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Abstract—We study the problem of throughput maximization
in multi-hop wireless networks with end-to-end delay constraints
for each session. This problem has received much attention
starting with the work of Grossglauser and Tse (2002), and it has
been shown that there is a significant tradeoff between the end-to-
end delays and the total achievable rate. We develop algorithms
to compute such tradeoffs with provable performance guarantees
for arbitrary instances, with general interference models. Given
a target delay-bound ∆(c) for each session c, our algorithm gives
a stable flow vector with a total throughput within a factor of

O

(

log∆m

log log∆m

)

of the maximum, so that the per-session (end-to-

end) delay is O

(

( log∆m

log log∆m
∆(c))2

)

, where ∆m = maxc{∆(c)};

note that these bounds depend only on the delays, and not on the
network size, and this is the first such result, to our knowledge.

I. INTRODUCTION

The end-to-end delay is an important issue in many multi-

hop wireless network applications, such as video streaming

[25], and there is a tradeoff between the total achievable

throughput and the delays; an important open question in this

area has been to decide if it is possible to achieve delays

proportional to the number of hops for each session, without

much loss in throughput or throughput region [21]. In this

paper, we study the problem of computing explicit throughput-

delay tradeoffs in specific given networks. Given a multi-hop

wireless network represented by a graph G = (V,L), a set of

sessions, with a target delay ∆(c) for each session c, the goal

of the Delay-constrained Throughput Maximization (DCTM)

problem is to find a stable rate vector λ() that maximizes

the total achievable rate
∑

c λ(c), while ensuring that the per-

packet delay for session c is as close to ∆(c) as possible.

This problem is NP-Complete, even without considering any

delay guarantees [43], [4]; however, with delay constraints,

this problem becomes hard to solve even approximately, as

we discuss later. Therefore, in this paper, we study “bi-

criteria” approximation algorithms, which maximize the total

throughput, while allowing the delay constraints to be violated

by some factor; our focus is on designing algorithms with

provable approximation guarantees.

While there has been a lot of work on delay-throughput

tradeoffs, especially for random networks or restricted 1-hop

sessions, the best bounds for end-to-end delays known so far

are by [21], [22], [27]. Jagabathula and Shah [21] design a

scheduling scheme that ensures per-session end-to-end delays

of O (#hops) with the total throughput within a constant fac-

tor of the optimum; however, this result is restricted to primary

interference, whereas for general interference, the delay bound

becomes O
(

#hops ·D2
)

, where D denotes the maximum

degree in the conflict graph (which could be high). Jayachan-

dran and Andrews [22] design a different scheduling scheme

that ensures per-session end-to-end delay of O (#hops · n). Le

et al. [27] prove that max-weight scheduling has a network-

average delay bound of O (#hopsmax · θmax · n ·m). In this

paper, we develop an algorithm for DCTM that improves on

these bounds for a general interference model.

Our contributions.

1. Approximation hardness of Delay-Constrained Through-

put Maximization (DCTM). We show lower bounds on the

computational complexity of the DCTM problem. When the

wireless network is modeled as a unit-disk graph, we show

that there is a constant K such that it is NP-Complete to

approximate the DCTM problem within a factor of K; for

arbitrary graphs DCTM is hard to approximate within a factor

of Ω(nǫ), for a constant ǫ ∈ (0, 1), while satisfying all

delay constraints. These results motivate the need of bi-criteria

algorithms that violate delay bounds by some factor, in order

to maximize the throughput.

2. Multi-comodity framework for DCTM. We develop a

multi-commodity flow framework to compute a rate vector

λ() and a random-access scheduling scheme such that (i)

the total throughput capacity
∑

c λ(c) is within a factor of

O
(

log∆m

log log∆m

)

of the maximum possible (with the given delay

constraints), where ∆m = maxc{∆(c)}, and (ii) the average

end-to-end packet delay for each session c is bounded by

O
(

( log∆m

log log∆m
∆(c))2

)

(summarized in Theorems 1 and 2).

These end-to-end delay bounds include queuing delays at all

intermediate nodes. In contrast to the results of [21], [22], [27],

which depend on the network size or interference degrees, our



results provide per-session delay bounds, which depend only

on target delays and path lengths; these are likely to be smaller,

in most practical situations.

Our result involves two basic steps: (i) We derive upper-bounds

on the end-to-end delays in terms of the lengths of the paths

associated with the flows — our main contribution is a reduc-

tion to a simpler queuing system whose delay can be bounded

by Lyapunov analysis — this reduction crucially uses the

properties of random-access scheduling. (ii) An LP-rounding

based approximation algorithm is devised to construct a flow

vector that uses “short” paths (or has “low” costs), to send

“high” flow on each selected path. Our algorithm is based on a

novel application of the Lovasz Local Lemma [28], combined

with filtering and refining steps in order to reduce certain kinds

of dependencies. Our specific rounding scheme is crucial in

ensuring that the loss in throughput is only O
(

log∆m

log log∆m

)

; in

contrast, a simpler direct application of randomized rounding

[32] can only lead to an O(log n) factor.

3. Quantifying the impact of adaptive channel switching. As

a specific application, we show how to estimate throughput

capacity in networks with adaptive channels (e.g., in cog-

nitive networks) and end-to-end delay requirements. These

constraints can be explicitly incorporated into our framework,

thereby allowing us to provably quantify the tradeoffs between

these constraints. Most papers (e.g., [12], [26]) dealing with

these aspects have only considered individual constraints, such

as the end-to-end delay or number of channels; our approach

allows all of them to be incorporated.

4. Simulation results. We study the empirical performance

of our algorithm on small networks, and compute explicit

throughput-delay tradeoffs and the saturation throughput for

given delay bounds. For multi-channel networks we observe

that there is significant tradeoff between the number of chan-

nels, delays and total throughput rate. In particular, for a given

target delay, there is a threshold beyond which additional chan-

nels do not help. In our experiments, we find our scheduling

performs much better than our analytical delay bounds.

The main focus of our paper is theoretical. The initial steps

of computing the rate vector are centralized (though the

scheduling is distributed), and our results are on static net-

works; nevertheless, our techniques give an efficient method

to provide provable conservative delay-throughput tradeoffs in

any specific network, which can be useful in choosing suitable

rate vectors, e.g., as in the video streaming application of [25].

Organization. We discuss related work in Section II and the

network model and relevant definitions in Section III. We

discuss the approximation hardness of DCTM in Section IV.

The delay bounds for a given rate vector λ() are derived

in Section V (Theorem 1), and in Section VI we describe

our algorithm for computing a good rate vector; Theorem

2 shows the combined throughput and delay guarantees. We

discuss extensions to multi-channel networks in Section VII.

Finally, we describe our experimental results in Section VIII

and conclude in Section IX. Many proofs and some of the

experimental results are omitted because of space limitations.

II. RELATED WORK

Wired Networks: A large class of papers [36], [13], [3], [29],

[30] provide analytical guarantees on the end-to-end delays

and network utilization achievable through specific scheduling

protocols in multi-hop wired networks. However, none of them

explicitly deal with the problem of routing to simultaneously

guarantee network utilization and end-to-end delays.

Random Wireless Networks: Precise trade-offs between the

network capacity and end-to-end delay as well as other pa-

rameters such as fairness, or number of radio channels (in a

multi-radio multi-channel network) have been well studied for

wireless networks under the assumption that the physical node

locations follow uniform spatial distributions. Building on

[17], [15], El Gamal et al. [12] show the relationship between

average delay and (per-node) capacity. This problem has been

extended in various directions, e.g., [34], [12], [42], [39],

[40]. However, in general, the techniques employed analyzing

random wireless networks do not help shed light on the delay-

throughput trade-offs in an arbitrary wireless network (with

non-random topology).

Arbitrary Wireless Networks: The design and analysis of

wireless protocols for arbitrary networks (with non-random

topologies) from the perspective of guaranteeing network

utilization and end-to-end delays has received comparatively

lesser focus [21], [22], [27]. Besides these end-to-end delay

results we mention in the previous section, there are also

important delay results for single-hop traffic [33], [23], [16].

Neely [33] shows that general maximal matching policies

achieve O(1) network-average delay for given traffic. Kar,

Luo and Sarkar [23] show that the maximum expected delay

depends linearly on the chromatic number of the interference

graph. However, the one-hop traffic model is crucial for these

results. Gupta and Shroff [16] give an algorithm for computing

lower bounds for average delay under max-weight scheduling.

We compare our scheduling and delay results with recent

relevant results in Table I. Furthermore, our unique DCTM

framework maximizes throughput with low per-session delay

guarantees that only depend on target delays. There has also

been a lot of work on random-access policies, such as [7], [41],

[45], [38], but it is not clear to what extent these results can

be applied for the multi-hop dynamics in arbitrary networks

with general arrival processes.

III. NETWORK MODEL AND SCHEDULING

A. Network model

The wireless network is modeled as a directed graph

G = (V,L). A link (u, v) ∈ L denotes that u can transmit

to v directly. Let I(l) denote the interference set containing

all links that interfere with l. Our derivation of the delay

bounds applies to general interference models. For results

from Section VI, we assume a unit-disk model [37], in which

each node u has a fixed transmission range (assumed to be 1,

w.l.o.g.), and (u, v) ∈ L if and only if d(u, v) ≤ 1. Two links

interfere when one end of a link is within h hops from one

end of the other, where h is a constant integer.



TABLE I: Comparison of relevant scheduling and delay bound results for arbitrary wireless networks (for given traffic and flow

routes with general interference). Notation used: n: #nodes; m: #links; Imax: max interference degree; θmax: max congestion

(#flows through a link); C(N ): chromatic number of link interference graph.

Type In Paper Delay Bound Scheduling Scheme Efficiency Ratio Type of Bound

End-to-end

[21] O
(

#hops ·D2
)

preemptive LIFO & stable marriage Ω
(

1/D2
)

per-session, upper

[22] O (#hops · n) coordinated EDF or max-weight Θ(1) per-session, upper
[27] O (#hopsmax · θmax · n ·m) max-weight Θ(1) network-average, upper

Ours O
(

(#hops)2
)

random access Ω (1/Imax) per-session, upper

[16] non-analytical max-weight & variants Θ(1) network-average, lower

Single-hop
[33] O(1) maximal scheduling Ω (1/Imax) network-average, upper
[23] O (C(N )) max-weight or randomized indep. set Θ(1) network-average, upper

TABLE II: Summary of notation used in the paper.

G network graph I(l) interference set of l
V set of nodes Lin(v) incoming links of v
L set of links Lout(v) outgoing links of v
n #nodes C set of connections

µ service rate ΛOPT capacity region

λ mean arrival rate A exogenous arrival

s(c) source node of c t(c) destination node of c
Q queue or backlog p(l) channel access prob. of l
a arrival rate d actual # departure pkts

Λ throughput region F set of flows

∆(c) target delay of c l OPT max total throughput

χ(G) chromatic number Imax max interference degree

Time is divided into uniform and contiguous slots of length

1. Define µl(t) ∈ {0, 1} as the service rate for link l at time

slot t; µl(t) is determined by the specific scheduling protocol

used. For simplicity, we use time and link service models

similar to [33], [16]; our results can be extended to cases

where link capacity is more than 1.

Let C denote the set of connections or sessions. Let s(c)
and t(c) denote the source and destination, respectively, for

session c ∈ C. Each session c might use multiple paths (also

referred to as flows, in this paper) for communication; let F(c)
denote the set of paths/flows that can be used by session c.
Let L(f) denote the set of links on flow f . Let Af (t) denote

the exogenous arrival process for flow f . We use if , where

i > 0 is an integer, to denote the ith link on f (e.g., 1f is the

1st link in L(f)). We assume the exogenous arrival process of

each flow to be i.i.d over time and independent of each other;

the first moment E{Af (t)} = λ(f) and the second moment

E{A2
f (t)} ≤ A(2), where A(2) is a constant.

In our queueing model, the queue Ql on link l is divided into

logical sub-queues for each flow through l. Let Ql,f denote the

logical sub-queue for flow f on link l. We also use the same

notation to denote the backlogs. ∀t, Ql(t) =
∑

f∈F(l)Ql,f (t),

where F(l) is the set of flows that include l in their paths1.

Each time l is activated to transmit, only one logical queue on

l gets serviced. Each packet of flow f traverses from Q1f ,f

through Q|L(f)|f ,f . For a slot t, let aif ,f (t) be the number

of f ’s arrival packets at Qif ,f , dif ,f (t) the actual number of

f ’s departure packets from Qif ,f , and µif ,f (t) the service

rate offered to Qif ,f . We assume the transmission takes place

1The notation used in this paper conforms to the following convention: for
time-related quantities, subscripts are used to indicate specific links or flows,
e.g. Ql, Af ; for non-time-related quantities, a function-like style is used to
indicate specific links or flows, e.g. I(l),L(f).

during the entire slot, and the arrival to a queue is counted in

the backlog at the end of the current slot. The queue evolution

mechanism can be expressed as

Qif ,f (t+ 1) = Qif ,f (t)− dif ,f (t) + aif ,f (t)
= [Qif ,f (t)− µif ,f (t)]

+ + aif ,f (t),

where aif ,f (t) =

{

Af (t), i = 1;
d(i−1)f ,f (t), i = 2, 3, . . . , k.

B. Throughput region & problem definition

A schedule S in our model describes the times at which

data is moved over the links of the network. A scheduling

scheme is said to be stable if the average delay is bounded

and consequently, all backlogs have bounded sizes. Formally,

lim sup
t →∞

1

t

∑

τ≤t

∑

l∈L

E {Ql(τ)} <∞.

The throughput region ΛS of a scheduling scheme S is

the closure of the set of all exogenous arrival rate vectors

that can be stably supported under S. The network capacity

region ΛOPT is the closure of the set of all rate vectors that

can be stably supported by any feasible scheduling scheme;

let OPT denote the maximum total throughput
∑

c λ(c) for

λ() ∈ ΛOPT . It is known that max-weight scheduling gains

the maximum throughput with traffic interior to ΛOPT [14].

We are now in a position to formally describe the problem

we study in this paper. Given a multi-hop wireless network

represented by a graph G = (V,L), a set C of connections,

with a target delay ∆(c) for each connection c, the goal

of the Delay-constrained Throughput Maximization (DCTM)

problem is to find a stable rate vector λ() that maximizes the

total achievable rate
∑

c λ(c), while ensuring that the session

c per-packet delay is at most ∆(c). Let OPT (∆()) denote the

maximal total rate
∑

c λ(c) that is feasible under these (delay)

constraints. Note that this does not specify any scheduling

scheme, and the optimum could use any scheduling scheme.

As discussed earlier, this problem is very hard, in general,

and our focus is on approximation algorithms. In particular, we

develop polynomial time bi-criteria approximation algorithms;

we say an algorithm gives a (β1, β2)-approximation, if the total

throughput rate guaranteed is at least β1OPT (∆()), while the

delays are at most β2∆(c), for each session. Note that these

are worst case approximation guarantees, which hold for every

problem instance. In this paper, we study two kinds of bounds

on the delay - average delay and the maximum delay, over all

the packets for a given flow f .



C. Random-access scheduling

In this paper, we focus on random-access scheduling, which

involves the following process: at each time slot t, each link

l stochastically makes channel access attempt with a specific

probability p(l) (known as channel access probability) when

Ql > 0; if link l decides to transmit, it will choose a flow

f associated with the link with probability p(l, f), defined

below. If no collision happens, it will result in successful

data transmission; otherwise, the packet will stay in the queue

for the next transmission service. We focus on synchronous

random-access scheduling, where all slots are of the same

length. The channel access probabilities we use are similar

to [9]:

p(l) = 1− e−e
∑

f: l∈L(f) λ(f)/(1−δ), (1)

where δ ∈ (0, 1) denotes a rate slackness parameter which

can be set before system initiation as a constant. For each

transmission on l, Ql,f ’s packets gets serviced with probability

p(l, f) =
λ(f)

∑

f ′: l∈L(f ′) λ(f
′)

.

It follows from [9] that the above random-access scheduling

scheme is stable (proved in Section V) if

∑

l′∈I(l)∪{l}

∑

f : l′∈L(f)

λ(f) ≤
1− δ

e
, ∀l ∈ L. (2)

The above constraints in Inequality (2) with RHS scaled up

by eImax are necessary conditions for any stable scheduling

scheme [35], where Imax (also known as maximum inter-

ference degree) is the maximum number of links that can

transmit simultaneously within any I(l). Inequality (2) defines

a throughput region within a factor of 1/ (eImax) of ΛOPT .

The merit of using this random-access scheduling scheme

is that it achieves a throughput region comparable to that

of maximal scheduling, while maintaining a low-complexity

distributed manner of operation.

IV. APPROXIMATION HARDNESS OF DCTM

The DCTM is NP-complete - this follows from the fact that

even without any delay constraints, the throughput maximiza-

tion problem is NP-complete [43]. We extend this to show that

several cases of the DTCM problem are hard to approximate,

if the delay bounds are required to be satisfied; this motivates

the need for bi-criteria approximations.

Lemma 1: There is a constant K ′ > 0 such that the DCTM

problem cannot be approximated within a factor of K ′ if the

interference graph G is a unit-disk graph, unless P = NP .

Proof: Our proof is based on a gap-preserving reduction

from coloring in cubic planar graphs, following the result of

Clark et al. [10]; this shows that given a unit-disk graph G,

it is NP-complete to distinguish between the case χ(G) = 3
and χ(G) = 4. We reduce this to an instance of DCTM in an

interference model based on distance-2 independence model

(i.e., two transmissions are simultaneously possible only if the

senders are at least distance-2 apart): let V ′′ be a duplicate

node set of V , such that each v ∈ V and its counterpart in

V ′′ are located very close; let G′ = (V ′,L′) be a graph where

V ′ = V ∪ V ′′, and L′ = L ∪ {(v, v′) : v ∈ V, v′′ ∈ V ′′}.

Let there be n connections (v, v′) for each node v ∈ V . The

target delay ∆(c) for each connection c is 3. We assume

that the traffic is at a constant bit-rate for each connection.

If χ(G) = 3, observe that a throughput rate of 1/3 for each

connection is possible - within each window of three time

steps, all the connections can be scheduled in this interference

model, making the total throughput of n/3 feasible. On the

other hand, if χ(G) = 4, at most K ′n of the connections can

be colored using 3 colors (this follows from a simple analysis

of the reduction of [10]). Since ∆(c) = 3 for each connection,

at most K ′n connections can be scheduled within a window

of size 3, implying a total throughput of at most K ′n/3.

For arbitrary interference graphs, DCTM cannot be approx-

imated within a factor of Ω(nǫ), ǫ ∈ (0, 1); we omit the proof.

V. DELAY UPPER-BOUNDS

We now derive end-to-end delay bounds for flows with a

given feasible average rate vector λ() which satisfies con-

straints in inequality (2).

Theorem 1: For a stable rate vector λ() that satisfies in-

equality (2), the random-access scheduling protocol defined

by (1) ensures that (i) the average delay for each flow f is

O
(

|L(f)|2/(λ(f))2
)

; and (ii) the average network delay is

O
(

∑

f∈F |L(f)|2
/(

∑

f∈F λ(f)minf∈F{λ(f)}
)

)

.

We start the proof with the following lower bound on the

expected service rate µl,f (t), for any flow f and link l; this

will be used in all our analysis in the rest of this section.

For notational simplicity, we use x(l, f) = λ(f)/(1− δ), and

x(l) =
∑

f∈F(l) x(l, f). Then equation (1) can be rewritten as

p(l) = 1− e−ex(l), and we have:

E {µl,f (t)} ≥ p(l, f)p(l)
∏

l′∈I(l)(1− p(l′))

≥ p(l, f)
(

1− e−ex(l)
)

eex(l)−1

=

(

eex(l) − 1
)

x(l, f)

ex(l)
≥ x(l, f).

(3)

The idea for the proof of the above theorem is that due

to the properties of random-access scheduling, each flow can

be viewed in “isolation” as a tandem system, with expected

lower bounds on the service rates µ(l, f) that only depend on

x(l, f) for each logical queue Ql,f , as shown in Equation (3).

Let the triple (Q(), a(), µ()) denote a queueing system. From

now on till the end of this section, we use R to denote the basic

queueing system under the basic scheduling scheme mentioned

in Section III, and put R at superscript to denote the quantities

of the corresponding system.

We now consider the queues for a specific flow f : {QRif ,f},

i ∈ {1, 2, . . . , |L(f)|}, as a series of tandem queues, and

derive delay bounds. Our proof involves two “reductions”,

which progressively lead to a simpler queueing system with

Bernoulli arrival and service processes for the non-source

queues, with delays no smaller than those of {QRif ,f}; ad-

ditionally, the second queueing system we construct has an

increasing sequence of service rates, allowing us to derive

end-to-end delay bounds. We start with the following intuitive

lemma, whose proof is omitted because of the space limitation.



Lemma 2: Let R and R1 be two tandem queueing sys-

tems with the same arrival processes but E

{

µRif ,f (t)
}

≥

E

{

µR1

if ,f
(t)

}

, for each flow f and link if , at t. Then,

E

{

∑|L(f)|
i=1 QR1

if ,f
(t)

}

≥ E

{

∑|L(f)|
i=1 QRif ,f (t)

}

, ∀f, ∀t.

(1) Reduction 1. We reduce the basic queueing system R
for flow f to another tandem system R1, such that for all

i ∈ [1, |L(f)|], the service rate µR1

if ,f
of each queue QR1(if , f)

is subject to a Bernoulli distribution with E

{

µR1

if ,f
(t)

}

=

λ(f) + iǫ(f)
|L(f)| ≤ xR(if , f) ≤ E

{

µRif ,f (t)
}

, where ǫ(f) =

δλ(f)
1−δ . Then, Lemma 2 implies E

{

∑|L(f)|
i=1 QR1

if ,f
(t)

}

≥

E

{

∑|L(f)|
i=1 QRif ,f (t)

}

. Note that whether the reduced system

is using wireless medium no longer matters.

(2) Reduction 2. Note that the exogenous arrival at the source

link of the tandem system (QR1(), aR1(), µR1()) is a general

arrival process, making it nontrivial and hard to use earlier

methods directly, e.g., [6], [11], [20], in bounding the end-to-

end delays. Therefore, we reduce the system R1 to another

queueing system R2 so that the arrival process for each non-

source queue is Bernoulli. The queueing system R2 is defined

in the following manner: at each time slot t the service rate for

each link if on flow f is the same as that for R1, except that

this link tries to access the medium even if the queue QR2

if ,f
is

empty or does not have enough packets to fill in the capacity.

In case (if , f) gets serviced and QR2

if ,f
has a backlog smaller

than the channel capacity, dummy packets are injected to make

full use of the channel capacity during the time slot. These

packets will be labeled as packets for flow f . Now that we

have unit capacities, each time (if , f) accesses the medium,

it transmits one packet to the next queue in line. Therefore,

the service process of QR2

if ,f
, and the arrival process at the

subsequent queue QR2((i+ 1)f , f) coincide. Note that if the

number of retransmission is limited, the arrival at non-source

queues will be smaller. In the system R1, for any i, µR1 (if , f)
follows a Bernoulli distribution, which implies that the arrival

E

{

aR2

if ,f
(t)

}

= E
{

µR1 ((i− 1)f , f) (t)
}

is also a Bernoulli

process. This leads us to the following lemma.

Lemma 3: At every time slot t, E
{

∑|L(f)|
i=1 QR2

if ,f
(t)

}

≥ E

{

∑|L(f)|
i=1 QR1

if ,f
(t)

}

≥ E

{

∑|L(f)|
i=1 QRif ,f (t)

}

.

The proof can be carried out by induction on t.
(3) Queueing analysis for R2. The fact that the arrival

and service process of each QR2

if ,f
is subject to geometric

distribution, allows us to perform an isolated queueing analysis

for each QR2

if ,f
. For any link i = 1, 2, . . . , |L(f)|, we have

E

{

µR2

if ,f
(t)

}

= E

{

µR1
if ,f

(t)
}

= λ(f) + iǫ(f)
|L(f)| .

Next, we perform Lyapunov drift analysis to derive an

upper-bound on the queue size of each QR2

if ,f
. Refer to [14],

[33] for the details of this approach. We define the Lyapunov

function as L
(

QR2

if ,f
(t)

)

,

(

QR2

if ,f
(t)

)2

.

The 1-step Lyapunov drift is then defined as below:

△
(1)
Q

(

QR2

if ,f
(t)

)

, E

{

L
(

QR2

if ,f
(t+ 1)

)

− L
(

QR2

if ,f
(t)

)}

≤ E

{

(

µR2

if ,f
(t)

)2

+
(

aR2

if ,f
(t)

)2
}

−

E

{

2QR2

if ,f
(t)

(

µR2

if ,f
(t)− aR2

if ,f
(t)

)}

.

(4)

Further, E

{

(

µR2

if ,f
(t)

)2
}

= E

{

µR2

if ,f
(t)

}

≤ 1/e, and

E

{

µR2

if ,f
(t)− aR2

if ,f
(t)

}

= ǫ(f)
/

|L(f)|. Additionally, for

i = 1, we have E

{

(

aR2

1f ,f
(t)

)2
}

≤ A(2); when i > 1,

E

{

(

aR2

if ,f
(t)

)2
}

= E

{

aR2

if ,f
(t)

}

≤ 1/e. Inequality (4) can

be then rewritten as

△
(1)
Q

(

QR2

if ,f
(t)

)

≤ 1
e +max

{

1
e , A

(2)
}

− 2ǫ(f)
|L(f)|E

{

QR2

if ,f
(t)

}

.

From Theorem 1 in [33], the average backlog Q
R2

if ,f
is

lim sup
t→∞

1

t

t−1
∑

τ=0

E

{

QR2

if ,f
(τ)

}

≤
1 + max

{

1, eA(2)
}

2eǫ(f)
|L(f)|.

Therefore, the sum of backlogs for f is
∑|L(f)|
i=1 Q

R2

if ,f
(t) ≤

1+max{1,eA(2)}
2eǫ(f) |L(f)|2.

(4) Average end-to-end delay bound. By Little’s Law, the

average delay for flow f ’s packets is

D
R
(f) =

∑k
i=1Q

R

if ,f

/

λ(f) ≤
∑k
i=1Q

R2

if ,f

/

λ(f)

≤
1 + max

{

1, eA(2)
}

2eǫ(f)

|L(f)|2

λ(f)
.

Theorem 1 now follows.

VI. MULTI-COMMODITY FLOWS WITH DELAY

GUARANTEES

From Theorem 1, it follows that the average end-to-end

delay bound for flow f is quadratically in proportion to |L(f)|,
and inversely quadratically in proportion to λ(f); the average

network average end-to-end delay bound is in proportion to
∑

f∈F |L(f)|2 and
∑

f∈F 1/λ(f), and inversely in proportion

to
∑

f∈F λ(f). Therefore, in order to find a feasible rate vector

λ() that minimizes the delay guarantees, we need to construct

flows with “high” rate (i.e., keep λ(f) high) and “short” paths

(i.e., make |L(f)| low). In this section, we use terms “path”

and “flow” interchangeably.

Given the delay constraint ∆(c) for each connection c (as

defined in Section III). We present a multi-commodity flow

framework for choosing a rate vector vector λ() such that:

(i) the total rate
∑

c λ(c) is “close” to OPT (∆()); more

precisely, we have
∑

c λ(c) = Ω
(

log log∆m

log∆m

)

OPT (∆())

(ii) for each c, each flow f for connection c if λ(f) > 0,

we have λ(f) = log log∆m

log∆m
(iii) for each c, each flow path

f for connection c with λ(f) > 0 has length at most 2∆(c).
Using rate vector λ() along with the random-access scheduling

scheme described in Section V leads to a (β1, β2) bi-criteria

approximation, where the total throughput is at least β1OPT
and the delays are β2∆(c) for connection c.



Our algorithm involves construction of multi-commodity

flows with constraints on the paths used; broadly, these con-

straints bound the sum of the “costs” of the links on the

paths. Our approach employs an approximation algorithm,

which selectively drops some cost-unfavorable sessions and

maximizes the rates of the rest sessions. Path constrained flows

have been studied in a wired setting, e.g., [5], [18], but the

interference constraints, and the fact that we need both short

paths and large flow values make our problem different. Our

algorithm involves the following steps.

(Step 1) Linear programming formulation. For session c,
recall that F(c) denotes the set of possible paths from s(c)
to t(c). We assume a cost function defined on the links;

let cost(l) denote the cost of link l. For path f , we define

cost(f) =
∑

l∈L(f) cost(l) as the cost of path f . The costs

can be defined in a fairly general manner, but in most of this

paper, the cost of a path will denote its length in hops. Let

F(c, L) denote the set of paths of cost at most L from s(c) to

t(c). As mentioned in Section III, we will assume that all link

capacities are 1. We start with the following LP formulation

(LP) to find a flow vector y() that maximizes
∑

c y(c) subject

to Constraints (5a) to (5e). Here, y(c) denotes the total rate

for connection c, and y(f) the rate along path f ∈ F(c);
y(l, c) =

∑

f∈F(c):l∈L(f) y(f) is the total flow for c along l.

LP: max
∑

c

y(c)

s.t. ∀c, y(c) =
∑

f∈F(c)

y(f) (5a)

∀c,
∑

f∈F(c)

y(f)cost(f) ≤ ∆(c)y(c) (5b)

∀l, c, y(l, c) =
∑

f∈F(c): l∈L(f)

y(f) (5c)

∀l,
∑

l′∈(I∪{l})

∑

c

y(l′, c) ≤
1− δ

e
(5d)

∀f, y(f) ≥ 0 (5e)

In the above formulation, constraints (5a) and (5c) represent

path-based flow-conservation constraints; (5b) constrains total

path cost which in our case is the path length, since end-to-

end delay is lower bounded by the number of hops; congestion

constraints in (5d) ensure the stability under a random-access

scheme. The above program may have exponentially many

constraints because it is formulated using all the flow paths

in F(c), which may include all viable paths in graph G. It is

easy to reformulate this as a polynomial sized LP by

(1) replacing constraint (5a) and (5c) with ∀c,
∑

l∈Lout(s(c))

y(l, c) = y(c) and
∑

l∈Lin(t(c))

y(l, c) = y(c),

and flow-conservation constraints at all other nodes;

(2) replacing constraint (5b) with ∀c,
∑

l∈L y(l, c)cost(l) ≤ ∆(c)y(c); and

(3) replacing constraint (5e) with y(l, c) ≥ 0, ∀(l, c).
Let y∗() denote the optimum fractional solution to the above

LP. Following standard techniques, e.g., [2], this flow can be

decomposed into path flows y∗(f) in polynomial time, with a

polynomial number of paths that have positive flow; let F∗ =
{f : y∗(f) > 0} be the set of flows with positive flow.

(Step 2) Filtering. We transform y∗() into another fractional

solution y′() in the following manner:

∀f, y′(f) =

{

y∗(f), if f ∈ F(c, 2∆(c));
0, otherwise

It follows by a simple averaging argument, that ∀c, y′(c) =
∑

f∈F∗(c,2∆(c)) y
′(f) ≥ y∗(c)/2.

(Step 3) Path refinement. For each link l = (u, v), if there

is a path f ∈ F∗ that uses more than a constant number, K0,

of links in I(l), we “short-cut” f into f ′ that uses at most

K0 such links, and does not violate any of the constraints of

(LP). This is illustrated in Figure 1.

u v

e
1

e
2

e

f

Fig. 1: Path refinement operation: Consider path f (shown

by dashed curved line) and link l = (u, v). Path f revisits

I(l) multiple times, and the segment of f from between the

endpoints of edges e1 and e2 can be replaced by edge e (shown

in light gray and bold) to get a path f ′ which is shorter, and

sending the same flow on f ′ (instead of f ) is still feasible.

(Step 4) Partitioning into cells. Let γ denote the number

of congestion constraints (as in Constraint (5d)) that involve

a given path f ∈ F∗ from the previous step. It is crucial

that γ be “small”, so that the rounding scheme in later steps

produces a “good” approximate ratio. However, γ becomes

O (∆mmaxl |I(l)|) if we use the original set of congestion

constraints in Constraints (5d), which is the case for general

interference model. To control this, we now coarsen the

formulation in the following manner: (i) γ is upper-bounded

by O (∆m); and (ii) the coefficient of any flow rate variable in

the new congestion constraints is in [0, 1). It is only in Steps

3 and 4 that we require a unit-disk graph model described in

Section III. The construction involves the following sub-steps:

(1) We partition the plane into 1
2 ×

1
2 grid cells. Let B denote

the set of cells and let b ∈ B denote a cell; we say a link

l ∈ b if and only if one end of l falls in b. The number of

cells that a path f ∈ F∗ goes through is hence O (∆m).
(2) Constraints (5d) imply the following:

∀b ∈ B,
∑

l∈b

∑

f :l∈L(f) y(f) ≤
1−δ
e . (6)

(3) We then divide both sides of Inequality (6) by a constant

factor of K0 (mentioned in Step 3), which is the maximum

number of links in any interference set that belongs to the

same path, such that the coefficient of any rate variable

becomes less than 1.

(Step 5) Rounding and selection. We now select a set of

paths F ′ ⊆ F∗ for the connections, so that: (i) we choose at



most one path for each session c; (ii) the rate on c is z(c) =

1; (iii) |F ′| =
∑

c z(c) is large enough (in our algorithm,

we ensure that this is Θ(
∑

c y
′(c))); and (iv) the chosen

paths incur “low” congestion; more precisely, for each link l,
we have

∑

l′∈I(l)∪{l}

∑

c z(l
′, c) ≤ K1 log log∆m/ log∆m,

where z(l′, c) ∈ {0, 1} is the rate on path f ∈ F ′ ∩ F(c)
such that l′ ∈ L(f), and K1 is a constant. We employ

a randomized rounding technique based on [28], and this

involves the following sub-steps:

(1) We partition C into groups C1, . . . , Ck such that for each

i (for all but possibly one group),
∑

c∈Ci
y′(c) ∈ [1, 2);

w.l.o.g., if there is a group i with
∑

c∈Ci
y′(c) < 1, we

assume that i = k.

(2) We construct a new fractional vector y′′() in the following

manner: for each i if
∑

c∈Ci
y′(c) = a > 1, for all c ∈ Ci,

and for all f ∈ F(c), we define y′′(f) = y′(f)/a.

(3) Now apply the rounding algorithm of [28] to choose a

path fi for each group Ci (except group Ck, in case
∑

c∈Ck
y′(c) < 1), using the congestion constraints con-

structed in Step 4, instead of (5d). Let F ′ = {f1, . . . , fk}
be the paths which are chosen.

(Step 6) Scaling and choosing flow vector. We choose a rate

vector λ() so that: λ(fi) = K2 log log∆m/ log∆m, ∀fi ∈ F ′,

where K2 is a constant. Note that for some connections, no

flows would be chosen; for each (“original”) connection c,
define λ(c) as total flow of c; λ(c) = λ(fi) if fi ∈ F(c).

Lemma 4: Let λ() denote the rate vector computed by the

additional path transformations. Then, we have: (i)
∑

c λ(c) =

Ω
(

log log∆m

log∆m

)

∑

c y
∗(c), where y∗() is the optimum fractional

solution to (LP), (ii) for each connection c, on the path

f chosen for this connection with λ(f) > 0, we have

cost(f) ≤ 2∆(c), and (iii) λ() is a feasible solution to (LP),

and, in particular, satisfies the stability constraints needed for

our random-access scheduling protocol.

Proof: (sketch) As mentioned earlier, after the filtering

step, for each c, we have y′(c) ≥ y∗(c)/2, and all paths f
with y′(f) > 0 have cost(f) ≤ 2∆(c). Step 3 only alters the

links on the paths, but the flow rates remain unchanged. Step

4 only constructs a new auxiliary set of constraints, and does

not change any of these quantities. Also, the path lengths do

not increase in Steps 3, 4. Therefore, property (ii) above holds.

Next, after sub-step 1 of Step 5, note that
∑

i

∑

c∈Ci
y′(c)

remains unchanged. For the rest of this proof, we assume

that the number of connections |C| is at least a constant

K3 (if |C| is smaller, the argument below can be easily

modified), so that
∑

c y
∗(c) can be assumed to be larger than a

constant K4. After the scaling in substep 2 of Step 5, we have
∑

i<k

∑

c∈Ci
y′′(c) ≥

∑

c y
′(c)/2 ≥

∑

c y
∗(c)/4, because the

flow in each group Ci is reduced by at most a factor of 2,

relative to the vector y′(). Also, observe that y′′() is a feasible

solution for (LP), since for each f , we have y′′(f) ≤ y∗(f).

Finally, we can apply the rounding result of [28] in sub-

step 3 of Step 5. For each group Ci, i < k, we have
∑

c∈Ci

∑

f∈F ′(c) y
′′(f) = 1. By adding a super-source s′i and

super-sink t′i, we can view these paths to be between s′i and t′i

in a modified graph. In the rounding process, we only consider

the congestion induced on the cells in B (instead of directly on

each interference set). The crucial aspect is that the number of

cells whose congestion constraint involve a given path variable

y(f) is bounded by O (∆m). Therefore, by applying the ran-

domized rounding approach of [28] based on the constructive

version of the Local Lemma, we have the following properties:

(i) for each Ci, exactly one path fi with rate of 1 is chosen;

and (ii) for each cell b, we have
∑

l∈b

∑

f :l∈L(f) z(f) =

O
(

log∆m

log log∆m

)

, where z(f) is the rate of path f after rounding.

Since only one path is chosen in each Ci, each connection

c has at most one path. Further, because any interference

set can be covered by O(h2) (which is a constant) cells,

we have
∑

l′∈I(l)∪{l}

∑

c z(l
′, c) = O

(

log∆m

log log∆m

)

, where

z(l′, c) ∈ {0, 1} is the rate of connection c on l′ after rounding.

Note that though the algorithm of [28] is randomized, the

above properties hold with probability 1. In Step 6, we

scale down the flow rates by a factor of O
(

log∆m

log log∆m

)

, and

thus λ(fi) = K2

∑

c∈Ci

log log∆m

log∆m
y′′(c) for each such path

fi, for a constant K2. Therefore,
∑

c λ(c) =
∑

i λ(fi) =
∑

i

∑

c∈Ci

log log∆m

log∆m
y′′(c)K2 = Ω

(

log log∆m

log∆m

)

∑

c y
∗(c), im-

plying statement (i) of the lemma. Finally, since λ(l′, c) =
log log∆m

log∆m
z(l′, c)K2 for each l′, c, statement (iii) follows from

the above property of z()’s.

Combining the delay analysis in Section V, gives us the

following bi-criteria approximation result for DCTM problem.

Theorem 2: Let λ() be the rate vectors resulted from above.

Then, we have
∑

c λ(c) = Ω
(

log log∆m

log∆m

)

OPT (∆()) and

λ(f) = Ω
(

log log∆m

log∆m

)

. The random-access scheduling pro-

tocol ensures that, for each session c and each flow f ∈ F(c),

the average delay is O
(

( log∆m

log log∆m
∆(c))2

)

.

VII. QUANTIFYING THE DELAYS FROM ADAPTIVE

CHANNEL SWITCHING

While adaptive channel switching capabilities in recent

MC-MR and cognitive radio devices have led to throughput

improvements [31], [24], non-negligible switching delays may

be incurred. We show how our formulation can incorporate

these delays to study multi-channel systems.

Here, we discuss a single radio interface per node; this can

be easily extended to the case of multiple interfaces. Let Ψ
denote the set of channels available in the system; let ψ,ψ′

be two arbitrary channels in Ψ. If l and l′ are incoming and

outgoing links of a node respectively, let the delay in switching

from channel ψ to ψ′ be denoted by d(ψ,ψ′). Our formulation

in Section VI is based on link delays, whereas switching

delays are not captured because they are associated with nodes.

The difficulty of applying the LP formulation lies in adapting

Constraints (5c) and (5d) to multi-channel model. We tackle

this by performing a graph transformation on the network

graph G to a new graph G′ as follows. (1) We split each link in

G into |Ψ| links, each associated with a unique channel; (2) for

each node v ∈ G, we split it into
(

|Lin(v)| + |Lout(v)|
)

|Ψ|



nodes, each of which is incident with only one incoming or

outgoing link. (3) each node incident with an incoming link

is connected to each node incident with an outgoing link, by

an intermediate link associated with a switch delay.

vl1
l2

l3
(a)

d1

d2

d1

d2

d2

d1

d2

d1

l1(ψ)

l1(ψ
′)

l2(ψ)

l2(ψ
′)

l3(ψ)

l3(ψ
′)

(b)

Fig. 2: (a) Node v with incoming link l1, outgoing links l2,

l3, and channels ψ, ψ′. (b) The reduction after node and link

splitting with addition of switching link with delays d1, d2.

Let l(ψ) denote the link associated with channel ψ in G′

emerged from link l in G, and let v(ψ,ψ′) denote the inter-

mediate link switching from channel ψ to ψ in G′ emerged

from node v in G. Let L′ denote the set of links in G′, and

let L′
(1)(v) and L′

(2)(v) denote the sets of new links emerging

from step (1) and (2) above respectively for node v. Figure 2

shows an example of transforming the original network graph

in Figure 2a to the graph in Figure 2b, where switch delays

are d1 = d(ψ,ψ) = d(ψ′, ψ′) and d2 = d(ψ,ψ′) = d(ψ′, ψ).
For l ∈ G, let Pri(l) denote the primary interference

set which includes all links in G sharing an end node with

l. After graph transformation, for link l(ψ), let λ(l(ψ)) =
∑

c∈C λ(l(ψ), c). The stability condition [8] can be written as

λ(l(ψ)) +
∑

ψ′∈Ψ\{ψ}

λ(l(ψ′)) +
∑

ψ′∈Ψ

∑

l′∈Pri(l)

λ(l′(ψ′))+

∑

l′∈I(l)\Pri(l)

λ(l′(ψ)) ≤
1− δ

e
, ∀l, ∀ψ.

In the above inequality, note that l and l′ denote links

from G; the link-channel pair l(ψ) denotes a link from

G′. Additionally, we construct interference constraints on the

intermediate switching links in G′, depending on specific

switching conditions. For example, we can use
∑

l∈L′

(1)
(v)∪L′

(2)
(v) λ(l) ≤ 1, ∀v.

Then after modifying the flow conservation conditions and

using switching delay as the link cost for any intermediate

switching link, we are able to adapt the LP in Section VI to

finding a multi-commodity flow vector for the multi-channel

model. By using the distributed random-access scheduling

scheme of [19], and setting p(l, f) as in Section III, we can

obtain results in the same form as Theorem 2.

VIII. SIMULATION RESULTS

We conduct simulation study and visualize the delay-

throughput-channel tradeoffs by solving out the LP’s from

Section VI. For simplicity, we used a uniform target delay for

all sessions. First, for single-channel models, we show how

the optimal network throughput value reflects the variation

of the uniform target delay, number of sessions and network

size. Next, for multi-channel models, we show the trend of

the optimal throughput as the number of channels and ∆
values vary. Experiments are carried out both on random unit-

disk graph topologies and grid network topologies, with both

primary interference and two-hop interference models. LP’s

are solved with SCIP [1] and SoPlex [44] bundle.

Single-channel networks. We generated random unit-disk

graphs with varying sizes, and varied the number of random

connections for a network topology. For each choice of net-

work size, number of connections and ∆ value, we perform

500 iterations of random topology and connection generation,

plus LP formulation. Figure 3 shows numerical tradeoff curves

under the same interference model. Figure 3a features a fixed

network size of 100, and Figure 3b features a fixed number of

flows equal to 8. Intuitively, as ∆ values increase, thereby

loosening the delay constraint, the optimal throughput will

rise; as the number of random connections increases, the

optimization process gets more exploration space, yielding

greater optimal network throughput. The saturation of the

curves happen where the interference plays a major role

through the constraint for stability in the LP.

Multi-channel networks. Figure 4a and 4b show the optimal

throughput calculated by solving the LP’s for grid topolo-

gies with 2-hop interference model on grid topologies. As

expected, the total throughput increases as additional channels

are equipped and delay bound is loosened. Saturation points

are observed in both plots. Addition of channel resources

alleviates the severance of interference, thus yielding a slower

saturation process. Also, loosening the delay bound produces

similar effects, and the addition of channels make the opti-

mization process to explore more of the delay bound.

IX. CONCLUSION AND OPEN PROBLEMS

Characterizing delay-throughput tradeoffs and bounds is a

fundamental problem in wireless networks, with numerous

applications. In this paper, we develop a theoretical framework

to rigorously bound this tradeoff and provably approximate the

maximum throughput with given per-session delay require-

ments. Extending these techniques to bound the average per-

session delay with additional fairness constraints is a very

challenging open problem. Maximal scheduling [33] also fits

in our DCTM framework. However, bounding end-to-end

delay for maximal scheduling is an open and difficult problem.

New progress on this will likely enable our DCTM framework

for maximal scheduling.
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channels.
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