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Abstract

A fundamental problem in wireless networks is to estimate their througtgpaocity - given a set of wireless
nodes and a set of connections, what is the maximum rate at which daekee cgnt on these connections. Most of
the research in this direction has focused either on random distributiguasnt$, or has assumed simple graph-based
models for wireless interference. In this paper, we study the capadityat®n problem using a realistic Signal to
Interference Plus Noise Ratio (SINR) model for interference, oitrark wireless networks without any assumptions
on node distributions. The problem becomes much more challengingi$osdtiing, because of the non-locality
of the SINR model. Recent work by Moscibroda et al. (IEEE INFOCOM& ACM MobiHoc 2006) has shown
that the throughput achieved by using SINR models can differ significiiom that obtained by using graph-based
models. In this work, we developolynomial timealgorithms to provably approximate the throughput capacity of
wireless network under the SINR model.

1 Introduction

A fundamental problem in wireless networks is to estimagé tinroughput capacity - given a set of wireless nodes, and
a set of end-to-end (multi-hop) connections, what is theimasn rate at which data can be sent on these connections?
Starting with [11], there has been a large body of work on phablem, especially for networks formed by a random
distribution of nodes in the unit square. A related and moaetical question is to estimate the capacity of the given
network, and develop protocols to utilize the network clwsits capacity. This question becomes difficult in wireless
networks because of interference, which constrains thefdietks that can transmit simultaneously. The algorithmic
aspects of network capacity have been studied in a numbexpefrp, such as [2,13-15,17, 26].

A commonly used approach when designprigvably good algorithmss to represent the underlying wireless net-
work as a geometric intersection graph. For a set of ndédes an Euclidean plane, each nade V' is associated
with a disk of radiusrange(u), which depends on the transmission power leiel) of nodeu; a common approx-
imation is to chooseange(u) = O((J(u))*/*), wherea is the path-loss exponent, and the signal from node
assumed to be heard only within this range. This gives usdheectivity graphG = (V, E') where sef¥ is obtained
by adding links fromu to v, for all u,v € V, if d(u,v) < range(u), whered(u,v) denotes the Euclidean distance
from nodewu to nodew. Interference in such a graph is modeled througltependence constrain{see e.g., [25]):
if a nodew transmits, no node in its vicinity can transmif number of papers have studied MAC protocols with
these geometric models of interference [25, 26]. Intuijiveuch graph-based models make the algorithmic analysis
tractable since they localize the interference effect ohadceiver on others.
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While such graph-based models give a useful first approximat understanding wireless networks, they have
several limitations. Graph-based models assume thatghaldrom a radio can only be heard within its range and
that signal collisions always lead to lost messages. Thesa@ptions oversimplify the real process. A more realistic
model that has been used to study wireless transmissioiiés! ¢he Signal to Interference Plus Noise Ratio (SINR)
model [11, 23]: a signal from a transmitteris successfully received by a receiveratif the ratio of u’s signal
strength atv and the combined interference from other transmittersgaloith ambient noise exceedss antenna
gain. In other words, a set of transmissiens= (u;,v;),Vj = {1,...,k}, where node:; transmits to node; can
be simultaneously scheduled if for all = (u;, v;) we have,

SINR(v;) = J(e:) > B, 1)

J (ij
d(ug, v;)* {NO + D d(u;,vi))a

where N, denotes the noise density,denotes the path-loss exponefitis the antenna gaini(u;, v;) denotes the
Euclidean distance between nodgsv; and.J(e;) denotes the power level with which nodg transmits. Recent
work by Moscibroda et al. [21-23] has shown that for severabjems, this model is significantly different from
graph-based models. In [21,23], they show that for the proldf minimizing thescheduling complexityy choosing
appropriate transmission power levels, SINR models cald yieich shorter schedules. In [22], they show that the
throughput capacity under a SINR model is different front tieder a graph-based model. The non-locality of this
model makes its analysis challenging.

In this paper we consider the problem of characterizing théexable rates for arbitrary multi-hop wireless net-
works with SINR constraints.The central contribution of this work is the solution to the following cross-layer
optimization problem: given a set of wireless transmitters, set of connections and a power assignment for all
transmission links in the network, what should be the rate at which data is sent from every source, how are the
packest routed through the network, and how should the transmissions across the links be scheduled, so that the
network-wide throughput (or a throughput related objective) is optimized? The formal description of the prob-
lem is as follows: Given a set of nodé5, a set of possible directed edgés a set of source-destination pairs
D = {(s1,t1),.--, (s, tr)}, and a power level vectof that specifies power level(e) for transmission on edge
the throughput maximization problem with SINR constra{ft$1-SINR) consists of

e choosing routes for the connections (Routing),
e choosing flow rates on the routes (Rate Control), and

e choosing which links to schedule at each time slot, so tlaSINR constraints are satisfied for all simultaneous
transmissions (Scheduling).

We note that th& M-SINR problem does not involve power control, i.e., the powerlevée) for each edge are fixed
and given as part of the input (e.g., the power levels coulddtermined based on energy consumption requirements
or other network life-time requirements by a higher-laygplacation).

The SINR constraints make the throughput optimization fgmmimon-convexFurther thdink schedulingproblem
with SINR constraints has been shown to be NP-hard in [10]jce&Sscheduling is also an integral component of our
problem, it is reasonable to conjecture thatTid-SINR problem is also NP-hard. We therefore focus on developing
rigorouspolynomial timeapproximation algorithms for our problem wigiovable performance guarantees

In reality, the link capacities depend on the SINR [1], tihwrenaking this problem very complex. We simplify
this by using the Additive White Gaussian Noise (AWGN) modeldpecifying the link capacities [5]. In this model
the capacity:ap(e) of alink e = (u, v) having lengthY(e) = d(u, v), whered(u, v) is the Euclidean distance between
nodesu, v, and transmitting at power levél(e) is given by

_ J(e)
cap(e) = W10g2 <1 + é(e)o‘]\/bVV) , (2)
whereW is the bandwidth, andvy and« are as defined following equation 1. In the absence of intenfee, the
above equation provides a theoretical upper bound on thedipacity. The maximum throughput problem with SINR
constraints is significantly challenging even under the AW@bdel and we focus on this model in this work.



2 Overview of results

We rigorously study th& M-SINR problem in wireless networks, and take the first steps towaveloping efficient
algorithms for this problem. The main contributions of owrwvare summarized below.

1. We compare the SINR and graph-based models for the sata@des with the same fixed power levels, and
observe that the throughput capacity can be significanffigréint in these two models. When the power level for
all the edges is the same, we show that there are instancésdh the throughput capacity that can be achieved
in the SINR model is significantly higher than that achievedhie graph-based model. For the caséraar
power levels (wherd(e) o ¢(e)“ for each edge), we show that there are instances in which the throughput
capacity achieved in the SINR model can be much lower tharaittdeved in the corresponding graph-based
model with the same power levels. In contrast, the resul{f b¥23] show that by choosing suitable power
levels, a much higher throughput capacity is possible infFSmbdels than in graph-based models. Since all
these models of interference are approximations of théyetdis suggests greater care is needed in inferring
any properties of the system based on such an analysis.

2. We develop a linear programming based approach to appadeithe maximum throughput rate vector in the
case of SINR constraints. For the generic case of non-unifmwer levels, in which the power levels on differ-
ent edges could be different, we develgpodynomial timeapproximation algorithm that provides a feasible rate
vector whose total throughput is at leé¥tr,,: / log A - log I't). Herer,,; is the maximum possible throughput
for any particular instance of tHEM-SINR problem,A is defined ag\ = max.cg ¢(e)/ ming g ¢(e’) where
{(e) denotes the length of the edgeandT is the ratio between maximum and minimum power levels usats T
gives us arO(log A - log(T")) approximation to the total throughput. Our approximatiowifd is a worst case
guarantee that holds for every instance. To our knowledg®jd the first such provably good polynomial-time
capacity estimation and throughput maximization algamitfor arbitrary networks under SINR interference
constraints.

3. We consider two special cases of power level choiagsiform power level choice (when all nodes have the
same power levell) andlinear power level choice (where the power level on each edge (u,v) such
thatl(e) = d(u,v) is J(e) = ¢ - £(e)* for a constant;). For both the cases we improve the throughput
approximation taD(log A).

4. We conduct simulations to validate our theoretical maael demonstrate that the data rates obtained by our
model are achievable in a realistic setting. We compareehalts of our approximation algorithm with the
optimal solution for small network instances. We obsena the upper and lower bounds derived by our
technique are worst-case bounds and the approximatiomugiea achieved in practice is much better than that
predicted by our model. These experimental results helmdenstand the limitations of our approach and assist
in identifying certain parameters for improving the penfiance of our model.

5. Finally, we show that a constart?(1)) factor approximation can be achieved to the maximum thnpugfor
the special case where the topology is a grid.

A preliminary version of this paper appeared in [8], and cedehe first three results mentioned above. In this
paper, we additionally conduct extensive simulationshfitlate and improve upon the theoretical results in pcatti
instances. We use both random and realistic topologies derstand the approximation bounds of our algorithm.
We view theTM-SINR problem as di-criteria approximation problem, wherein by adding certain constsatio the
input power level, we ensure that our solution is poly-logtda away from the optimal solution. For a given instance
of the TM-SINR problem, we obtain a solution that uses a slightly highergrdevel on every transmitting edge than
the power level used by the respective optimum solution. i8ydasing the power levels by a factorlof- ¢, where
e is a small positive slack, we ensure that the rate vectoErdd by our solution can be scheduled feasibly. This is
explained formally in Section 6.3. Our algorithm builds ngbe recent work of [7,21, 23] on scheduling with SINR
constraints, and the LP based approaches of [14, 17] fanastig the capacity for graph-based interference models.
We note that the primary focus of this work is theoreticalj anr framework does not incorporate all the aspects of
different protocols. However, it can help in obtaining dbg® performance limits on the system, which can help in
evaluating real protocols.

1All the logarithms considered in this paper are to the baseatwebfloor of the log functions is considered, for dag A is actually considered
as|log A|.



3 Related Work

There has been significant work on understanding the cgpafaiatndom networks using both graph-based and SINR
models (see, e.g., [4, 11, 16]). However, these results ddirectly help in understanding the capacity of arbitrary
networks, which is the focus of our paper. The throughputimepation problem for graph-based models is formally
studied and proven to bgP-hard by Jairet. al.[13], who use a linear programming approach to charactehize
capacity of the network and to perform routing. They mod#driference constraints asanflict graphand provide
upper and lower bounds for optimal throughput. As mentioimef], the methods discussed in [13] tend to have
an exponential complexity and merformance guaranteed polynomial tirmpproximation algorithm is proposed.
Toumpiset. al.[28] provide a mathematical framework for determining tlag@acity region of an ad-hoc network,
which captures the effects of power control, spatial reusk saiccessive interference cancellation on the capacity
region. However, their results do not give worst case appration guarantees.

Kodialamet. al.[14] study the problem of determining achievable rates faitinihop wireless networks, along
with joint routing and scheduling constraints in graphdzhsodels. Their approach provides necessary and sufficient
conditions for link flows and leads to@olynomial timeapproximation algorithm for this problem. However, they
only consideprimary interference in their model, which is very restrictive. lein al. [19, 20] study the joint problem
of rate allocation and scheduling using a dual optimizatiased approach to decompose the problem as rate control
and scheduling problem. Their technique provides an oplation that maximizes the throughput and provides a
stable and fair schedule considering the primary intenfegemodel. Although some of these approximation bounds
have been improved in recent work by Buragohetinal.[6], it is not clear how these techniques could be extended to
the SINR interference model.

Some of the key algorithmic results on the SINR model areistlieh [7,21-23]. Moscibroda et al. [21-23] study
the problem of scheduling edges with SINR constraints toerthat some property (e.g., connectivity) is satisfied by
the edges that are chosen. They show that by suitable powtotdhe solutions in the SINR model are much more
efficient than those in graph-based models. Chafekar étlaleelop approximation algorithms for packet scheduling
to minimize end-to-end delays with SINR constraints.

Our work is closely related to [7,9,17]. The work by [17] pid®s a constant approximation algorithm for
the throughput maximization problem along with joint schi@ty and routing. The interference model considered
is graph-based and their approach is generic enough to accdate the case of uniform and non-uniform power
levels. They further derive linear necessary and suffi@entitions that lead to a constant factor approximatioheo t
throughput capacity. However, the framework presented 7} ¢annot be easily extended to the SINR interference
model. Chafekar et al. [7] design a polylogarithmic appmeadion algorithm for the problem of end-to-end latency
minimization in the SINR model, which was improved by Fangeet al. [9]. In this work, by combining and
extending some of the techniques from [7,17], we study traufhput maximization problem along with joint routing
and scheduling for the SINR interference constraints.

4 Preliminaries

We consider the input instance of tid-SINR problem to be specified &= (V, E, D, .J), where (i)V denotes a
set of transceivers henceforth referred to as nodes, winicloeated on a Euclidean plane, () € V' x V denote

the set of possible directed links (also referred to as g§dgeswhich transmissions can occur, (ifi) is a set of
connections, with théth connection from node; to nodet;, and (iv)J = (J(e) : e = (u,v) € E) specifies the
vector of power transmission levels on edges. &ar € V, letd(u, v) denote the Euclidean distance between these
nodes; fore = (u,v) € E, let{(e) = d(u,v). Following standard graph theory notation, Mét,,; (u) and N;,, (u) be

the sets of outgoing and incoming edges for nadespectively. Let

— 3 \.
A = max{f(e)}/ min{£(e') };
wherelog A is also called the “length diversity” [10]. Also, let

max, J(e)

ming J(e')’

LetL = {0,...,[logA]} andM = {0,..., [logT|}. Letjyum = mineep J(e). Without loss of generality, we
assume thatin.cz{¢(e)} = 1. We defineH} = {e € E : {(e) € [2},2!T1) A J(e) € [Jmin * 2, jmin - 28T1)},

4



fori € L,k € M. Note that for edge € E, its power levelJ(e) is given as an input, and so our assumption of the
AWGN model (equation 2) implies that its capacityp(e) is also fixed. We will be interested in two special cases of
power level choices: ({Yniform power levelsin which we haveJ(e) = J for a constant/ - in such a case, we denote
the input instance & = (V, E, D, J), and (ii) Linear power levelsin which .J(e) = ¢; - £(e)* wherec, is a constant
andc is the path-loss exponent as discussed earlier. As sugged®3], we assume: > 2.

Note that for any case of power level choice, for any edge (u,v) € E, we require/(e) > (1 + ¢)5Nol(e)®
for the transmission on edgeto be feasible, even in the absence of any other interfereviteree is a small positive
slack. We compare our solution with that obtained by thenogltisolution with the criteria that optimum solution uses
power levelJ(e) that satisfies the following conditionf(e) > SNyé(e)*Ve € E.

4.1 Interference Model

We use the SINR model of interference as described in [7, B8}this setting, a given seb’ = {e; = (u;,v;) :
i =1,...,k} of links can simultaneously communicate successfullyifdache; = (u;,v;) € E’, the SINR(v;)

satisfies Equation 1. For any edge= (u;,v;) € E’, we definel,(v;, E') = Zej:(uj,@j);aei d(ujf%))a as the the

interference at receiver; due to all other transmissions - we will simply denote thida®;) if the setFE’ is clear
from the context.

4.2 Link rates and feasible end-to-end schedules

We consider a séb = {1, ..., k} of connections, witty; andt¢; denoting the source and destination respectively, for
connection. Let f;(e) denote the mean flow rate on limKor the:th connection, and lef(e) = Zf fi(e) denote the
total link flow. We letz(e) = f(e)/cap(e) denote thdink utilization - this denotes the fraction of time linkis used.
The vectorsf andz are called the flow antink utilization vectors respectively. An end-to-end schedslldescribes
the specific times at which packets are transmitted overiis bf the network. For schedul®, let X (e, t) be an

indicator variable such that
X = { 1 if e transmits with at time
e,t

0 otherwise.

We say thatS is valid if the SINR constraints are satisfied at all the reees at every time. We say thatS feasibly
schedules thénk utilization vectorz if we havelimr_, >, - (T”) = z(e) for each edge - in this case, we say
thatS corresponds to the utilization vector The rate regiont'(Z) is the space of all utilization vectorsfor the
instanceZ of TM-SINR that can be scheduled feasibly.

Let r; denote the end-to-end rate on tile connection in bits per second, resulting from the flow eedt In
this paper we are interested in maximizing the total endrtd%ater r;. For an instanc& = (V, E, D, J) of TM-
SINR, letr,,;(Z) denote the maximum possible total throughput rate thatisifile. We say that a utilization vector
z € X(Z) is a~y-approximation to the throughput maximization problemhi resulting total rate achieved is at least
v - ropt(Z); We say that an algorithm is-eapproximation algorithm, if for any instan@eof TM-SINR, it provably
produces such a-approximate solutior € X'(Z) in polynomial time Note that this is a worst case approximation
result.

4.3 Congestion Measure

Following [7], we define a notion of congestidh that will play a key role in our algorithm. Fer= (u,v) € E, let
0(67 El) = { = ( U )

() > d(u, )

/\f( ") = ell(e)}

and letC = max.cp |C(e, E')|. Here,a is a constant such that> 4 ¢ % e is a small positive slack and

a > 2 is the path-loss exponent. The significance of the congestiaos that it provides a lower bound on the
number of feasible simultaneous transmissions [7], whiehuse to approximate,,.. Figure 1 demonstrates the
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Figure 1: lllustrating congestion measure for a link. Thédstines represent edges along with edge lengths
(e.g.,l(e) = 2). The dotted lines represent distance between two nodes {€u,u;) =5). Leta =6. Then
C(e) ={e,e1,e3} forlink e = (u,v). By definition,eq, e2 ¢ C(e) sincea - £(es) < d(u,uq) andl(es) < £(e).

congestion measure for link= (u, v). Intuitively, any linke = (u,v) with high congestion value could have the
SINR constraints violated at its receiver
Table 1 gives a list of most of the notation used in this paper.

5 SINR vs Graph-based models

In this section, we compare the SINR and graph-based mattis icontext of the throughput maximization problem.
Given an instanc€ = (V, E,D,.J) of TM-SINR, we follow the approach of [23] in constructing an “equivale
connectivity graphG = (V, E,,,) and a resulting instancg,,,, in a graph-based model in the following manner.
Recall the notation from Section 4. In the rest of this sextise will consider instanceg of TM-SINR in which
every nodeu € V uses a fixed power level(u) = J for every incident linke = (u,v) € E. We associate a
transmission range of(u) = (J(u)/c;)'/* with every nodeu € V for a constant;, giving rise to a disk graph
G = (V,Egm) With (u,v) € Egp, if d(u,v) < r(u). This is a directed graph in general, if nodes have non-
uniform transmission ranges. The corresponding instdgeconsists of this grapli’ along with the same sé&?
of connections, as if. Note that the set of edges on which transmissions can happha same in both models.
For every edge € E,,, we use the same expression éap(e), the capacity of edge as inZ, since this comes
from the AWGN model. What is different is the interference - ve@ ciow use any graph-based interference model
to specify the sef,,, (e) of edges that interfere with- for concreteness, we use the distance-2 matching modgl [17
which defined,, (e) = {¢/ = (v/,v") : dg({u, v}, {v',v'}) < 1}, whered () defines the distance between two sets
in the graphGG. A schedule is valid in the graph-based model, if at any tinteedgee is simultaneously scheduled
along with some edg€’ € I, (e). Letr));(Z,,) denote optimum throughput rate possible for this instandae
graph-based model.

We show the following results in this section.

am

e If the instanceZ of TM-SINR hasuniform power levels, the ratie,(Z)/r;,; (Z,m) can be arbitrarily large,
i.e., the corresponding graph-based model underestirnfaakroughput capacity significantly.

e Incontrast, when the power levels in the instaficé TM-SINR are linear, we show that the ratig,.(Z) /7, (Zgm)
can be arbitrarily small.

The above results show that if the power levels are fixed,dta throughput in both the models is very different
- this is in contrast to the results of [21, 23], which showt thy choosing appropriate power levels, a much higher
throughput is possible in the SINR model for the same ingtanc



number of nodes.

set of nodes.

set of all edges.

set of outgoing edges from node

N, set of incoming edges to node
D ={(s1,t1), . (Skytr)} set of source-destination pairs.
file) flow on edgee for ith connection.

total flow on edge-.

rate for flow: .

r= Zf 7 total rate.

cap(e) capacity of linke.

w(e) = link utilization

w single window or frame.

C(e) congestion set for link.

C = max.cp |C(e)| Max congestion.

J power level vector.

Jmin = Mineep J(€) minimum power level.

A ratio of max. to min. node-distances.
T ratio of max. to min. power assigned.

L={0,...,|logA]|}

set of possible edge lengths.

M =1{0,...,logT'|}

set of possible power values.

S a valid schedule.

Q@ path-loss exponent, assumed to be ¢, 2.
B antenna gain.

Ny ambient noise.

a, A07Ala)\2567cl

positive constants.

Table 1: Notation used in this paper

5.1 Uniform power levels

We construct the following instand@e= (V, E, D, J) of TM-SINR, with uniformpower levelJ for all transmissions.
Let R = (J/c1)'/ be the corresponding transmission range in the correspgrtaph model, as discussed earlier;
we assume thak is a large integer. Let" = {ug} U, {u;,v;} be a set of nodes, which are placed in the following
manner. Imagine a circle of radiug/2 centered at nodey, and the nodes, ..., u, uniformly placed on the
circumference of this circle at a spacing®fv/R), so thatn = ©(vR) = ¢, - VR (cf. Figure 2). Eachy; is at a
unit distance fromu;, fori = 1,..., n. Let the connections i® in the instanc& be all the paire; = (u;, v;), for all

1 =1,...,n. Letcap = cap(e;) denote the capacity of any lirk in bits/sec; note that this is the same for every edge
e; in this setting. For simplicity, we ignore the ambient noise., assumeV, = 0. It is easy to extend these results to
take the noise into account.

Lemma 1 For the instanceZ of TM-SINR and the corresponding graph-based instadgg, described above, we
haveroy:(Z)/ré (Zgm) = Q(cap - VR), assuming3 < ¢4 - R“~1/2 for a constant.

Proof Observe that for all # j, VR < d(u;,u;) < R. Thereforel,,,(e;) = {e; : j # i}, which implies that
at any time, at most one edge can be scheduled in the graph-based model in the instBp¢e This implies that

7”5;? (Zym) = ©O(cap) bits/sec.



Figure 2: lllustrating an example that compares the thrpughchieved between SINR and graph- based models for
uniform power levels. A circle of radiu®/2 is centered at node,. Distance between any two adjacentu; is
O(VR). Each edge; = (u;,v;) has length(e;) = 1 units andJ(e;) = J.

Next, consider the SINR model for the instaritef TM-SINR. Suppose all the edges = (u;, v;) are scheduled
simultaneously - the SINR ratio at any receivgin this case is,

J
SINB(v) = t(es)> [Z?;ez' J/d(”i’“j)a}
N c1 R
B [02-\/?61'30‘/(‘33'@)&}
> B

where the first inequality follows from the fact thdt= ¢, - R*, n = ¢y - VR, andd(v;,u;) > (VR) = ¢3 - (VR)
for this instance, and the second inequality follows i ¢4 - R(“~1)/2 for a constant, = c§ /c,. This implies that
all the edges; can be scheduled simultaneously in the SINR model, leading,t(Z) = ©(cap - v'R), and so the
Lemma follows.m

5.2 Linear Power Levels

u; v WUi+1  Vig1 Uj+-2 Vi42
*—o *——e ————o
— — | |
2i 2i+2 2i+1 2i+3 2i+2

Figure 3: lllustrating an example that compares the thrpuglachieved between SINR and graph- based models
for linear power levels. Representing a line topology, such that edge® = (u;, v;) has length/(e;) = 2¢ and
d(vi,uip1) = 272, J(e;) = c1l(e;)®, for constant;.

We now construct an instané = (V, E, D, J) of TM-SINR with linear power levels, i.e., for each € E,
J(e) = c1l(e)?, for constant;. The setV = U" ,{u;,v;} has2n nodes, which are located on a line in the order
UL, V1, U, V2, . . ., Un, Up. FOralli =1,...,n, we haved(u;,v;) = R; = 2¢, and foralli = 1,...,n — 1, we have
d(vi,uip1) = 2172 (cf. Figure 3). The setf = {e; = (u;,v;) : i = 1,...,n} will be the only edges used for
transmission, with/(e;) = ¢ RS, for eachi. All the connections irD in this instance are the paies = (u;, v;), for



i1 =1,...,n. Because of our AWGN model for the link capacities, as disetiés Equation 2, it follows that for all

e; € E, cap(e;) = cap is a fixed value. Each node has only one incident edge in the d&tso for the graph-based
model, we set(u;) = R; = 2°. Therefore, for the corresponding graph-based inst@pge the connectivity graph
G=(V,Eyn)hasE,,, ={e;:i=1,...,n}.

Lemma 2 For the instanc& and the corresponding graph-based instafigg described above, we hav&; (Z,,,,) /7opt(Z) =
O(n).

Proof First, observe that for the graph-based interference inirtsanceZ,,,,, we havel,,,(e;) = ¢ for each
e; € E4,,. Therefore, the edges do not interfere with each other and all these edges camtibasnultaneously in
this model, leading to a throughput capacityXffz - cap).

Next, consider the SINR model. For simplicity, we ignore itwése densityV, though it can be easily incorpo-
rated. LetE’ be any subset of these edges that can transmit simultageansl lete; be the shortest edge among
them. For alle; € E', ¢; # e;, we haved(uj, v;) < S°1_1 (2542 4 2+H1) < ¢,2/ = ¢, R;, for constant,. For these
transmissions to be feasible in the SINR model, we must have

J(ei)
a | J(ej)
£(67) ZejEE’,ej;zéei E/|d(uj,vi)a

> B,
)

where the LHS is the SINR ratio at. Rearranging, and using the fact thit:;, v;) < coR; for eache; € E’, we
have|E’| is O(1/3), which is a constant. This implies,.(Z) = O(cap/f), and so the Lemma follows

6 Throughput Maximization with SINR constraints TM-SINR

In this Section, we consider the generic case of power lewélerein the power level on every edge E'is J(e) and
is specified by the corresponding vectar We first formulate a linear program for tHéVI-SINR problem and then
derive the necessary and sufficient conditions for link fleabgity.

6.1 Problem Formulation

In this Section we mathematically formulate th&l-SINR problem. We consider input instancesTdf-SINR spec-
ified asZ = (V, E,D,J). Recall the notation from section 4. It can be seen that duegmon-linearity of the
SINR constraints, the exact formulation of th-SINR problem isnon-convex We develop a linear programming
relaxation of this problem by combining the approaches of [7, 17] - wewshioat bothnecessaryand sufficient
conditions can be derived for the feasible rate region bysictaming the totalink utilization in the edges in the set
C(e) for any edgee. In order to achieve atableandfeasibleschedule, we partition the sét of edges into sets
Hi = {e= (u,v) € E:{(e) € 28,277 A J(€) € [Jmin - 2%, Jmin - 28T1)},Vi € L,k € M}. As we discuss in the
next sub-sections, this partitioning helps the scheduwdiggrithm to bound the number of links that can be scheduled
simultaneously without violating the SINR constraints eg¢ry receiver. Our formulation for instan@edescribed
below is denoted b (A, Z), where\ is a parameter.



max Z r;  subject to:

i€D
VieDiri= Y. file) (3)
eeNout(Si)
VieD, > fie)=0 4
eEN;n(s;)
Ve € E, x(e) = _ fie)/cap(e) ®)
1€D
Vie D\Vu#siti, >, file)= > file) (6)
€ENout(u) eEN;, (u)
Vec EVie LVke M, >  a(e) <A 7)
e’cC(e)NH}

In the above formulation, constraints (3) define the totsd rafor each connection, constraints (4) define the link
utilization z(e) for each linke, constraints (5, 6) ensure flow conservation, and conssréf) are relaxed congestion
constraints - these are tlkeyconstraints that allow us to use this program to derive uppérlower bounds on the
optimum rate. The prograf(\,Z) haspolynomialsize and can be solved polynomial time

In the subsequent sections, we show that the optimum utilizaector satisfie® (), Z) for some constant value
of \. We then show that scaling the constraints down by a factaradfows us to schedule the flows feasibly.

6.2 Link-Flow Scheduling: Necessary Conditions
The following Lemma shows th&(\, Z) gives an upper bound on,;(Z) for a suitable choice of.

Lemma 3 LetZ = (V, E,D,J) be an instance of th&M-SINR problem, and lett € X(Z) be anyfeasible link
utilization vector. Theng satisfies the following conditions:

Vee BEVie LVke M, Y () < o,
e’eC(e)NH},
(2a+1)%

where)\q = 6T +1, 0 = 2, anda is the constant defined in Section 4.3. This impliesthata feasible solution

to the programP (Ao, Z).

Proof  Since thdink utilization vectorz is feasible, there existsstablescheduleS which achieves the link rates
specified byz. Recall the notatioX (e, t) from Section 4. LetE, = {e : X(e,t) = 1} denote the set of links that
transmit at timet in this schedule. We now focus on any edge: (u,v) € E;. Let A,(e) = E; NCl(e) = {e; =
(uj,vj) € C(e) : j =1,...,s} be aset of links inC(e) that are scheduled simultaneously at tim®efineG;, =
{e € B fmin-0F < J(€) < jmin-0%},Vk € M. We argue below that the number of links that can be simuttaslg
scheduled from se&p, . (¢) = A.(e) N Gy, for any edge:, at any timet and anyk € M is O(1). Let the links in the
set@, x(e) be numbered in non-decreasing order of their lengths, sdtha v1) < f(u2,v2) < ... < (ue,ve) (CF.
Figure 4). For simultaneously successful transmissiomese links, the SINR at each nodg and in particular at
nodev. needs to be at least
Consider any;, e. € Qqx(e), e; # e, we haveJ(e.)/0 < J(e;) < 8J(e.). Further it can be seen that,

d(uj, ve) d(u, uj) + d(u, ue) + d(uc, ve)

2ad(u,v) + d(ue, ve)

(2a + 1)d(ue, ve),

INIACIA

where the first inequality follows from the triangle inegtiabnd the last two inequalities follow from the definition
of C'(e), which implies that for any’ = (uv/,v") € C(e), we must havel(u,u') < a - £(e’) andl(e) < £(e').
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ec v;

Ve

Figure 4: For a given link = (u,v) and set); x(e), d(uj,v.) < (2a + 1)d(u.,v.) , Wwheree.,e; € C(e) ande, is
the link with longest length in s&p, ;. (e).

The interference experiencedatdue to all transmitting links i), . (e) — {e.} is

U
I (vc) ej_(uj’ng?t,k(e)vj# PR
Therefore, in order to satisfy the SINR constraint at nodere need,
J(ec)/d(ue, ve)®
No+2c,cqu(e)ize/(€5)/d(uy, vc)a]

> B

Rearranging, we have

d(z{(e;))a 2 B Not ) d(z{-(ei))a
cy Ue e, €Qq n(e) je s Ue
s s B

0(2a + 1)*d(ue, ve)®

BJ(ec)(c—1)
0(2a + 1)*d(te, ve)®

This in turn impliesc < 9% + 1, and therefore, we have
Vee BVt Y X(e,t) < Ao
e’€Qt k(e)

Observing that’(e) N H}. C C(e) N Gy, for anyT we have,

Vee B.Vke MVie L, Y > X(¢,t) <Th. (8)
e’eC(e)NH; t<T

Dividing both sides of (8) by, the Lemma follows from the definition af(e) in Section 4.2m

6.3 Link-Flow Scheduling: sufficient conditions

In this section, we show that the progrdni\, Z = (V, E, D, J)) can be used to derive sufficient conditions for link
flow stability for the instanc& of TM-SINR, for a suitable value of the parameter This requires showing that a
solutionz to the prograni (), Z) can be scheduled feasibly, under suitable conditions and.J. We describe an
algorithmFrameSchedule for constructing a feasible schedule below.
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We assume that time is divided into sufficiently large frajweith the length of each framéV| = w. Recall the
definitions ofA, I' and the set#/; from Section 4. We further subdivide each frafiieinto (1 + log A) - (1 +logT)
sub-framedV; ;, such thafWV; ;| = w’ = w/(1 +1log A) - (1 +1ogT'), Vi € L,Vk € M. We assume that lengths of
sub-framed¥V; ., Vi € L,k € M and thatz(e) - w' is integral for alle € E. Algorithm FrameSchedule constructs
a periodic schedul& by repeating a schedulsy; for every framelV. Within each sub-framéV; ;, the algorithm
considers only the edges from the #&f and assigns(e) = z(e) - w’ slots for each edge € H; such via a greedy
coloring scheme. In this scheme we consider the edges inraagteg order of their lengths and assign time slots to
each edge such that no two edges with ¢ € C'(¢’) are assigned the same time slot. The final schedule is cotesiru
by combining scheduleSy, for all the frames.

Algorithm 1: FrameSchedule

Input : (i) E,(ii)z, (i) W,(iv) J,(v)w
Output: Setss(e) for all edges: and schedul&yy,
1 for e € Edo

2 | s(e)=¢
3 end
4 PartitionV into (1 +log A) - (1 + logT") setsWW; , of equal size, foi € L, k € M.
5 for i = |log A| downto0 do
6 for k = |logT'| downto0 do

/1 Greedy Col oring
7 Order edges i}, in non-increasing order of their lengths, such tHat, ., = {e1,...,es}.
8 for j = 1to|Hj} ,,,.| do

s'(ej) = UefeC(ej)m{eh...,ej,l} s(e’)

10 s(ej) = any subset of; ;, \ s'(e;) of sizew - z(e;)
11 end
12 end

13 end
Construct schedul§y, : at each time € 1V, schedule all linkg € E with ¢ € s(e).

N
~

For the algorithnFrameSchedule to be stable, we need to find conditions under which the dlgorcorrectly
assigngs(e)| = xz(e) - w’ number of slots for each e E. The following Lemma proves that for a suitable value\pf
the algorithm is indeed successful.

Lemma 4 AlgorithmFrameSchedule correctly assignss(e)| = x(e) - w’ slots for each edge, if thelink utilization
vectorz satisfies the following conditiong: € FE,Vi € L,Vk € M:

1
>, )<
e’ €C(e)nH; (1+1og A)(1+1logT)

This implies thatr is any feasible solution to the linear prograﬁ(WM,I)

Proof Let us assume that for some edgec H; with link utilization z(e;), algorithmFrameSchedule fails to
assigns(e;) = z(e;) - w’ slots. Therefore, we must have,

w

> s> : .
e’ €C(e;)NH (1+1logA)-(1+1logl)

Dividing both sides byw, we getze/ec(ej)nHi z(e’) > 1/(1+1logA) - (1+1logI'), which contradicts the condition
onz.m '

Since the prograr®(\, Z) has size polynomial im, the link utilization rates:(e) are rational and of the form
Z1/Zy, with both 7, Z5 < 27 for some constant. Therefore, the frame size is also bounded by”C. As we
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discuss later in Section 6.4, we can modify the link utii@atvectorz so that the frame size becomes a polynomial
in n, with a slight reduction in the total achievable throughput

Next, we need to show that the Schedule produced by algofittnmdeed valid, wherein the SINR constraints at
every receiver are satisfied.

Lemma 5 Letz be a feasible solution to the progra®(1/(1 + log A)(1 +1logT'),Z = (V, E, D, J)). Then, Algo-
rithm FrameSchedule produces a feasible schedule corresponding tor the instanceZ’ = (V, E', D, (1 + €)J
of TM-SINR, whereE’ = {e € E : J(e) > (1 + ¢€)8Nof(e)*} in which the SINR constraints are satisfied at all

receivers, for constanis > 2 %/%@56), a>2¢e>0,andd = 2.

Proof We show that at any tim& the setF; of links scheduled at this time ifi can indeed be transmitted simulta-
neously, while satisfying the SINR constraints at eachivece

By construction, there exists as’éf; suchthatfy; C H,Q forsomei € L,k € M. Consider two edges;, e,,, € Ey
with £(e;) < {(e.,). Since these two edges are scheduled simultaneously, ithedke case that,, ¢ C(e;), which
impliesd(uj, u,,) > amax{l(e;),{(ey)}. Foranye; € Hj,, we havel(e;) € [jmin - 2F, jmin - 28F1) which implies
J(em) < 0.J(e;). Further, we havé(e;) € [27,2'T1), and therefor@2’ > al(e;)/2. This implies that if we place a
disk of radiusaf(e;)/4 centered at the end points of each edg&jnall these disks would be disjoint.

Figure 5: For agivenlink; = (u;,v;) € E;, construct rings of radius/(e;) aroundu;. We calculate the interference
experienced by node; due to other simultaneously transmitting links.

Consider any; = (u;,v;) € E;. We estimate the SINR at; in the following manner. As in [7,23], we partition
the plane into ringsk,; centered at,; (cf. Figure 5) ford = 0,1, ..., each of widthz/(e;) aroundu;. Each ringR,
consists of all linkse,,, = (um, vs,), for whichdal(e;) < d(u;,un) < (d + 1)al(e;). As derived earlier, for any
em # €j, We haved(u;, un,) > amax{{(e;), (e)}, which impliesR, does not contain any links if; other than
e;j. The area of the ring, can be calculated as,

A(Rq) m[((d + 1)al(e;))* — (dal(e;))?]
ma®(2d + 1)l(e;)?

3rda*l(e;)?.

A\

and so the non-overlapping disks property implies that tiralyer of transmitters i, is at most

3rda®l(ej)?
——— < 48d.
ma?l(e;)?/16 ~ 8d

Next, that for each,, € R4, we haved(u,,,v;) > (ad —1){(e;) > %“{(e;), sincea > 2. Therefore, the interference
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atv; due to nodes itk denoted byZ,(v;) is bounded as follows,

0-J(ej)
(adl(e;))*
9o 489J(6])

Ta(v;) 48-d-2°

IN

Summing up the interference over all ringg, we have,

= L4860 J(ej) = 1
sz(vj) = 2 aozg(e_)oz] do—1
d=1 J d=1
4860 J(e;) /'°° dx
- aag(ej)(x 1 :L-(x—l

29486 - J(e;)
a®l(ej)* (o —2)°

Therefore the SINR at receivey is at least

J(e))

o 2948.0-J(e;
0(e;)*[No + rpeyeioys)

J(e))

o eJ(ej
Ues)*INo + T 5557087

SINR(v;) >

i

which is at leasps if a* > 20*%(_5;)1) andJ(e;) > (1 + ¢)BNol(e;)™. We therefore choose (defined in Section
4.3) that satisfies the above condition. In order guaramheésiasibility and validity of the schedule we add a small
slacke to the power levels and enforce the following constraiktse E, J(e¢) > (1+ ¢)8Nol(e)*. This corresponds
to adifferentinstanceZ’ = (V, E', D, (1 + ¢€)J) of TM-SINR, whereE’ = {e € E : J(e) > (1 + €)BNol(e)*}. The
vectorz produced by algorithrframeSchedule is therefore not valid for the original instanZe= (V, E, D, .J), but
is valid for the instanc&’ of TM-SINR. m

6.4 Putting everything together

For an input instancg&’ = (V, E', D, (1 + €)J) of TM-SINR, we first compute the optimunink utilization vector

7 by solving the linear prograr®(1/(1 + log A) - (1 + logT),Z = (V, E, D, J), whereE’ = {e € E : J(e) >
(1+€)BNol(e)*}. We know from Lemma 5 that can be scheduled feasibly for the instai¢ceThe following theo-
rem shows that the rate achievedibis within a provable factor of,,;(Z) - thus, this is @i-criteria approximation,

in which we compare the quality of the solution produced byadgorithm with respect to the optimum for an instance
that uses slightly less power.

Theorem 1 LetZ’' = (V, E’, D, (1+¢).J) be an instance ofM-SINR, and letZ = (V, E, D, J) be the corresponding
instance for which the optimum ratg,; (Z) is considered, such thd’ = {e € E : J(e) > (1 + €)BNyl(e)*}, for
anye > 0. The optimum solution to the programP(1/(1 + log A) - (1 +1logT"), Z) yields a feasible and stablek
utilizationvector for the instancg’, and results in a total throughput of at led3tr,,:(Z) /Ao (1+log A)-(1+1logT")),

for \p = 9% + 1,0 = 2, anda as defined in Section 4.3.

Proof Letz,, be the optimum utilization vector for the instariCef TM-SINR, achieving a total throughput rate
of rope(Z). From Lemma 3, it follows thait,,,; is a feasible solution if it satisfies the conditions statedémma 3 and
hence is a feasible solution to the progr&tig, Z), for Ay = 9% +1, 6 = 2, anda as defined in Section 4.3. We
now scale down think utilizationvectorz,,, to achieve a new vectgrsuch thaty = o (TFioz Al)-(l—HOg F)fopt. Since
P(Xo,Z) is alinear program, it follows thatis a feasible solution to the prograR(1/(1 +log A) - (1 4+ logT"),Z),
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and results in a total throughput rate (1+1orgopAt)(ﬂ+1og NE This implies that the optimum solutianto the program

0
P(1/(1 +1logA) - (1 +1logT),Z) also results in a total throughput rate of at thﬁ%. Finally, by
Lemma 5, it follows thaf can be scheduled feasibly for the instafi¢ef TM-SINR. Therefore, the theorem follows.
u

Our presentation of the LP based technique and AlgoriinameSchedule assume a centralized and synchro-
nized setting, with traffic arrivals at a constant bit rataurtRer, the running time for AlgorithrframeSchedule
depends on the frame sizg which need not be polynomial. However, as we discuss bélmvate vector obtained
from the LP can be modified slightly so that the frame size bexopolynomial, with a slight reduction in total
throughput. Implementing the LP and the scheduling in aibisied are challenging problems, but approaches of [3]
and [12] for distributed flow computation and random accebsduling, respectively, could be useful. One difference,
though, is that these papers are not based on the SINR model.

Modifying the rate vector to ensure polynomial sized fralive now describe a simple idea to modify the rate vector
Z so that the frame size becomes polynomial sized, so thatutirerrg time of AlgorithmFrameSchedule becomes
polynomial. This involves the following steps.

1. For each edge, roundz(e) to the nearest multiple of /n¢ for a constant. In other words, we consider
x’(e) — [z(e)n®]

ne

2. Next, consider a maximum multi-commodity path flgiwwith capacitiesz’(e)cap(e). If the capacities are
scaled by a factor ofic, all these capacities are integral (and at most a polynyroetause of the previous
step. Thereforef’(e) - n¢ is also integral for each, using standard properties of network flows. ét=
>, fi(e)/cap(e) be the resulting link utilization for the flovf’().

3. Run AlgorithmFrameSchedule with the link utilization vector:”, for which the frame sizev will be at most

ne.

It is easy to see that the total throughput resulting fromsiteded rate vectof’ is at leastl — 1/n° times the
original, and therefore, the statement of Theorem 1 stiiidout the scheduling step now runs in polynomial time.

7 Throughput Maximization for Uniform Power Levels

In the previous section, we considered a generic case ofrpewals, where in every edge € E had an assigned
power level.J(e). We now consider a specific case of power levels in which alleed € E have theuniform
(same) power level(e) = J, whereJ > (1 4+ €)BNol(e)*,Ve € E. We show that the approximation bound of
O((1+1logA) - (1+1logT")) derived on the achievable throughput (cf. Theorem 1) camipedved to g1 + log A)
approximation for the case ahiformpower levels.

7.1 Problem Formulation

We consider input instances ®M-SINR specified ag = (V, E, D, J), with uniformpower level ofJ(e) = .J for
every edge: € E. The problem formulation for th€M-SINR problem foruniform power levels is similar to the one
presented in Section 6.1. Recall that in Section 6.1, wétjoaxed the sef of edges into set&; based on the edge
lengths and power levels, (.61} = {e = (u,v) € E : {(e) € [25,27FY) A J(€) € [Jmin * 25, Jmin - 28T1)}, Vi €
L,k € M). Since the power levels ataiform we only need to partition the sét of edges based on edge lengths.
Therefore we obtain sef§® = {¢ = (u,v) € E : {(e) € [2¢,271)},Vi € L. For an instanc€ = (V, E, D, J) of
TM-SINR, we define a different formulatioR,, (A, Z) by replacing the constraints (7) in the progr@, Z) by the
constraints

Vee BEVie L Y a(e) <A\ 9)

e'eC(e)NH?
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7.2 Link-Flow Scheduling: Necessary Conditions

Lemma6 LetZ = (V, E,D, J) be an instance of th&M-SINR problem withuniform power levelJ, and letz €
X (Z) be any feasibléink utilization vector. ThenZ satisfies the following conditions:

Vee BVieL, Y x(e) <A,
e'eC(e)NH?

where)\; = 9% +1, 0 = 1, anda is the constant defined in Section 4.3. This impliesthata feasible solution

to the prograntP, (A1, Z).

Proof The proof is similar to that of Lemma 3. Recall the notatiosediin the proof of Lemma 3. For the
case of uniform power levels, we only consider the détsi € L. We further do not consider the s, and set
Q:(e) = Ai(e). By following the sequence of steps used in Lemma 3 and sutisg # = 1 the Lemma followsm

7.3 Link-Flow Scheduling: Sufficient Conditions

We now consider the sufficient conditions for link-flow stébifor the case ofuniform power levels. Algorithm
UniformFrameSchedule is the modified scheduling algorithm for this setting. As igaaithm 1, we assume that
time is divided into sufficiently large frame$i) of lengthw. We subdivide each fram@” into (1 + log A) sub-
framesW; each of lengthw’ = w/(1 + log A)Vi € L. We assume that’ andz(e) - w'Ve € E are integrals.
Algorithm UniformFrameSchedule constructs a periodic schedufeby repeating a schedulgy; for every frame
W. Within each sub-fram&V;, the algorithm considers only the edges from thefgeaind assigns(e) = z(e) - w’
slots for each edge € H® by a greedy coloring step.

Algorithm 2: UniformFrameSchedule

Input : (i) E, (i) z, (i) W, (iv) w
Output: Sets(e) for all e € F, and schedul&y,
1 for e € £ do

2 | s(e)=¢
3 end
4 Partition?V into 1 + (log A) setsIV; of equal size, foi € L,
5 for i = |log A| downto0 do
/1 Greedy Col oring
6 Order edges il * in non-increasing order of their lengths to obtai,,, = {e1,...,es}
7 | forj=1to|H!,,|do
8 s/(ej) = UG/EC(e)ﬁ{el,...,Gj_l} 8(6/)
9 s(e;) = any subset ofV; \ s'(e;) of sizex(e) - w
10 end
11 end

12 Construct schedul§y,: at each time € 1, schedule all links € E witht € s(e).

We construct a periodic schedufeusing Algorithm 2 by repeating the scheddlg- for each framédV'.

Lemma 7 Algorithm UniformFrameSchedule correctly assignss(e)| = z(e) - w’ slots for each edge, if thelink
utilization vectorz is any feasible solution to the prograﬂ?(m,l).

Proof The proof is similar to that of Lemma 4. Since we havéformpower levels]og I' = 0. Further we only con-
sider setd1,Vi € L. By making these modifications to Lemma 4, it follows thaaithm UniformFrameSchedule
indeed assigns(e) - w’ slots for each edge We now derive the conditions under which the schedule isval

16



Lemma 8 Let z be a feasible solution to the prograf, (1/(1 +logA),Z = (V, E, D, J)), Then, AlgorithmJni-

formFrameSchedule produces a feasible schedule corresponding: tior the instanceZ’ = (V, E’, D, (1 + €).J
of TM-SINR, whereE" = {e € E : J(e) > (1 + €)5Npl(e)*} in which the SINR constraints are satisfied at all

receivers, for constanis > 2 ;’/%, a>2e>0,andd = 1.

Proof It can be seen that by considering only sBts Vi € L and by substitutingog I" = 0,0 = 1, in the proof of
Lemma 5, we can prove the above Lemma.

Theorem 2 LetZ’ = (V, E', D, (1+¢)J) be an instance 6fM-SINR, and letZ = (V, E, D, J) be the corresponding
instance for which the optimum ratg,; (Z) is considered, such thd’ = {e € E : J(e) > (14+¢)BNyl(e)*}, for any
e > 0. The optimum solutiof to the progrant?,,(1/(1+log A), Z) yields a feasible and stabliek utilization vector
for the instanceZ’, and results in a total throughput of at lea8{r,,:(Z)/A1(1 + log A)), for Ay = g2t 4

B
0 = 1, anda as defined in Section 4.3.

Proof The proof of Theorem 1 can be applied here by substitdtigd’ = 0, A\ with \; and progran with P,,. m

8 Improved Approximations for Linear Power Levels

We now consider another special case of power levels, intwiije) = ¢1¢(e)®, Ve € E for constant; such that
c1 > (1+¢€)BNy - this is also called thénear power level. Theorem 1 implies an approximationdf(1 + log A)?)
for this case, sinckygT" = O(log A). In this section, we show that this bound can be improved(tb+ log A).

Let .J be the power value vector with(e) = c1£(e)®, Ve € E. Recall the definition of the sefd’ from Section
7.1. In order to get a better approximation, we partitiongaeof edgedr into setsH? based on their lengths. It can
be seen thate’,e” € H, J(e/)/2% < J(e") < J(¢'), Vi € L. For aninstanc&€ = (V, E,D, J) of TM-SINR, we
consider the prograr®, (A, Z) (described in Section 7.1) instead of the progfa, 7).

Lemma 9 LetZ = (V, E, D, J) be an instance of thEM-SINR problem withinearpower levels/, and letz € X(Z)
be any feasibldéink utilization vector. Thenz satisfies the following conditions:

Vee BEVieL, Y a(e) <A,
e’eC(e)NH?

where\, = 9% + 1, 0 = 2%, anda is the constant defined in Section 4.3. This implies that: is a feasible

solution to the progran®, (A2, Z),

Proof The proof of Lemma 6 can be applied here, by substituling2*. m

Theorem 3 LetZ’ = (V, E', D, (1+¢).J) be an instance 6fM-SINR, and letZ = (V, E, D, J) be the corresponding
instance for which the optimum ratg,, (Z) is considered, suchth@’ = {e € E : J(e) > (1+¢)5Nol(e)*}, forany
e > 0. The optimum solutiof to the prograniP,,(1/(1 +log A), Z) yields a feasible and stablmk utilization vector
for the instanceZ’, and results in a total throughput of at leaQ{r,,.(Z)/A2(1 4 log A)), for Ay = 9% +1,
6 = 2%, anda as defined in Section 4.3.

Proof The proof of is similar to that of Lemmas 7,8, and Theorem 2.u&k algorithmJniformFrameSchedule
to schedule the vectar. By substitutingd = 2¢ and; with )5 in the proof of Lemma 8 and Theorem 2, the theorem
follows. m
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9 Simulations

In this section, we conduct extensive simulations to vadidlae approximation techniques discussed in Section @3 an
gain deeper insights into the theoretical model. Specificdlere are two main goals of our simulations: (i) validate
the theoretical model and verify that the schedule prodbgetie greedy algorithrRrameSchedule (cf. Section 6.3)

is feasible (i.e. SINR constraints are not violated at amgigtime), and (ii) compare the approximate solution with th
optimal solution for a reasonable network setting and ifleparameters that can allow us to improve the performance
of our model. Our simulation setup is described below.

e Network Type: We consider a road traffic network corresponding to a distidin of 227 cars for a particular
time instance in a region of downtown Portland, OR, obtaimgdunning the TRANSIMS simulator [24]. We
scaled down this network to fit in&m x 50m region (cf. Figure 6(a))

e Number of connections: We experiment with varying number of connections, each efshurce-destination
pairs are chosen u.a.r. We denote these as

e Edge Capacities:All edges have a transmission rate of 5Mbps.

e Transmission power: We perform all experiments for the case of uniform powerlewehere every transmitter
can transmit at 40mW. The transmission range was set to 10m.

e Number of seeds:All data points are averaged over 5 runs of the experiment.

9.1 Validation of the theoretical model

In Section 6.3 we have theoretically proved that the ratéorembtained by solving the LP (cf. Section 6) can be
feasibly scheduled without violating the SINR constraititsthis set of experiments, we verify the correctness of our
theoretical modelGoal: The goal of this experiment is to verify the feasibility okthates and schedule derived by
the approximation algorithm for tiEM-SINR problem in a realistic setting.

For a given network instance, we solve the LP using the Ndusig@7] and obtain the overall throughput and individ-
ual link rates. We then construct a centralized TDMA schedsing the greedy scheduling algoritiframeSched-

ule and implement this schedule in the Qualnet simulator. Thrilsitor decides if a packet has been successfully
received or not by measuring the signal-to-noise ratio aetyereceiver and comparing it with the SINR threshagfil

We observe the overall throughput achieved by the simufatar given schedule and compare this with the throughput
obtained by solving the LP. We study the variation of thrqughas a function of the number of connections. In this
set of experiments, we do not consider the impact of roufioga given set of randomly chosen source destination
pair, we compute the shortest path using the Dijkstra’srélyo.

Results and Explanation: Figure 6(b) summarizes the results of our experiment aeerager 5 runs. We also plot
the average difference between the LP and the simulatoubfapdifferent number of connections and proviiies
confidence intervals according to the Gaussian distributige observe differences between the LP and the simulator
output. These are mainly due to the delay introduced by tn&sson of control packets in the simulator. At the
physical layer of the simulator, according to the 802.1kHjmation, a control packet (known as the PLCP preamble)
is sent before transmitting a data packet. In the greedydstimg algorithm FrameSchedule), we divide the entire
time frame into time-slots of equal lengths. In order to eadhat the packets sent at the start of every time-slot
reach before or at the end of every time-slot, we set the iduratf the time-slot to be an integral multiple of the
transmission time. For example, if the transmission ratevefy edge is 5Mbps, and the packet size is 1000 bytes,
the transmission time 8000 = 8/5 = 1600usecs. The slot duration in this example wouldAy1600usecs, where

k is the number of packets sent in a given time-slot. The thipugin the scheduling algorithm is measured at the
end of every time slot and is calculatedtatal number of bytes received at the end of the time-slaitehn of the
time-slot.We do not consider the effects of propagation delay and tlagy dieie to the transmission of control packets
(control-delay). These delays are considered in the stmul&or successful transmission and reception of packets
in any given time-slot, the simulator requires the duratibthe time-slot to be slightly higher than that assumed in
the greedy scheduling scheme. This causes the simulatarghput to be slightly different than the LP throughput.
However, we can incorporate the effect of the control packed the propagation delay in the LP formulation. The
maximum link capacity of every link in the LP can be calcuthsspacket sized/transmission time + propagation
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delay + control delay We call this LP asLP.ompensated @nd it can be seen from Figure 6(b), that the throughput
achieved byL Peopmpensatea (denoted ad P_C' in the plot) matches very closely with the simulator thropigth This
shows that packet loss does not occur in the simulator dueeteiblations of the SINR constraints. We therefore
conclude that (a) the greedy scheduling algorithirameSchedule is feasible, (b) the rates obtained by the LP are
achievable in a realistic setting and, (c) effects of vasidalays such as propagation, control etc. can be incogmbrat
in the LP.
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(a) Realistic Network consisting @27 nodes in &0m x 50m (b) Variation of throughput w.r.t. the number of connectiass
square area. observed by the LP and the network simulator.

Figure 6: Network map and throughput

9.2 Comparison with the optimal solution

The necessary and sufficient conditions discussed in $scli@®, 6.3 conditions correspond to the upper and lower
bounds on network capacity. Based on these bounds, we @arigpproximation ratio that indicates how far the ap-
proximate solution can be from the optimal solution in thestcase. In this set of experiments, we aim to gain deeper
insights into our approximation techniques and the boundselforming a comparison with the optimal solution.
Goal: The goals of this experiment are to (a) observe how far theoappate solution is from the optimal solution for

a reasonable network setting, (b) compare observed appatioin ratio with theoretically estimated approximation
ratio, (c) study the impact of different network types onfpanance of the approximation technique, and (d) identify
parameters for improving the performance of the theoreticalel.

For a given network instance, we solve the LP with the sufficyeconditions and calculate the optimal solution by per-
forming an exhaustive search (brute-force techniquexesine brute-force technique is unlikely to scale for neksor
with multi-hop paths, we consider only one-hop source datitin pairs. We also run the LP with the necessary con-
ditions, in order to obtain an upper bound on the throughipot.a given network instance, we compute tiiserved
approximation ratig which is the ratio of the optimal solution and the LP solatamd compare this with the theoreti-
cally derived worst-case approximation ratio, which is ttio of the derived upper bound and the lower bound. For
(2a+1)* + B)(1 + log A)}

wherek denotes the number of connectiongp denotes the maximum transmission rate of every link@and 5, A

are as defined in Section 4. We further compare the LP thraitghiph the one obtained by running the standard
802.11 random-access MAC protocol in the network simulaWe study the variation of overall throughput as a
function of the number of connections.

Results and Explanation: Figure 7 plots the results of this experiment. We classifyataservations in the following
way:

the case of uniform power levels and uniform link capacitiés ratio ismin{k - cap,

e Impact of length diversityFor the case of non-uniform edge lengths the LP scales dogvowérall rates by
a scaling factor ofi + log A, where A denotes the maximum inter-point separation (ratio of th&imam
length edge and minimum length edge). Recall that in our@pmration scheme, we partition the edges into
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log A bins based on their edge lengths, such that eachibin= {e € L : {(e) € [2!,2¢71)}. We then
consider each bin separately and schedule all the linksbeig to it (cf.Section 6.3). For the realistic network
considered, the average length diversity was 6.15 sugaggsit use of 3 bins. We observed that (cf. Figure 7(c))
this binning strategy highly underestimates the LP thrpughWe therefore experimented with different bin-
widths. By increasing the width of each bin by a quantifyeach bin can accommodate more links making
H'={e € L:((e) € [2%,2°FP)}. This results in fewer bins and hence, the throughput sgddiotor can be
reduced (the scaling factor is equal to the total numbermg)biln order to ensure that the schedule is feasible
by increasing the bin width, we impose additional condgiam the value of constant(cf. Section 6.3). For

the case of uniform power levels, the new constraints on dhgevofa are of the fornu > 2 ¢ %

wherep denotes the increase in the bin-width= 1 implies the original case. This condition can be derived
by following the proof for Lemma 4. It should be noted thatrthis a tradeoff betweemanda. Increasing the
bin width reduces the scaling factor but increases the Idwend on the value of. The interference set of
every edge’(e) is based on the value af As the value of: increases, more links can be included in the set
C(e)Ve € &, resulting in a lower throughput. We experimented witheliént bin-widthe (and hence different
number of bins) and different values @find observed that the overall throughput is always high where is
only a single bin (which implies that the scaling factor idri)he system (cf. Figure 7(c)).

e Approximation RatioWe compare this approximation ratio obtained from the satioths with the theoretically
estimated approximation ratio (ratio of the upper bound lametr bound). We observe that the upper bound
as determined by the LP monotonically increases with thebmuraf connections and has a valug bf cap),
wherek denotes the number of connections ang = 5Mbps is the bandwidth of the system (cf. Figure 7(b)).
The lower bound on the other hand is 1 as we use a single birisithulations. We observe that the approx-
imation ratio is much lower than the estimated theoretippraximation ratio. This shows that in practice our
approximation techniques provide a better approximataiio than predicted and the bounds derived by our
methods are indeed worst-case bounds. This result inditadt the derived upper and lower bounds are weak
and additional research is required to improve these bounds

e Comparison with 802.1We observe that the results of our approximation techniquesomparable with the
802.11 protocol (cf. Figure 7(b)). 802.11 is a distributaddom-access protocol and its performance is very
close to our centralized technique. However, it should dedhthat in order to ensure a fair comparison, the
802.11 simulations were conducted with a fairly high queize sf 12.5MB & 8000 packets). For 802.11
simulation, the rate at which packets arrive at every trattenwas set to the bandwidth (5Mbps in this case);
this ensured that the MAC layer always has a packet to sendrdier to prevent packet loss due to saturated
queues, the queue sizes for all transmitters were set tohavhige. We observed that the 802.11 throughput
decreased significantly when the queue sizes were set todsiscommonly used value of 50KB [18] (cf. 7(d)).
In Figure 8 we demonstrate the increase in the queue sizeaatiaytar node with simulation time.

We conclude that (a) the bounds derived by our techniquemdeed worst case approximation bounds and in prac-
tice our methods perform better than predicted. Additioeakarch is however required to improve the upper and
lower bounds, (b) the performance of the approximationrilgm is influenced by the length-diversity, (c) higher
performance gains can be achieved by engineering the syB@mitioning the edges into different bins provided less
throughput gains than using a single bin and, (d) the coitgesteasure proposed in this work can lead to overly
pessimistic estimates for high traffic regimes. Additioredearch is required in developing an efficient congestion
measure.

10 Improved Approximations for Grid Topologies

We now consider a special case of topology called the gridltmy, where in the nodes are placed on a uniform
spacing grid. The approximation obtained from Theorem @iiir any arbitrary graph topologies. We show that the
poly-log approximation derived in Section 6 can be improted constant factor approximation for the case of grid
topologies.

For a sef” of n nodes, consider a grid qfn x y/n with uniform grid spacing ofl units. Let the nodes be placed
on the grid points (cf. Figure 9). Léf C V x V. For the grid topology, we consider an input instanc& BFSINR
specified ag = (V, E, D, J). We use the problem formulatidR(), Z) as discussed in Section 6.
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One-hop source-destination pairs are selected u.a.r. as observed by the optimal solution, LP and 802.11 protocol.
LP_Upper denotes the upper bound computed by running the
LP with the necessary conditions. The 802.11 protocol ran
without rts-cts and the queue size was fixed to 12.5MB. The
total number of bins in the LP was set to one.
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(c) Different binning strategies were considered for the LP ~ (d) 802.11 protocol was considered with and without rts-
cts messaging, for different queue sizes, 12.5Mbytes and
50Kbytes respectively.

Figure 7: Simulation results comparing LP with the optin@lson and 802.11.
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Figure 9: (a) Demonstrating Manhattan routing: For a grithwiniform grid spacing ofl, the flow on direct edge
e1s = (u1,us) can be replaced by flows on short edges, e23, €34, e45. (b) Demonstrating maximum number of
interfering links for edge;;: Following the definition from C(e), all the solid edges irfisgee with edges;;

Observation 1 [6] For a \/n x /n grid, with uniform grid spacing ofl units, for an instanc€ = (V, E, D, J) of
TM-SINR, a flow f(e;;) obtained by solving?(\,Z) on any direct edge;; = (u;,u;) between nodes;,u; € V
wherel(e; ;) > d, can be replaced by flows on short edges of lergtising Manhattan routing.

Proof  For any nodeu;, letrow(i) denote the set of nodes that have the sgmecoordinate as that ofu; and let
col(i) denote the set of nodes that have the sameoordinate as that ofu;. For a given pair of nodes,;, u;, a node
uy, appears in the Manhattan routing path fragpto u; if and only if, u; € row(ug) oru; € col(uy) and bothu;, u;
lie at a distance less thd(e; ;) from u;. We select all nodes in the Manhattan routing path, sucldis&ince between
any two adjacent nodes;, v}, is equal tod. Therefore all the edges in the Manhattan routing path hewvgth equal
to d. The flow of f(e;;) on edgee;; can now be replaced by flows on edges on the Manhattan rouihg(@f. Figure
9). It can be seen that this Manhattan routing scheme satftdi@ conservation constraints.

We now show that by using the Manhattan routing scheme, tlaéttoroughput achieved for a grid topology is
within a constant factor away from the optimal solution.

Lemma 10 LetZ = (V, E,D,J) be an instance of th&M-SINR problem for a\/n x /n grid, with uniform grid
spacing ofd units, and lett € X (Z) be any feasibldéink utilization vector obtained using Manhattan routing. Then,
the necessary conditions for link flow schedulability are:

Vee EVke M, > a(e) <A\
e’eC(e)NHFk

Proof The proof is similar to that of Lemma 3. Since we are using tlemhattan routing, all the schedulable edges
have the same length Partitioning based on edge lengths is therefore not reduivWe only need to consider sets
Hy = {Jmin - 28 < J(€) < jmin - 2871}, VE € M, Ve € E. The Lemma therefore follows by making this minor
modification to the proof of Lemma 3. Note that the above nemgsconditions can be extended for the case of
generic, uniform andinear power levels by replacing with Ao, A\; and\, respectivelym

Lemma 11 For a y/n x +/n grid, with uniform grid spacing ofl, with Manhattan routing, the sufficient conditions
for link flow schedulability are as follows:
Ve € E,Vk € M "< A
ec ’ € ’ Z x(e ) — ga
e’eC(e)NHy
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wherec’ = (2(2a)(2a + 1)) — 4, a is a constant defined in Section 4.3 and is an integral meltigt.

Proof  For any transmitting edge; = (u;,u;) € E consider a dislD of radiusa - d centered at node;. Disk D is
contained within a grid of dimensidu x 2a (cf. Figure 9). Since we are using Manhattan routing, alkitteedulable
edges have length equals From the definition of”(e;;) (cf. Section 4.3) we know that all the edgé€s= (v, v")
that have their transmittets within disk D interfere with edge; ;. The total number of directed edges of lendtim
a2a x 2a grid are8a(2a + 1). By excluding the corner edges, the maximum number of edgg<an interfere with
a given edge;; is a constant and is obtained@s= 8a(2a + 1) — 12. We now scale thénk utilization by a factorc’
to obtain the following sufficient conditions,

AUl >

Vee B.VEe M, Y a(e) <
feC(e)ﬁHk

Theorem 4 LetZ = (V, E, D, J) be an instance 6fM-SINR for a y/n x /n grid, with uniform grid spacing of.
The optimum solutior to the prograniP(\/c’, 7) is a feasible and stablénk utilization vector for the instancg,
and results in a total throughput of at leaQtr,,.(Z)/c).

Proof Letz,, be the optimum utilization vector for the instariCe®f TM-SINR, achieving a total throughput rate
of 74 (Z). From Lemma 10, it follows that,,; is a feasible solution to the progra®(\,Z). Further,z,,;/c is a

. . . T
feasible solution to the prograf(\/¢’, Z) and results in a total throughput rateréw. Therefore, the theorem
C
follows. m

11 Conclusion

We study the problem of throughput maximization in arbitraireless networks with SINR constraints from a theo-
retical perspective, and take the first steps toward deirgdagfficient algorithms for this problem. Our results show
that the comparison between SINR and graph-based modelsslicated, and for different instances, different mod-
els might give higher estimates of the throughput capasitggesting the need for greater care in using these models.
We develop the first provable algorithms for approximatimg throughput capacity in the SINR models by means of
a linear programming formulation, extending the recentiwadi{7, 17].

Extending these results to distributed algorithms woul#ertaem more useful from a practical point of view. This
paper does not consider power control, and studying thegmobf joint power control and throughput maximization
would be an interesting extension. We only consider the AWGHMehfor specifying the link capacities, extending
this model to include the SINR [1] would also be an interegpnoblem.
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