Proof. Let Xh
i,j denote the value of xi,j at iter-

ation h. We know for all i, j, h, E[Xh
i,j ] = x∗i,j ,

where x∗i,j is solution of LP-Cap. Therefore, at
the end, we have that the total expected cost in-
curred is C. The procedure can be derandomized
directly by the method of conditional expectation,
giving an 1-approximation to cost. 2

Lemmas 4 and 5 yield Theorem 2.

3 Scheduling with Outliers
In this section, we consider GAP with outliers

and with a hard profit constraint [29]. Formally,
the problem is as follows, where xi,j is the indica-
tor variable for job j to be scheduled on machine
i. Given m machines and n jobs, where job j re-
quires processing time of pi,j in machine i, incurs
a cost of ci,j if assigned to i and provides a profit of
πj if scheduled, the goal is to minimize the make-
span, T = maxi

∑
j xi,jpi,j , subject to the con-

straint that the total cost
∑

i,j xi,jci,j is at most C
and total profit

∑
j πj

∑
i xi,j is at least Π.

Our main contribution here is the following:

THEOREM 6 For any constant ε > 0, there is an
efficient algorithm Sched-Outlier that returns a
schedule of profit at least Π, cost at most C(1 + ε)
and makespan at most (2 + ε)T , where T is the
optimal makespan with cost C and profit Π.

Note that this is an improvement over the work
of [29], that constructs a schedule with makespan
3T with profit Π and cost C(1+ε). In addition, our
approach also accommodates fairness, a basic re-
quirement in dealing with outliers, especially when
problems have to be run repeatedly. We formu-
late fairness via stochastic programs that specify
for each job j, a lower-bound rj on the probability
that it gets scheduled. We adapt our approach to
honor such requirements:

THEOREM 7 There is an efficient randomized al-
gorithm that returns a schedule of profit at least Π,
expected cost at most 2C and makespan at most
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3T and guarantees that for each job j, it is sched-
uled with probability rj , where T is the optimal
expected makespan with expected cost C and ex-
pected profit Π. If the fairness guarantee on any
one job can be relaxed, then for every fixed ε > 0,
there is an efficient algorithm to construct a sched-
ule that has profit at least Π, expected cost at most
C(1 + 1/ε) and makespan at most (2 + ε)T .

We defer the proof of Theorem 7 to the full
version, and focus on Theorem 6. Guess the op-
timum makespan T by binary search as in [34].
If pi,j > T , xi,j is set to 0. We guess all as-
signments (i, j) where ci,j > ε′C, with ε′ = ε2.
Any valid schedule can schedule at most 1/ε′ pairs
with assignment costs higher than ε′C; since ε′

is a constant, this guessing can be done in poly-
nomial time. For all (i, j) with ci,j > ε′C, let
Gi,j ∈ {0, 1} be a correct guessed assignment.
The solution to the following integer program then
gives an optimal solution:

∑

i,j

ci,jxi,j ≤ C (Cost)

∑

i

xi,j = yj ∀j (Assign)

∑

j

pi,jxi,j ≤ T ∀i (Load)

∑

j

πjyj ≥ Π (Profit)

xi,j ∈ {0, 1} ∀i, j; yj ∈ {0, 1} ∀j
xi,j = 0 if pi,j > T

xi,j = Gi,j ∀(i, j) such that ci,j > ε′C

We relax the constraint “xi,j ∈ {0, 1} and yj ∈
{0, 1}” to “xi,j ∈ [0, 1] and yj ∈ [0, 1]” to ob-
tain the LP relaxation LP-Out. We solve the LP
to obtain an optimal LP solution x∗, y∗; we next
show how Sched-Outlier rounds x∗, y∗ to obtain
the claimed approximation.

Note that x∗i,j ∈ [0, 1] denotes the fraction of job
j assigned to machine i in x∗. Initially,

∑
i x∗i,j =

y∗j . Initialize X = x∗. The algorithm is com-
posed of several iterations; the random values at
the end of iteration h of the overall algorithm are
denoted by Xh. (Since yj is given by the equal-
ity

∑
i xi,j , Xh is effectively the set of variables.)

Each iteration h (except perhaps the last one) con-

ducts a randomized update using RandMove on
a suitable polytope constructed from a subset of
the constraints of LP-Out. Therefore, for all h
except perhaps the last, we have E

[
Xh

i,j

]
= x∗i,j .

A variable Xh
i,j is said to be floating if it lies in

(0, 1), and a job is floating if it is not yet finally
assigned. The subgraph of (J,M, E) composed of
the floating edges (i, j), naturally suggests the fol-
lowing notation at any point of time: machines of
“degree” k in an iteration are those with exactly k
floating jobs assigned fractionally, and jobs of “de-
gree” k are those assigned fractionally to exactly k
machines in iteration h. Note that since we allow
yj < 1, there can exist singleton (i.e., degree-1)
jobs which are floating.

Suppose we are at the beginning of some itera-
tion (h+1) of the overall algorithm; so we are cur-
rently looking at the values Xh

i,j . We will maintain
the following invariants:
(I1’) Once a variable xi,j gets assigned to 0 or 1,

it is never changed;
(I2’) If j is not a singleton, then

∑
i xi,j remains

at its initial value;
(I3’) The constraint (Profit) always holds;
(I4’) Once a constraint is dropped, it is never re-

instated.
Algorithm Sched-Outlier starts by initializing

with LP-Out. Iteration (h + 1) consists of four
major steps.

1. Since we aim to maintain (I1’), we remove all
Xh

i,j ∈ {0, 1}; i.e., we project Xh to those co-
ordinates (i, j) for which Xh

i,j ∈ (0, 1), to ob-
tain the current vector Z of “floating” variables; let
S ≡ (AhZ = uh) denote the current linear system
that represents LP-Out. (Ah is some matrix and
uh is a vector.)

2. Let Z ∈ <v for some v; note that Z ∈ (0, 1)v .
Let Mk and Nk denote the set of degree-k ma-
chines and degree-k jobs respectively, with mk =
|Mk| and nk = |Nk|. We will now drop/replace
some of the constraints in S:
(D1’) for each i ∈ M1, we drop its load constraint

from S;
(D2’) for each i ∈ N1, we drop its assignment

constraint from S; we include one profit con-
straint,

∑
j∈N1

Zi,jπj =
∑

j∈N1
Xh

i,jπj that
replaces the constraint (Profit). (Note that
at this point, the values Xh

i,j are some con-
stants.)
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Thus, the assignment constraints of the single-
ton jobs are replaced by one profit constraint.

3. If Z is a vertex of S then define fractional
assignment of a machine i by hi =

∑
j∈J Zi,j .

Define a job j to be tight, if
∑

i∈M Zi,j =
1. Drop all assignment constraints of the non-
tight jobs and maintain a single profit constraint,∑

j∈N1∪JN
Zi,jπj =

∑
j∈N1∪JN

Xh
i,jπj , where

JN are the nontight jobs. If Z is not yet a vertex of
the modified S , then while there exists a machine
i′ whose degree d satisfies hi′ ≥ (d− 1− ε), drop
the load constraint on machine i′.

4. Let P denote the polytope defined by this re-
duced system of constraints. If Z is not a vertex
of P , invoke RandMove(Z,P). Else, if there is
a degree-3 machine with 1 singleton job, assign
the singleton job and the cheaper (less processing
time) of the non-singleton jobs to it. If there exist
two singleton jobs, then discard the one with less
profit. Assign remaining of the jobs in a way, so
that each machine gets at most one extra job.

We now prove a key lemma, which shows when
in step 4, Z can possibly be a vertex of the poly-
tope under consideration. Recall that in the bipar-
tite graph G = (J,M, E), we have in iteration
(h + 1) that (i, j) ∈ E iff Xh

i,j ∈ (0, 1). Any
job or machine having degree 0 is not part of G.

LEMMA 8 Let m denote the number of machine-
nodes in G. If m ≥ 1

ε , then Z is not a vertex of the
current polytope.

Proof. Let us consider the different possible
configurations of G, when Z becomes a vertex of
the polytope P at step 3. There are several cases
to consider depending on the number of singleton
floating jobs in G in that iteration.

Case 1: There is no singleton job: We have
n1 = 0. Then, the number of constraints in S is
EQ =

∑
k≥2 mk +

∑
k≥2 nk. Also the number of

floating variables is v =
∑

k≥2 knk. Alternatively,
v =

∑
k≥1 kmk. Therefore, v =

∑
k≥2

k
2 (mk +

nk) + m1
2 . Z being a vertex of P , v ≤ EQ.

Thus, we must have, nk,mk = 0, ∀k ≥ 3 and
m1 = 0. Hence every floating machine has exactly
two floating jobs assigned to it and every floating
job is assigned exactly to two floating machines
(Config-1 of Figure 1).

Case 2: There are at least 3 singleton jobs: We
have n1 ≥ 3. Then the number of linear con-
straints is EQ =

∑
k≥2 mk +

∑
k≥2 nk + 1. The

last “1” comes from considering one profit con-
straint for the singleton jobs. The number of vari-
ables, v = n1

2 +
∑

k≥2
k
2 (mk + nk) + m1

2 ≥
3
2 +

∑
k≥2

k
2 (mk +nk)+ m1

2 . Hence the system is
always underdetermined and Z cannot be a vertex
of P .

Case 3: There are exactly 2 singleton jobs: We
have n1 = 2. Following similar counting argu-
ments, we can show that each machine must have
exactly two floating jobs assigned to it and each
job except two is assigned to exactly two machines
fractionally (Config-2 of Figure 1).

Case 4: There is exactly 1 singleton job: We
have n1 = 1. Then EQ =

∑
k≥2 mk+

∑
k≥2 nk+

1 and v ≥ 1
2 + n2 + 3

2n3 + m1
2 + m2 + 3

2m3 +∑
k≥4

k
2 (mk + nk). If Z is a vertex of P , then

v ≤ EQ. There are few possible configurations
that might arise in this case.

(i) Only one job of degree 3 and one job of de-
gree 1. All the other jobs have degree 2 and all the
machines have degree 2. We call this Config-3.

(ii) Only one machine of degree 3 and one job of
degree 1. The rest of the jobs and machines have
degree 2. We call this Config-4.

(iii) Only one machine of degree 1 and one job
of degree 1. The rest of the jobs and machines have
degree 2. We call this Config-5.

These configurations are shown in Fig. 1. Each
configuration can have arbitrary number of disjoint
cycles.

In any configuration, if there is a cycle with all
tight jobs, then there always exists a machine with
total fractional assignment 1 and hence its load
constraint can always be dropped to make the sys-
tem underdetermined. So we assume there is no
such cycle in any configurations. Now suppose
the algorithm reaches Config-1. If there are two
non-tight jobs, then the system becomes underde-
termined. Therefore, there can be at most one non-
tight job and only one cycle (say C) with that non-
tight job. Let C have m machines and thus m jobs.
Therefore,

∑
i,j∈C xi,j ≥ m−1. Thus there exists

a machine, such that the total fractional assignment
of jobs on that machine is ≥ m−1

m = 1 − 1/m. If
m ≥ 1

ε , then there exists a machine with total frac-
tional assignment ≥ (1 − ε). Dropping the load

8



Figure 1: Different configurations of machine-job bipartite graph at Step 3 and 4

constraint on that machine makes the system un-
derdetermined.

If the algorithm reaches Config-2, then all the
jobs must be tight for Z to be a vertex. If there
are m machines, then the number of non-singleton
jobs is m − 1. If xi1,j1 + xi2,j2 ≥ 1, then fol-
lowing similar averaging argument as in Config-
1, we can show the machine with maximum frac-
tional job assignment, must have a total fractional
assignment at least 1. Otherwise, if m ≥ 1

ε , again
the machine with maximum fractional job assign-
ment, must have a total fractional assignment at
least 1 − ε. For Config-3 and 5, if Z is a ver-
tex of P , then all jobs must be tight and using
same argument, there exists a machine with frac-
tional assignment at least (1 − ε) if the algorithm
reaches Config -3 and there exists a machine with
fractional assignment 1, if the algorithm reaches
Config-5.

If the algorithm reaches Config-4, then again all
jobs must be tight. If the degree-3 machine has
fractional assignment at least 2 − ε, then its load
constraint can be dropped to make the system un-
derdetermined. Otherwise, the total assignment to
the degree-2 machines from all the jobs in the cy-
cle is at least m − 2 + ε. Therefore, there exists
at least one degree-2 machine with fractional as-
signment at least m−2+ε

m−1 = 1 − 1−ε
m−1 ≥ 1 − ε, if

m ≥ 1
ε . This completes the proof. 2

We next show that the final profit is at least Π
and the final makespan is at most (2 + ε)T :

LEMMA 9 Let X denote the final rounded vec-
tor. Algorithm Sched-Outlier returns a schedule,
where with probability one, (i) profit is at least Π,
(ii) for all i,

∑
j∈J Xi,jpi,j <

∑
j x∗i,jpi,j + (1 +

ε)maxj∈J: x∗i,j∈{0,1}pi,j .

Proof. (i) This essentially follows from the fact
that whenever assignment constraint on any job
is dropped, its profit constraint is included in the
global profit constraint of the system. At step 4,
except for one case (Config-2), all the jobs are al-
ways assigned, so profit can not decrease in those
cases. A singleton job (say j1) is dropped, only
when G has two singleton jobs j1, j2 fraction-
ally assigned to i1 and i2 respectively, with to-
tal assignment xi1,j1 + xi2,j2 < 1. Otherwise
the system remains underdetermined from Lemma
8. Since the job with higher profit is retained,
πj1xi1,j1 + πj2xi2,j2 ≤ max{πj1 , πj2}.

(ii) From Lemma 8 and (D1’), load constraints
are dropped from machines i ∈ M1 and might
be dropped from machine i ∈ M2 ∪ M3. For
i ∈ M1, only the remaining job j with Xh

i,j >
0, can get fully assigned to it. Hence for i ∈
M1, its total load is bounded by

∑
j x∗i,jpi,j +

maxj∈J:x∗i,j∈{0,1}pi,j . For any machine i ∈ M2 ∪

9



M3, if their degree d (2 or 3) is such that, its frac-
tional assignment is at least d − 1 − ε, then by
simple algebra, it can be shown that for any such
machine i, its total load is at most

∑
j x∗i,jpi,j +

(1 + ε)maxj∈J:x∗i,j∈{0,1}pi,j . For the remaining
machines consider what happens at step 4. Except
when Config-4 is reached, any remaining machine
i gets at most one extra job, and thus its total load is
bounded by

∑
j x∗i,jpi,j + maxj∈J: x∗i,j∈{0,1}pi,j .

When Config-4 is reached at step 4, if the degree-
3 machine has a fractional assignment at most 1,
then for any value of m, there will exist a degree-2
machine whose fractional assignment is 1, giving a
contradiction. Hence, let j1, j2, j3 be the three jobs
assigned fractionally to the degree-3 machine i and
let j3 be the singleton job, and xi,j1 + xi,j2 > 1.
If pi,j1 ≤ pi,j2 , then the degree-3 machine gets
j1, j3. Else the degree-3 machine gets j2, j3. The
degree-3 machine gets 2 jobs, but its fractional as-
signment from j1 and j2 is already at least 1. Since
the job with less processing time among j1 and j2
are assigned to i, its increase in load can be at most∑

j x∗i,jpi,j + maxj∈J: x∗i,j∈{0,1}pi,j . 2

Finally we have the following lemma.

LEMMA 10 Algorithm Sched-Outlier can be de-
randomized to output a schedule of cost at most
C(1 + ε).

Proof. In all iterations h, except the last one,
for all i, j, E[Xh

i,j ] = x∗i,j , where x∗i,j is solu-
tion of LP-Out. Therefore, before the last itera-
tion, we have that the total expected cost incurred
is C. The procedure can be derandomized directly
by the method of conditional expectation, giving
an 1-approximation to cost, just before the last it-
eration. Now at the last iteration, since at most 1

ε
jobs are assigned and each assignment requires at
most ε′C = ε2C in cost, the total increase in cost
is at most εC, giving the required approximation.

2

Lemmas 9 and 10 yield Theorem 6.

4 Max-Min Fair Allocation
We now present our results for max-min fair al-

location [4, 5, 8, 14, 15]. There are m goods and k
persons. Each person i has a non-negative integer
valuation ui,j for good j. The valuation functions

are linear, i.e. ui,C =
∑

j∈C ui,j for any set of C
goods. The goal is to allocate each good to a per-
son such that the “least happy person is as happy
as possible”: i.e., mini ui,C is maximized. Our al-
gorithm is based upon rounding the configuration
LP which is described in Subsection 4.1

THEOREM 11 Given any feasible solution to the
configuration LP, it can be rounded to a feasible
integer solution such that every person gets at least

Θ(
√

k log k
log log k ) fraction of the optimum utility with

high probability in polynomial time.

The approximation factor of O(
√

k log k
log log k )

is an improvement of the previous work of
[5], that achieved an approximation factor of
O(
√

k log3 k); our bound is near-optimal since
the integrality gap of the configuration LP is
Ω(
√

k) [8]. However, note that the recent work
of Chakrabarty, Chuzhoy and Khanna [20] has im-
proved the bound to mε. (Also note that m ≥ k.)
Our main point is to show the applicability of our
types of rounding approaches to this variation of
the problem as well.

In the context of fair allocation, an additional
important criterion can be an equitable partition-
ing of goods: we may impose an upper bound on
the number of items a person might receive. For
example, we may want each person to receive at
most dm

k e goods. Theorem 1 leads to the follow-
ing:

THEOREM 12 Suppose, in max-min allocation,
we are given upper bounds ci on the number of
items that each person i can receive, in addition
to the utility values ui,j . Let T be the optimum
max-min allocation value that satisfies ci for all i.
Then, we can efficiently construct an allocation in
which for each person i the bound ci holds and she
receives a total utility of at least T −maxj ui,j .

This generalizes the result of [14], which yields
the “T − maxj ui,j” value when no bounds such
as the ci are given. To our knowledge, the results
of [4, 5, 8, 15] do not carry over to the setting of
such “fairness bounds” ci.

We now describe the algorithm and the proof
of Theorem 11 in the next subsection. The ma-
jor steps of the algorithm are similar to [5], how-
ever within each step the algorithm uses differ-
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ent rounding techniques; and hence our analysis
is completely different. Rounding techniques are
motivated by variants of the dependent rounding
method.

4.1 Algorithm for Max-Min Fair Allocation
We start by describing bipartite dependent

rounding [27], which is a special case of Rand-
Move that we have discussed so far.

4.1.1 Bipartite Dependent Rounding
Suppose G = (U, V,E) is a bipartite graph with

U and V being vertices in the two partitions and
E being the edges between them. The edges E are
defined by the vector x. If xi,j ∈ (0, 1), i ∈ U, j ∈
V , then (i, j) ∈ E and vice-versa. The dependent
rounding algorithm chooses an even cycle C or a
maximal path P in G, and partitions the edges in C
or P into two matchings M1 and M2. Then, two
positive scalars α and β are defined as follows:

α = min{η > 0 : ((∃(i, j) ∈M1 : xi,j + η = 1)∨
(∃(i, j) ∈M2 : xi,j − η = 0))};

β = min{η > 0 : ((∃(i, j) ∈M1 : xi,j − η = 0)∨
(∃(i, j) ∈M2 : xi,j + η = 1))};

Now with probability β
α+β , set

Yi,j = xi,j + α for all (i, j) ∈M1

and Yi,j = xi,j − α for all (i, j) ∈M2;

with complementary probability of α
α+β , set

Yi,j = xi,j − β for all (i, j) ∈M1

and Yi,j = xi,j + β for all (i, j) ∈M2;

The above rounding scheme satisfies the follow-
ing two properties, which are easy to verify:

∀ i, j, E
[
Yi,j

]
= xi,j (3)

∃ i, j, Yi,j ∈ {0, 1} (4)

If X denotes the final rounded variable, then for
any node v ∈ U

∨
V ,

∑

u∈U
∨

V

Xu,v ∈ {d
∑

u∈U
∨

V

xu,ve, b
∑

u∈U
∨

V

xu,vc}.

(5)

4.1.2 Algorithm
Our algorithm is based upon rounding a con-

figuration linear program similar to [5, 8]. We
guess the optimum solution- value T , using binary
search. There is a variable xi,C for assigning a
valid bundle C to person i. An item j is said to be
small for person i, if ui,j < T

λ , otherwise it is said
to be big. Here λ is the approximation ratio, which
will get fixed later. A configuration is a subset of
items. A configuration C is called valid for person
i, if,
• ui,C ≥ T and all the items are small; or
• C contains only one item j and ui,j ≥ T

λ , that
is, j is a big item for person i.

Let C(i, T ) denote the set of all valid configura-
tions corresponding to person i with respect to T .
The configuration LP relaxation of the problem is
as follows:

∀j :
∑

C3j

∑

i

xi,C ≤ 1 (6)

∀i :
∑

C∈C(i,T )

xi,C = 1

∀i, C : xi,C ≥ 0

Using an argument similar to [8], one can show
that if the above LP is feasible, then it is possible
to find a fractional allocation that provides a bun-
dle with value at least (1− ε)T for each person in
polynomial time.

We define a weighted bipartite graph G, with the
vertex set, A

⋃
B corresponding to the persons and

the items respectively. There is an edge between a
vertex corresponding to person i ∈ A and item j ∈
B, if a configuration C containing j is fractionally
assigned to i. Define

wi,j =
∑

C3j

xi,C ,

i.e., wi,j is the fraction of item j that is allocated
to person i by the fractional solution of the LP. We
know an item j is big for person i, if ui,j ≥ T

λ . In
this case, the edge (i, j) is called a matching edge.
Otherwise it is called a flow edge.

Let M and F represent the set of matching
and flow edges respectively. For each vertex v ∈
A

⋃
B, let mv be the total fraction of the matching

edges incident to it. Also define fv = 1−mv . The
main steps of the algorithm are shown in Table 1.
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Main Steps of the Algorithm for Max-Min Fair Allocation
(1) Guess the value of the optimum solution T by doing a binary search. Solve LP (6).
Obtain the set M and mv, fv for each vertex v in G.

(2) Select a random matching from edges in M using the algorithm described in Subsubsection 4.1.3,
such that for every v ∈ A

∨
B the probability that v is saturated by the matching is mv = 1− fv .

(3) Let every person i who is not matched yet selects a bundle C of small goods with probability xi,C

fi

and claims the goods in that bundle, except those already assigned in the previous step.

(4) For each good j claimed by several persons in the previous step, resolve the contention by
following the algorithm described in Subsubsection 4.1.5.

Table 1: High level description of the algorithm for max-min fair allocation

Note that these steps are similar to that in [5],
but the rounding techniques within each step are
different. The rounding techniques are described
next.

4.1.3 Finding a Random Matching
Consider the edges in M . Remove all the edges

(i, j) that have already been rounded to 0 or 1. Ad-
ditionally if an edge is rounded to 1, remove both i
and j (person i is satisfied as ui,j ≥ T

λ ). We know
an edge (i, j) ∈ M implies that ui,j ≥ T

λ . There-
fore, even if different items have different utility,
a person matched to any one item in this stage has
received at least T/λ utility. We initialize for each
(i, j) ∈ M , yi,j = wi,j and modify the yi,j values
probabilistically in rounds using the approach de-
scribed in Subsubsection 4.1.1. If Yi,j denotes the
final rounded value, then ∀(i, j) by Property (3),
E
[
Yi,j

]
= wi,j . This gives the following corollary.

COROLLARY 13 The probability that a vertex v ∈
A

⋃
B is saturated in the matching generated by

the algorithm is mv.

Proof. Let the edges e1, e2, ..el ∈ M
are incident on v. Then, Pr

[
v is saturated

]
=

Pr
[∃ei, i ∈ [1, l] s.t v is matched with ei

]
=∑l

i=1 Pr
[
v is matched with ei

]
=

∑l
i=1 wi = mv

2

4.1.4 Allocating small bundles
Consider a person v, who is not saturated in

the matching: how much utility does this person

v get ? From all the bundles which are fraction-
ally assigned to person v, remove any item j, with
mj ≥ 1 − ε1 (ε1 to be fixed later). Since the total
sum of mj can be at most k (k = number of per-
sons), there can be at most k

1−ε1
items in the bun-

dles with mj ≥ 1 − ε1. Therefore the remaining
items in the bundle have value fj ≥ ε1. Since bun-
dles only contain small items, and the total valua-
tion of each bundle (fractionally) is at least T , we
have, after removing the items with mj ≥ 1 − ε1,

the remaining valuation is at least
(
T − ε1k

1−ε1
T
λ

)
.

Define a random variable Yv,j for each remaining
item such that,

Yv,j =

{
w′v,juv,j

T/λ with probability fj

0 otherwise
(7)

Here w′v,j = wv,j

fv
. Since each person v is not

saturated by matching with probability 1 −mv =
fv , each such person v selects bundle C with prob-
ability xv,C/fv . Thus each item j is selected with
probability wv,j/fv = w′v,j .

Define Gv =
∑

j Yv,j . Then T
λ Gv is the total

fractional assignment to each person after step (3)
and after doing further processing as suggested in
the beginning of this subsubsection. We have,

E
[
Gv

]
=

∑

j

w′v,juv,jfj

T/λ

≥ ε1λ(1− ε1k

(1− ε1)λ
) (8)

Now we will show in Lemma 14 that Yv,j’s
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are negatively correlated. Therefore, apply-
ing Chernoff-Hoeffding bound for negatively-
correlated random variables [37], we get

Pr
[
Gv ≤ (1− ε)E

[
Gv

]] ≤ exp(−E[Gv]ε2/3)

for any ε ∈ (0, 1).
Or we have,

Pr
[T

λ
Gv ≤ (1− ε)

∑

j

w′v,juv,jfj

]

≤ exp(−E
[
Gv

]
ε2/3)

Now substitute, ε1 =
√

log k
log log k

1√
k

and λ =

2
√

k
√

log k
log log k . We have,

Pr
[T

λ
Gv ≤ (1− ε)

∑

j

w′v,juv,jfj

]

≤ exp(−E
[
Gv

]
ε2/3)

≤ exp(− log k

2 log log k
ε2/3)

= Θ(
log k

k
)

Therefore in this step, the net fractional utility

assigned to each person is ≥
√

log k
k log log k

T (1−ε)
2 ,

with probability ≥ 1−Θ(log k/k).
Now we prove that Yv,j’s are negatively corre-

lated.

LEMMA 14 The random variables Yv,j , j =
1, 2, .., n as defined in Equation (7) are negatively
correlated.

Proof. Define an indicator random variable

Xj =

{
1 if j is saturated in the matching step
0 otherwise

We will show that ∀b ∈ {0, 1}, for any subset of
jobs S, Pr

[∧
j∈S(Xj = b)

] ≤ ∏
j∈S Pr

[
Xj =

b
]
. This will imply that the Yv,j’s are negatively

correlated.
Fix a subset of items J . Let b = 1 (the proof

for b = 0 is identical). Consider iteration h. Let

Hh
j =

∑
i yh

i,j , where yh
i,j denote the value of yi,j

at the beginning of iteration h. We will show,

∀i E
[∏

j∈J

Hh
j

] ≤ E
[∏

j∈J

H
(h−1)
j

]
(9)

Thus we will have,

Pr
[∧

j∈J

(Xj = 1)
]

= E
[∏

j∈J

H
|E|+1
j

] ≤ E
[∏

j∈J

H1
j

]

=
∏

j∈J

∑

l

yi,j =
∏

j∈J

Pr
[
Xj = 1

]

Let us now prove (9) for a fixed i. In iteration i,
exactly one of the following three cases occur:

Case 1: All the jobs j ∈ J are internal nodes of
the maximal path. (If it is a cycle all the nodes are
internal).

In this case, the value of Hh
j ’s, j ∈ J ,

do not change. Hence, E
[∏

j∈J Hh
j |Case 1

] ≤
E
[∏

j∈J H
(h−1)
j

]
.

Case 2: Exactly one job, say j1 ∈ J is the end
point of the maximal path considered in iteration
h, or has its value modified.

Let B(j1, α, β) denote the event that the job j1
has its value modified in the following probabilis-
tic way:

Hh
j1 =

{
Hh−1

j1
+ α with probability β

α+β

Hh−1
j1

− β with probability α
α+β

Thus,

E
[
Hh

j1 |∀j ∈ J, Hh−1
j = aj ∧B(j1, α, β)

]
= aj1

Since the values of Hj , j 6= j1 remains unchanged
and the above equation holds for any j1, α, β, we
have the desired result.

Case 3: Two jobs, say j1 and j2 are the end
points of the maximal path considered in iteration
i, or have their values modified.

See Event A of Lemma 2.2 of [27]. 2

4.1.5 Contention Resolution
Consider the subgraph of the flow-graph in

which an edge between a person and an item
remains if and only if the item is claimed by
the person in the previous step. We showed
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each person has a net fractional utility of at least
T
2

√
log k

k log log k (1− ε) = Θ( T
√

log k√
k log log k

) in this sub-
graph. The weight on an edge between person v
and item j in this subgraph is w′v,j and the util-
ity of an item j to person v is uv,j . Now we
again do a kind of dependent rounding on this
subgraph, where we additionally consider the util-
ity of the items while modifying the assignment
values on the edges. This is partly motivated by
[46]. We remove all (i, j) that have already been
rounded to 0 or 1. Let F ′ be the current graph
consisting of those w′i,j that lie in (0, 1). Choose
any maximal path P = (v0, v1, .., vs) or a cycle
C = (v0, v1, .., vs = v0). The current w′ value of
an edge et = (vt−1, vt) is denoted by yt, that is
yt = w′t−1,t.

We will next choose the values z1, z2, .., zs ei-
ther deterministically or probabilistically, depend-
ing on whether a cycle or a maximal path is cho-
sen. We will update the w′ value of each edge
et = (vt−1, vt) to yt + zt.

Suppose we have initialized some value for
z1 and that we have chosen the increments
z1, z2, . . . , zt for some t ≥ 1. Then the value
zt+1 corresponding to the edge et+1 = (vt, vt+1)
is chosen as follows:
(PI) vt is an item, then vt+1 = −vt. (Each item is

not assigned more than once.)
(PII) vt is a person. Then choose zt+1 so that the

utility of wt remains unchanged. Set zt+1 =
−uvt,vt−1
uvt,vt+1

The vector z = (z1, z2, ..zs) is completely de-
termined by z1. We denote this by f(z).

Now let µ be the smallest positive value such
that if we get z1 = µ, then all the w′ values (after
incrementing by the vector z as specified above)
stay in [0, 1], and at least one of them becomes 0
or 1. Similarly, let γ be the smallest value such
that if we set z1 = −γ, then this rounding progress
property holds. Now when we are considering, a
maximal path, we choose the vector z as follows:
(RPI) with probability γ

µ+γ , let z = f(µ);
(RPII) with the complementary probability of

µ
µ+γ , let z = f(−γ).

Therefore in this case, if Z = (Z1, Z2, ..Zs) de-
note the random vector z chosen in steps (RPI)
and (RPII), the choice of probabilities in (RPI)
and (RPII) ensures that E[Z1] = 0, and since the

rest are functions of z1 alone, E
[
Zt

]
= 0 for all t.

Now when we are considering a cycle, assume
v0 is a person. The assignment of zi values
ensure all the objects in the cycle are assigned
exactly once and utility of all the persons ex-
cept v0 remains unaffected. Now the change in
the value of zs is −z1

uv2,v1uv4,v3 ...uvs−1,vs−2
uv2,v3uv4,v5 ...uvs−1,vs

. If
uv2,v1uv4,v3 ...uvs−1,vs−2
uv2,v3uv4,v5 ...uvs−1,vs

> 1, we set z1 = −γ, else
we set z1 = µ. Therefore the utility of the person
v0 can only increase.

Let Y i
v denote the utility assigned to person

v (fractional and integral) at the end of iteration
i. The value Y 0

v refers to the initial utilities in
the flow-graph. Property (PII) and determinis-
tic rounding scheme while considering a cycle en-
sures that as long as a person has degree 2 in the
flow-graph Y i

v ≥ Y 0
v with probability 1. In par-

ticular if v never has degree 1, then its final utility
is same as its initial utility in the flow graph. Sup-
pose the degree of person v becomes 1 at some
iteration i and let j be its unique neighbor. Let
β = uv,j and suppose, at the end of the iteration
i, the total already rounded utility on person v and
the value of w′v,j are α ≥ 0 and p ∈ (0, 1) respec-
tively. Note that j, α, β, p are all random variables
and that Y i

v = α + βp; so,

Pr
[
α + βp ≥ Y 0

v

]
= 1

Fix any j, α, β, p such that α + βp ≥ Y 0
v . In-

duction on the iterations show that the final utility
of v is α with probability (1 − p) and α + β with
probability p. Thus the expected utility is α + βp,

which is same as the initial utility of T
2

√
log k

k log log k .

In this process, there are some determinis-
tic rounding steps interleaved with randomized
rounding. We can ignore the deterministic round-
ing steps, since they always increase the utility.
Define Xv,j = 1 if w′v,j > 0 and j was given to v,
else define it to 0. We can prove similar to Lemma
14 that the variables Xv,j’s are negatively corre-
lated. Now since utility of each item is at most
T
λ , using the Chernoff-Hoeffding bounds for neg-
ative correlation [37], we get that the net utility is
concentrated around its expected value with prob-

ability ≥ 1− exp(−
T
2

√
log k

k log log k

T/λ ) > 1− log k
k .

Therefore we get Theorem 11.
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5 Designing Overlay Multicast Net-
works For Streaming

The work of [2] studies approximation algo-
rithms for designing a multicast overlay network.
We first describe the problem and state the results
in [2] (Lemma 15 and Lemma 16). Next, we show
our main improvement in Lemma 17.

The background text here is largely borrowed
from [2]. An overlay network can be represented
as a tripartite digraph N = (V, E). The nodes
V are partitioned into sets of entry points called
sources (S), reflectors (R), and edge-servers or
sinks (D). There are multiple commodities or
streams, that must be routed from sources, via re-
flectors, to the sinks that are designated to serve
that stream to end-users. Without loss of gen-
erality, we can assume that each source holds a
single stream. Now given a set of streams and
their respective edge-server destinations, a cheap-
est possible overlay network must be constructed
subject to certain capacity, quality, and reliabil-
ity requirements. There is a cost associated with
usage of every link and reflector. There are ca-
pacity constraints, especially on the reflectors, that
dictate the maximum total bandwidth (in bits/sec)
that the reflector is allowed to send. The quality of
a stream is directely related to whether or not an
edge-server is able to reconstruct the stream with-
out significant loss of accuracy. Therefore even
though there is some loss threshold associated with
each stream, at each edge-server only a maximum
possible reconstruction-loss is allowed. To ensure
reliability, multiple copies of each stream may be
sent to the designated edge-servers.

All these requirements can be captured by an
integer program. Let us use indicator variable zi

for building reflector i, yi,k for delivery of k-th
stream to the i-th reflector and xi,j,k for deliver-
ing k-th stream to the j-th sink through the i-th
reflector. Fi denotes the fanout constraint for each
reflector i ∈ R. Let px,y denote the failure prob-
ability on any edge (source-reflector or reflector-
sink). We transform the probabilities into weights:
wi,j,k = − log (pk,i + pi,j − pk,ipi,j). Therefore,
wi,j,k is the negative log of the probability of a
commodity k failing to reach sink j via reflector i.
On the other hand, if φj,k is the minimum required
success probability for commodity k to reach sink
j, we instead use Wj,k = − log (1− φj,k). Thus

Wj,k denotes the negative log of maximum al-
lowed failure. ri is the cost for opening the reflec-
tor i and cx,y,k is the cost for using the link (x, y)
to send commodity k. Thus we have the IP (see
Table 2).

Constraints (10) and (11) are natural consistency
requirements; constraint (12) encodes the fanout
restriction. Constraint (13), the weight constraint,
ensures quality and reliability. Constraint (14) is
the standard integrality-constraint that will be re-
laxed to construct the LP relaxation.

There is an important stability requirement that
is referred as color constraint in [2]. Reflectors
are grouped into m color classes, R = R1 ∪ R2 ∪
. . . ∪ Rm. We want each group of reflectors to
deliver not more than one copy of a stream into a
sink. This constraint translates to

∑

i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (15)

Each group of reflectors can be thought to be-
long to the same ISP. Thus we want to make sure
that a client is served only with one – the best
– stream possible from a certain ISP. This diver-
sifies the stream distribution over different ISPs
and provides stability. If an ISP goes down, still
most of the sinks will be served. We refer the LP-
relaxation of integer program (Table 2) with the
color constraint (15) as LP-Color.

All of the above is from [2].
The work of [2] uses a two-step rounding proce-

dure and obtains the following guarantee.
First stage rounding: Rounds zi and yi,k for all i

and k to decide which reflector should be open and
which streams should be sent to a reflector. The
results from rounding stage 1 can be summarized
in the following lemma:

LEMMA 15 ([2]) The first-stage rounding algo-
rithm incurs a cost at most a factor of 64 log |D|
higher than the optimum cost, and with high prob-
ability violates the weight constraints by at most a
factor of 1

4 and the fanout constraints by at most a
factor of 2. Color constraints are all satisfied.

By incurring a factor of Θ(log n) in the cost, the
constant factors losses in the weights and fanouts
can be improved.

Second stage rounding: Rounds xi,j,k’s using
the open reflectors and streams that are sent to dif-
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min
∑

i∈R

rizi +
∑

i∈R

∑

k∈S

ck,i,kyi,k +
∑

i∈R

∑

k∈S

∑

j∈D

ci,j,kxi,j,k

s.t yk,i ≤ zi ∀i ∈ R, ∀k ∈ S (10)
xi,j,k ≤ yi,k ∀i ∈ R, ∀j ∈ D, ∀k ∈ S (11)∑

k∈S

∑

j∈D

xi,j,k ≤ Fizi ∀i ∈ R (12)

∑

i∈R

xi,j,kwi,j,k ≥ Wj,k ∀j ∈ D, ∀k ∈ S (13)

xi,j,k ∈ {0, 1}, yi,k ∈ {0, 1}, zi ∈ {0, 1} (14)

Table 2: Integer Program for Overlay Multicast Network Design

ferent reflectors in the first stage. The results in
this stage can be summarized as follows:

LEMMA 16 ([2]) The second-stage rounding in-
curs a cost at most a factor of 14 higher than the
optimum cost and violates each of fanout, color
and weight constraint by at most a factor of 7.

Our main contribution is an improvement of the
second-stage rounding through the use of repeated
RandMove and by judicious choices of constraints
to drop. Let us call the linear program that remains
just at the end of first stage LP-Color2. More pre-
cisely, we show:

LEMMA 17 LP-Color2 can be efficiently
rounded such that cost and weight constraints are
satisfied exactly, fanout constraints are violated
at most by additive 1 and color constraints are
violated at most by additive 3.

We defer the proof of the above lemma to the
full version.

6 Future Directions
We discuss two speculative directions related to

our rounding approach that appear promising.
Recall the notions of discrepancy and linear dis-

crepancy from the introduction. A well-known re-
sult here, due to [12], is that if A is “t-bounded”
(every column has at most t nonzeroes), then
lindisc(A) ≤ t; see [31] for a closely-related re-
sult. These results have also helped in the develop-
ment of improved rounding-based approximation

algorithms [9, 47]. A major open question from
[12] is whether lindisc(A) ≤ O(

√
t) for any t-

bounded matrix A; this, if true, would be best-
possible. Ingenious melding of randomized round-
ing, entropy-based arguments and the pigeonhole
principle have helped show that lindisc(A) ≤
O(
√

t log n) [11, 35, 44], improved further to
O(
√

t log n) in [7]. However, the number of
columns n may not be bounded as a function of t,
and it would be very interesting to even get some
o(t) bound on lindisc(A), to start with. We have
preliminary ideas about using the random-walks
approach where the subspace S (that is orthogo-
nal to the set of tight constraints C in our random-
walks approach) has “large” – Θ(n) – dimension.
In a little more detail, whereas the constraints for
rows i of A are dropped in [12] when there are
at most t to-be-rounded variables corresponding
to the nonzero entries of row i, we propose to do
this dropping at some function such as c0t to-be-
rounded variables, for a large-enough constant c0

(instead of at t). This approach seems promising as
a first step, at least for various models of random
t-bounded matrices.

Second, there appears to be a deeper connec-
tion between various forms of dependent random-
ized rounding – such as ours – and iterated round-
ing [25, 30, 33, 42, 49]. In particular: (i) the re-
sult that we improve upon in § 2 is based on iter-
ated rounding [18]; (ii) certain “budgeted” assign-
ment problems that arise in keyword auctions give
the same results under iterated rounding [16] and
weighted dependent rounding [46]; and (iii) our
ongoing work suggests that our random-walk ap-
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proach improves upon the iterated-rounding-based
work of [28] on bipartite matchings that are simul-
taneously “good” w.r.t. multiple linear objectives
(this is related to, but not implied by, Theorem 1).
We believe it would be very fruitful to understand
possible deeper links between these two rounding
approaches, and to develop common generaliza-
tions thereof using such insight.
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