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Abstract

A fundamental problem in wireless networks is to estimate their throughput capacity - given a set of wireless
nodes and a set of connections, what is the maximum rate at which data can be sent on these connections. Most of
the research in this direction has focused either on random distributions ofpoints, or has assumed simple graph-based
models for wireless interference. In this paper, we study the capacity estimation problem using a realistic Signal to
Interference Plus Noise Ratio (SINR) model for interference, on arbitrary wireless networks without any assumptions
on node distributions. The problem becomes much more challenging for this setting, because of the non-locality
of the SINR model. Recent work by Moscibroda et al. (IEEE INFOCOM 2006, ACM MobiHoc 2006) has shown
that the throughput achieved by using SINR models can differ significantly from that obtained by using graph-based
models. In this work, we developpolynomial timealgorithms to provably approximate the throughput capacity of
wireless network under the SINR model.

1 Introduction

A fundamental problem in wireless networks is to estimate their throughput capacity - given a set of wireless nodes, and
a set of end-to-end (multi-hop) connections, what is the maximum rate at which data can be sent on these connections?
Starting with [11], there has been a large body of work on thisproblem, especially for networks formed by a random
distribution of nodes in the unit square. A related and more practical question is to estimate the capacity of the given
network, and develop protocols to utilize the network closeto its capacity. This question becomes difficult in wireless
networks because of interference, which constrains the setof links that can transmit simultaneously. The algorithmic
aspects of network capacity have been studied in a number of papers, such as [2,13–15,17,26].

A commonly used approach when designingprovably good algorithmsis to represent the underlying wireless net-
work as a geometric intersection graph. For a set of nodesV on an Euclidean plane, each nodeu ∈ V is associated
with a disk of radiusrange(u), which depends on the transmission power levelJ(u) of nodeu; a common approx-
imation is to chooserange(u) = Θ((J(u))1/α), whereα is the path-loss exponent, and the signal from nodeu is
assumed to be heard only within this range. This gives us theconnectivity graphG = (V,E) where setE is obtained
by adding links fromu to v, for all u, v ∈ V , if d(u, v) ≤ range(u), whered(u, v) denotes the Euclidean distance
from nodeu to nodev. Interference in such a graph is modeled throughindependence constraints(see e.g., [25]):
if a nodeu transmits, no node in its vicinity can transmit. A number of papers have studied MAC protocols with
these geometric models of interference [25, 26]. Intuitively, such graph-based models make the algorithmic analysis
tractable since they localize the interference effect of a transceiver on others.
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While such graph-based models give a useful first approximation to understanding wireless networks, they have
several limitations. Graph-based models assume that the signal from a radio can only be heard within its range and
that signal collisions always lead to lost messages. These assumptions oversimplify the real process. A more realistic
model that has been used to study wireless transmission is called theSignal to Interference Plus Noise Ratio (SINR)
model [11, 23]: a signal from a transmitteru is successfully received by a receiver atv, if the ratio of u’s signal
strength atv and the combined interference from other transmitters along with ambient noise exceedsv’s antenna
gain. In other words, a set of transmissionsej = (uj , vj), ∀j = {1, . . . , k}, where nodeuj transmits to nodevj can
be simultaneously scheduled if for allei = (ui, vi) we have,

SINR(vi) =
J(ei)

d(ui, vi)α
[

N0 +
∑

j 6=i
J(ej)

d(uj ,vi)α

] ≥ β, (1)

whereN0 denotes the noise density,α denotes the path-loss exponent,β is the antenna gain,d(ui, vi) denotes the
Euclidean distance between nodesui, vi andJ(ei) denotes the power level with which nodeui transmits. Recent
work by Moscibroda et al. [21–23] has shown that for several problems, this model is significantly different from
graph-based models. In [21,23], they show that for the problem of minimizing thescheduling complexity, by choosing
appropriate transmission power levels, SINR models can yield much shorter schedules. In [22], they show that the
throughput capacity under a SINR model is different from that under a graph-based model. The non-locality of this
model makes its analysis challenging.

In this paper we consider the problem of characterizing the achievable rates for arbitrary multi-hop wireless net-
works with SINR constraints.The central contribution of this work is the solution to the following cross-layer
optimization problem: given a set of wireless transmitters, set of connections and a power assignment for all
transmission links in the network, what should be the rate at which data is sent from every source, how are the
packest routed through the network, and how should the transmissions across the links be scheduled, so that the
network-wide throughput (or a throughput related objective) is optimized? The formal description of the prob-
lem is as follows: Given a set of nodesV , a set of possible directed edgesE, a set of source-destination pairs
D = {(s1, t1), . . . , (sk, tk)}, and a power level vector̄J that specifies power levelJ(e) for transmission on edgee,
the throughput maximization problem with SINR constraints(TM-SINR) consists of

• choosing routes for the connections (Routing),

• choosing flow rates on the routes (Rate Control), and

• choosing which links to schedule at each time slot, so that the SINR constraints are satisfied for all simultaneous
transmissions (Scheduling).

We note that theTM-SINR problem does not involve power control, i.e., the power levels J(e) for each edge are fixed
and given as part of the input (e.g., the power levels could bedetermined based on energy consumption requirements
or other network life-time requirements by a higher-layer application).

The SINR constraints make the throughput optimization problemnon-convex. Further thelink schedulingproblem
with SINR constraints has been shown to be NP-hard in [10]. Since scheduling is also an integral component of our
problem, it is reasonable to conjecture that theTM-SINR problem is also NP-hard. We therefore focus on developing
rigorouspolynomial timeapproximation algorithms for our problem withprovable performance guarantees.

In reality, the link capacities depend on the SINR [1], thereby making this problem very complex. We simplify
this by using the Additive White Gaussian Noise (AWGN) model for specifying the link capacities [5]. In this model
the capacitycap(e) of a link e = (u, v) having lengthℓ(e) = d(u, v), whered(u, v) is the Euclidean distance between
nodesu, v, and transmitting at power levelJ(e) is given by

cap(e) = W log2

(

1 +
J(e)

ℓ(e)αN0W

)

, (2)

whereW is the bandwidth, andN0 andα are as defined following equation 1. In the absence of interference, the
above equation provides a theoretical upper bound on the link capacity. The maximum throughput problem with SINR
constraints is significantly challenging even under the AWGNmodel and we focus on this model in this work.

2



2 Overview of results

We rigorously study theTM-SINR problem in wireless networks, and take the first steps towarddeveloping efficient
algorithms for this problem. The main contributions of our work are summarized below.

1. We compare the SINR and graph-based models for the same instance, with the same fixed power levels, and
observe that the throughput capacity can be significantly different in these two models. When the power level for
all the edges is the same, we show that there are instances in which the throughput capacity that can be achieved
in the SINR model is significantly higher than that achieved in the graph-based model. For the case oflinear
power levels (whereJ(e) ∝ ℓ(e)α for each edgee), we show that there are instances in which the throughput
capacity achieved in the SINR model can be much lower than that achieved in the corresponding graph-based
model with the same power levels. In contrast, the results of[21–23] show that by choosing suitable power
levels, a much higher throughput capacity is possible in SINR models than in graph-based models. Since all
these models of interference are approximations of the reality, this suggests greater care is needed in inferring
any properties of the system based on such an analysis.

2. We develop a linear programming based approach to approximate the maximum throughput rate vector in the
case of SINR constraints. For the generic case of non-uniform power levels, in which the power levels on differ-
ent edges could be different, we develop apolynomial timeapproximation algorithm that provides a feasible rate
vector whose total throughput is at leastO(ropt/ log∆ · log Γ1). Hereropt is the maximum possible throughput
for any particular instance of theTM-SINR problem,∆ is defined as∆ = maxe∈E ℓ(e)/mine′∈E ℓ(e′) where
ℓ(e) denotes the length of the edgee, andΓ is the ratio between maximum and minimum power levels used. This
gives us anO(log∆ · log(Γ)) approximation to the total throughput. Our approximation bound is a worst case
guarantee that holds for every instance. To our knowledge, this is the first such provably good polynomial-time
capacity estimation and throughput maximization algorithm for arbitrary networks under SINR interference
constraints.

3. We consider two special cases of power level choices -uniform power level choice (when all nodes have the
same power levelJ) and linear power level choice (where the power level on each edgee = (u, v) such
that ℓ(e) = d(u, v) is J(e) = c1 · ℓ(e)α for a constantc1). For both the cases we improve the throughput
approximation toO(log∆).

4. We conduct simulations to validate our theoretical modeland demonstrate that the data rates obtained by our
model are achievable in a realistic setting. We compare the results of our approximation algorithm with the
optimal solution for small network instances. We observe that the upper and lower bounds derived by our
technique are worst-case bounds and the approximation guarantee achieved in practice is much better than that
predicted by our model. These experimental results help us understand the limitations of our approach and assist
in identifying certain parameters for improving the performance of our model.

5. Finally, we show that a constant (O(1)) factor approximation can be achieved to the maximum throughput for
the special case where the topology is a grid.

A preliminary version of this paper appeared in [8], and covered the first three results mentioned above. In this
paper, we additionally conduct extensive simulations thatvalidate and improve upon the theoretical results in practical
instances. We use both random and realistic topologies to understand the approximation bounds of our algorithm.
We view theTM-SINR problem as abi-criteria approximation problem, wherein by adding certain constraints to the
input power level, we ensure that our solution is poly-log factor away from the optimal solution. For a given instance
of theTM-SINR problem, we obtain a solution that uses a slightly higher power level on every transmitting edge than
the power level used by the respective optimum solution. By increasing the power levels by a factor of1 + ǫ, where
ǫ is a small positive slack, we ensure that the rate vectors obtained by our solution can be scheduled feasibly. This is
explained formally in Section 6.3. Our algorithm builds upon the recent work of [7, 21, 23] on scheduling with SINR
constraints, and the LP based approaches of [14, 17] for estimating the capacity for graph-based interference models.
We note that the primary focus of this work is theoretical, and our framework does not incorporate all the aspects of
different protocols. However, it can help in obtaining absolute performance limits on the system, which can help in
evaluating real protocols.

1All the logarithms considered in this paper are to the base twoand floor of the log functions is considered, for e.g.log∆ is actually considered
as⌊log∆⌋.
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3 Related Work

There has been significant work on understanding the capacity of random networks using both graph-based and SINR
models (see, e.g., [4, 11, 16]). However, these results do not directly help in understanding the capacity of arbitrary
networks, which is the focus of our paper. The throughput maximization problem for graph-based models is formally
studied and proven to beNP-hard by Jainet. al. [13], who use a linear programming approach to characterizethe
capacity of the network and to perform routing. They model interference constraints as aconflict graphand provide
upper and lower bounds for optimal throughput. As mentionedin [6], the methods discussed in [13] tend to have
an exponential complexity and noperformance guaranteed polynomial timeapproximation algorithm is proposed.
Toumpiset. al. [28] provide a mathematical framework for determining the capacity region of an ad-hoc network,
which captures the effects of power control, spatial reuse and successive interference cancellation on the capacity
region. However, their results do not give worst case approximation guarantees.

Kodialamet. al. [14] study the problem of determining achievable rates for multi-hop wireless networks, along
with joint routing and scheduling constraints in graph-based models. Their approach provides necessary and sufficient
conditions for link flows and leads to apolynomial timeapproximation algorithm for this problem. However, they
only considerprimary interference in their model, which is very restrictive. Linet. al. [19,20] study the joint problem
of rate allocation and scheduling using a dual optimizationbased approach to decompose the problem as rate control
and scheduling problem. Their technique provides an optimal solution that maximizes the throughput and provides a
stable and fair schedule considering the primary interference model. Although some of these approximation bounds
have been improved in recent work by Buragohainet. al.[6], it is not clear how these techniques could be extended to
the SINR interference model.

Some of the key algorithmic results on the SINR model are studied in [7,21–23]. Moscibroda et al. [21–23] study
the problem of scheduling edges with SINR constraints to ensure that some property (e.g., connectivity) is satisfied by
the edges that are chosen. They show that by suitable power control, the solutions in the SINR model are much more
efficient than those in graph-based models. Chafekar et al. [7] develop approximation algorithms for packet scheduling
to minimize end-to-end delays with SINR constraints.

Our work is closely related to [7, 9, 17]. The work by [17] provides a constant approximation algorithm for
the throughput maximization problem along with joint scheduling and routing. The interference model considered
is graph-based and their approach is generic enough to accommodate the case of uniform and non-uniform power
levels. They further derive linear necessary and sufficientconditions that lead to a constant factor approximation to the
throughput capacity. However, the framework presented in [17] cannot be easily extended to the SINR interference
model. Chafekar et al. [7] design a polylogarithmic approximation algorithm for the problem of end-to-end latency
minimization in the SINR model, which was improved by Fanghanel et al. [9]. In this work, by combining and
extending some of the techniques from [7,17], we study the throughput maximization problem along with joint routing
and scheduling for the SINR interference constraints.

4 Preliminaries

We consider the input instance of theTM-SINR problem to be specified asI = (V,E,D, J̄), where (i)V denotes a
set of transceivers henceforth referred to as nodes, which are located on a Euclidean plane, (ii)E ⊆ V × V denote
the set of possible directed links (also referred to as edges), on which transmissions can occur, (iii)D is a set of
connections, with theith connection from nodesi to nodeti, and (iv) J̄ = (J(e) : e = (u, v) ∈ E) specifies the
vector of power transmission levels on edges. Foru, v ∈ V , let d(u, v) denote the Euclidean distance between these
nodes; fore = (u, v) ∈ E, let ℓ(e) = d(u, v). Following standard graph theory notation, letNout(u) andNin(u) be
the sets of outgoing and incoming edges for nodeu respectively. Let

∆ = max
e∈V

{ℓ(e)}/min
e′∈E

{ℓ(e′)};

wherelog∆ is also called the “length diversity” [10]. Also, let

Γ =
maxe J(e)

mine′ J(e′)
.

Let L = {0, . . . , ⌊log∆⌋} andM = {0, . . . , ⌊log Γ⌋}. Let jmin = mine∈E J(e). Without loss of generality, we
assume thatmine∈E{ℓ(e)} = 1. We defineHi

k = {e ∈ E : ℓ(e) ∈ [2i, 2i+1) ∧ J(e) ∈ [jmin · 2k, jmin · 2k+1)},
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for i ∈ L, k ∈ M . Note that for edgee ∈ E, its power levelJ(e) is given as an input, and so our assumption of the
AWGN model (equation 2) implies that its capacitycap(e) is also fixed. We will be interested in two special cases of
power level choices: (i)Uniform power levels, in which we haveJ(e) = J for a constantJ - in such a case, we denote
the input instance asI = (V,E,D, J), and (ii)Linear power levels, in whichJ(e) = c1 · ℓ(e)α wherec1 is a constant
andα is the path-loss exponent as discussed earlier. As suggested in [23], we assumeα > 2.

Note that for any case of power level choice, for any edgee = (u, v) ∈ E, we requireJ(e) ≥ (1 + ǫ)βN0ℓ(e)
α

for the transmission on edgee to be feasible, even in the absence of any other interference, whereǫ is a small positive
slack. We compare our solution with that obtained by the optimal solution with the criteria that optimum solution uses
power levelJ(e) that satisfies the following condition:J(e) ≥ βN0ℓ(e)

α∀e ∈ E.

4.1 Interference Model

We use the SINR model of interference as described in [7, 23].In this setting, a given setE′ = {ei = (ui, vi) :
i = 1, . . . , k} of links can simultaneously communicate successfully, if for eachei = (ui, vi) ∈ E′, theSINR(vi)

satisfies Equation 1. For any edgeei = (ui, vi) ∈ E′ , we defineIr(vi, E′) =
∑

ej=(uj ,vj) 6=ei

J(ej)
d(uj ,vi)α

as the the
interference at receivervi due to all other transmissions - we will simply denote this asIr(vi) if the setE′ is clear
from the context.

4.2 Link rates and feasible end-to-end schedules

We consider a setD = {1, . . . , k} of connections, withsi andti denoting the source and destination respectively, for
connectioni. Let fi(e) denote the mean flow rate on linke for theith connection, and letf(e) =

∑k
i fi(e) denote the

total link flow. We letx(e) = f(e)/cap(e) denote thelink utilization - this denotes the fraction of time linke is used.
The vectorsf̄ andx̄ are called the flow andlink utilization vectors respectively. An end-to-end scheduleS describes
the specific times at which packets are transmitted over the links of the network. For scheduleS, let X(e, t) be an
indicator variable such that

Xe,t =

{

1 if e transmits with at timet
0 otherwise.

We say thatS is valid if the SINR constraints are satisfied at all the receivers at every timet. We say thatS feasibly
schedules thelink utilization vectorx̄ if we havelimT→∞

∑

t≤T
X(e,t)

T = x(e) for each edgee - in this case, we say
thatS corresponds to the utilization vectorx̄. The rate regionX (I) is the space of all utilization vectors̄x for the
instanceI of TM-SINR that can be scheduled feasibly.

Let ri denote the end-to-end rate on theith connection in bits per second, resulting from the flow vector f̄ . In
this paper we are interested in maximizing the total end-to-end rate

∑k
i ri. For an instanceI = (V,E,D, J̄) of TM-

SINR, let ropt(I) denote the maximum possible total throughput rate that is feasible. We say that a utilization vector
x̄ ∈ X (I) is aγ-approximation to the throughput maximization problem if the resulting total rate achieved is at least
γ · ropt(I); we say that an algorithm is aγ-approximation algorithm, if for any instanceI of TM-SINR, it provably
produces such aγ-approximate solution̄x ∈ X (I) in polynomial time. Note that this is a worst case approximation
result.

4.3 Congestion Measure

Following [7], we define a notion of congestionC, that will play a key role in our algorithm. Fore = (u, v) ∈ E, let

C(e, E′) = {e′ = (u′, v′) ∈ E :

a · ℓ(e′) ≥ d(u, u′)
∧

ℓ(e′) ≥ ell(e)}

and letC = maxe∈E′ |C(e, E′)|. Here,a is a constant such thata ≥ 4 α

√

48β(1+ǫ)
ǫ(α−2) , ǫ is a small positive slack and

α > 2 is the path-loss exponent. The significance of the congestion C is that it provides a lower bound on the
number of feasible simultaneous transmissions [7], which we use to approximateropt. Figure 1 demonstrates the
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Figure 1: Illustrating congestion measure for a link. The solid lines represent edges along with edge lengths
(e.g., l(e) = 2). The dotted lines represent distance between two nodes (e.g., d(u, u1) = 5). Let a = 6. Then
C(e) = {e, e1, e3} for link e = (u, v). By definition,e4, e2 6∈ C(e) sincea · ℓ(e4) < d(u, u4) andℓ(e2) < ℓ(e).

congestion measure for linke = (u, v). Intuitively, any link e = (u, v) with high congestion value could have the
SINR constraints violated at its receiverv.

Table 1 gives a list of most of the notation used in this paper.

5 SINR vs Graph-based models

In this section, we compare the SINR and graph-based models in the context of the throughput maximization problem.
Given an instanceI = (V,E,D, J̄) of TM-SINR, we follow the approach of [23] in constructing an “equivalent”
connectivity graphG = (V,Egm) and a resulting instanceIgm in a graph-based model in the following manner.
Recall the notation from Section 4. In the rest of this section, we will consider instancesI of TM-SINR in which
every nodeu ∈ V uses a fixed power levelJ(u) = J for every incident linke = (u, v) ∈ E. We associate a
transmission range ofr(u) = (J(u)/c1)

1/α with every nodeu ∈ V for a constantc1, giving rise to a disk graph
G = (V,Egm) with (u, v) ∈ Egm if d(u, v) ≤ r(u). This is a directed graph in general, if nodes have non-
uniform transmission ranges. The corresponding instanceIgm consists of this graphG along with the same setD
of connections, as inI. Note that the set of edges on which transmissions can happenis the same in both models.
For every edgee ∈ Egm, we use the same expression forcap(e), the capacity of edgee as inI, since this comes
from the AWGN model. What is different is the interference - we can now use any graph-based interference model
to specify the setIgm(e) of edges that interfere withe - for concreteness, we use the distance-2 matching model [17],
which definesIgm(e) = {e′ = (u′, v′) : dG({u, v}, {u′, v′}) ≤ 1}, wheredG() defines the distance between two sets
in the graphG. A schedule is valid in the graph-based model, if at any time,no edgee is simultaneously scheduled
along with some edgee′ ∈ Igm(e). Let rgmopt(Igm) denote optimum throughput rate possible for this instance in the
graph-based model.

We show the following results in this section.

• If the instanceI of TM-SINR hasuniformpower levels, the ratioropt(I)/rgmopt(Igm) can be arbitrarily large,
i.e., the corresponding graph-based model underestimatesthe throughput capacity significantly.

• In contrast, when the power levels in the instanceI of TM-SINR are linear, we show that the ratioropt(I)/rgmopt(Igm)
can be arbitrarily small.

The above results show that if the power levels are fixed, the total throughput in both the models is very different
- this is in contrast to the results of [21, 23], which show that by choosing appropriate power levels, a much higher
throughput is possible in the SINR model for the same instance.
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n number of nodes.
V set of nodes.
E = {(u, v) ∈ V × V } set of all edges.
Nout set of outgoing edges from nodeu.
Nin set of incoming edges to nodeu.
D = {(s1, t1), .., (sk, tk)} set of source-destination pairs.
fi(e) flow on edgee for ith connection.
f(e) =

∑k
i=1 fi(e) total flow on edgee.

ri =
∑

e=(si,v)
fi(e) rate for flowi .

r =
∑k

i ri total rate.
cap(e) capacity of linke.

x(e) = f(e)
cap(e) link utilization

W single window or frame.
C(e) congestion set for linke.
C = maxe∈E |C(e)| Max congestion.
J̄ power level vector.
jmin = mine∈E J(e) minimum power level.
∆ ratio of max. to min. node-distances.
Γ ratio of max. to min. power assigned.
L = {0, . . . , ⌊log∆⌋} set of possible edge lengths.
M = {0, . . . , ⌊log Γ⌋} set of possible power values.
S a valid schedule.
α path-loss exponent, assumed to be ¿ 2.
β antenna gain.
N0 ambient noise.
a, λ0, λ1, λ2, ǫ, c1 positive constants.

Table 1: Notation used in this paper

5.1 Uniform power levels

We construct the following instanceI = (V,E,D, J) of TM-SINR, with uniformpower levelJ for all transmissions.
Let R = (J/c1)

1/α be the corresponding transmission range in the corresponding graph model, as discussed earlier;
we assume thatR is a large integer. LetV = {u0} ∪n

i=1 {ui, vi} be a set of nodes, which are placed in the following
manner. Imagine a circle of radiusR/2 centered at nodeu0, and the nodesu1, . . . , un uniformly placed on the
circumference of this circle at a spacing ofΘ(

√
R), so thatn = Θ(

√
R) = c2 ·

√
R (cf. Figure 2). Eachvi is at a

unit distance fromui, for i = 1, . . . , n. Let the connections inD in the instanceI be all the pairsei = (ui, vi), for all
i = 1, . . . , n. Let cap = cap(ei) denote the capacity of any linkei in bits/sec; note that this is the same for every edge
ei in this setting. For simplicity, we ignore the ambient noise, i.e., assumeN0 = 0. It is easy to extend these results to
take the noise into account.

Lemma 1 For the instanceI of TM-SINR and the corresponding graph-based instanceIgm described above, we
haveropt(I)/rgmopt(Igm) = Ω(cap ·

√
R), assumingβ ≤ c4 ·R(α−1)/2, for a constantc4.

Proof Observe that for alli 6= j,
√
R ≤ d(ui, uj) ≤ R. Therefore,Igm(ei) = {ej : j 6= i}, which implies that

at any time, at most one edgeei can be scheduled in the graph-based model in the instanceIgm. This implies that
rgmopt(Igm) = Θ(cap) bits/sec.
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Figure 2: Illustrating an example that compares the throughput achieved between SINR and graph- based models for
uniform power levels. A circle of radiusR/2 is centered at nodeu0. Distance between any two adjacentui, uj is
Θ(

√
R). Each edgeei = (ui, vi) has lengthℓ(ei) = 1 units andJ(ei) = J .

Next, consider the SINR model for the instanceI of TM-SINR. Suppose all the edgesei = (ui, vi) are scheduled
simultaneously - the SINR ratio at any receivervi in this case is,

SINR(vi) =
J

ℓ(ei)α
[

∑n
j 6=i J/d(vi, uj)α

]

≥ c1R
α

[

c2 ·
√
Rc1 ·Rα/(c3 ·

√
R)α

]

≥ β

where the first inequality follows from the fact thatJ = c1 · Rα, n = c2 ·
√
R, andd(vi, uj) ≥ (

√
R) = c3 · (

√
R)

for this instance, and the second inequality follows ifβ ≤ c4 · R(α−1)/2 for a constantc4 = cα3 /c2. This implies that
all the edgesei can be scheduled simultaneously in the SINR model, leading to ropt(I) = Θ(cap ·

√
R), and so the

Lemma follows.

5.2 Linear Power Levels

ui ui+1 ui+2vi vi+1 vi+2

2i 2i+2 2i+1 2i+3 2i+2

Figure 3: Illustrating an example that compares the throughput achieved between SINR and graph- based models
for linear power levels. Representing a line topology, such that each edgeei = (ui, vi) has lengthℓ(ei) = 2i and
d(vi, ui+1) = 2i+2. J(ei) = c1ℓ(ei)

α, for constantc1.

We now construct an instanceI = (V,E,D, J̄) of TM-SINR with linear power levels, i.e., for eache ∈ E,
J(e) = c1ℓ(e)

α, for constantc1. The setV = ∪n
i=1{ui, vi} has2n nodes, which are located on a line in the order

u1, v1, u2, v2, . . . , un, vn. For all i = 1, . . . , n, we haved(ui, vi) = Ri = 2i, and for alli = 1, . . . , n − 1, we have
d(vi, ui+1) = 2i+2 (cf. Figure 3). The setE = {ei = (ui, vi) : i = 1, . . . , n} will be the only edges used for
transmission, withJ(ei) = c1R

α
i , for eachi. All the connections inD in this instance are the pairsei = (ui, vi), for
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i = 1, . . . , n. Because of our AWGN model for the link capacities, as discussed in Equation 2, it follows that for all
ei ∈ E, cap(ei) = cap is a fixed value. Each nodeui has only one incident edge in the setE, so for the graph-based
model, we setr(ui) = Ri = 2i. Therefore, for the corresponding graph-based instanceIgm, the connectivity graph
G = (V,Egm) hasEgm = {ei : i = 1, . . . , n}.

Lemma 2 For the instanceI and the corresponding graph-based instanceIgm described above, we havergmopt(Igm)/ropt(I) =
Θ(n).

Proof First, observe that for the graph-based interference in theinstanceIgm, we haveIgm(ei) = φ for each
ei ∈ Egm. Therefore, the edgesei do not interfere with each other and all these edges can transmit simultaneously in
this model, leading to a throughput capacity ofΩ(n · cap).

Next, consider the SINR model. For simplicity, we ignore thenoise densityN0, though it can be easily incorpo-
rated. LetE′ be any subset of these edges that can transmit simultaneously, and letei be the shortest edge among
them. For allej ∈ E′, ej 6= ei, we haved(uj , vi) ≤

∑j−1
k=i(2

k+2 + 2k+1) ≤ c22
j = c2Rj , for constantc2. For these

transmissions to be feasible in the SINR model, we must have

J(ei)

ℓ(ei)α
[

∑|
ej∈E′,ej 6=ei

E′| J(ej)
d(uj ,vi)α

] ≥ β,

where the LHS is the SINR ratio atvi. Rearranging, and using the fact thatd(uj , vi) ≤ c2Rj for eachej ∈ E′, we
have|E′| is O(1/β), which is a constant. This impliesropt(I) = O(cap/β), and so the Lemma follows.

6 Throughput Maximization with SINR constraints TM-SINR

In this Section, we consider the generic case of power levels, wherein the power level on every edgee ∈ E is J(e) and
is specified by the corresponding vectorJ̄ . We first formulate a linear program for theTM-SINR problem and then
derive the necessary and sufficient conditions for link flow stability.

6.1 Problem Formulation

In this Section we mathematically formulate theTM-SINR problem. We consider input instances ofTM-SINR spec-
ified asI = (V,E,D, J̄). Recall the notation from section 4. It can be seen that due tothe non-linearity of the
SINR constraints, the exact formulation of theTM-SINR problem isnon-convex. We develop a linear programming
relaxation of this problem by combining the approaches of [7, 17] - we show that bothnecessaryand sufficient
conditions can be derived for the feasible rate region by considering the totallink utilization in the edges in the set
C(e) for any edgee. In order to achieve astableand feasibleschedule, we partition the setE of edges into sets
Hi

k = {e = (u, v) ∈ E : ℓ(e) ∈ [2i, 2i+1) ∧ J(e) ∈ [jmin · 2k, jmin · 2k+1)}, ∀i ∈ L, k ∈ M}. As we discuss in the
next sub-sections, this partitioning helps the schedulingalgorithm to bound the number of links that can be scheduled
simultaneously without violating the SINR constraints at every receiver. Our formulation for instanceI described
below is denoted byP(λ, I), whereλ is a parameter.
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max
∑

i∈D

ri subject to:

∀i ∈ D, ri =
∑

e∈Nout(si)

fi(e) (3)

∀i ∈ D,
∑

e∈Nin(si)

fi(e) = 0 (4)

∀e ∈ E, x(e) =
∑

i∈D

fi(e)/cap(e) (5)

∀i ∈ D, ∀u 6= si, ti,
∑

e∈Nout(u)

fi(e) =
∑

e∈Nin(u)

fi(e) (6)

∀e ∈ E, ∀i ∈ L, ∀k ∈ M,
∑

e′∈C(e)∩Hi
k

x(e′) ≤ λ (7)

In the above formulation, constraints (3) define the total rate ri for each connection, constraints (4) define the link
utilizationx(e) for each linke, constraints (5, 6) ensure flow conservation, and constraints (7) are relaxed congestion
constraints - these are thekeyconstraints that allow us to use this program to derive upperand lower bounds on the
optimum rate. The programP(λ, I) haspolynomialsize and can be solved inpolynomial time.

In the subsequent sections, we show that the optimum utilization vector satisfiesP(λ, I) for some constant value
of λ. We then show that scaling the constraints down by a factor ofλ allows us to schedule the flows feasibly.

6.2 Link-Flow Scheduling: Necessary Conditions

The following Lemma shows thatP(λ, I) gives an upper bound onropt(I) for a suitable choice ofλ.

Lemma 3 Let I = (V,E,D, J̄) be an instance of theTM-SINR problem, and let̄x ∈ X (I) be anyfeasible link
utilizationvector. Then,̄x satisfies the following conditions:

∀e ∈ E, ∀i ∈ L, ∀k ∈ M,
∑

e′∈C(e)∩Hi
k

x(e′) ≤ λ0,

whereλ0 = θ (2a+1)α

β +1, θ = 2, anda is the constant defined in Section 4.3. This implies thatx̄ is a feasible solution
to the programP(λ0, I).

Proof Since thelink utilization vectorx̄ is feasible, there exists astablescheduleS which achieves the link rates
specified bȳx. Recall the notationX(e, t) from Section 4. LetEt = {e : X(e, t) = 1} denote the set of links that
transmit at timet in this schedule. We now focus on any edgee = (u, v) ∈ Et. Let At(e) = Et ∩ C(e) = {ej =
(uj , vj) ∈ C(e) : j = 1, . . . , s} be a set of links inC(e) that are scheduled simultaneously at timet. DefineGk =
{e ∈ E : jmin ·θk ≤ J(e) < jmin ·θk}, ∀k ∈ M . We argue below that the number of links that can be simultaneously
scheduled from setQt,k(e) = At(e) ∩Gk, for any edgee, at any timet and anyk ∈ M is O(1). Let the links in the
setQt,k(e) be numbered in non-decreasing order of their lengths, so that ℓ(u1, v1) ≤ ℓ(u2, v2) ≤ . . . ≤ ℓ(uc, vc) (cf.
Figure 4). For simultaneously successful transmission of these links, the SINR at each nodevj , and in particular at
nodevc needs to be at leastβ.

Consider anyej , ec ∈ Qt,k(e), ej 6= ec, we haveJ(ec)/θ ≤ J(ej) ≤ θJ(ec). Further it can be seen that,

d(uj , vc) ≤ d(u, uj) + d(u, uc) + d(uc, vc)

≤ 2ad(u, v) + d(uc, vc)

≤ (2a+ 1)d(uc, vc),

where the first inequality follows from the triangle inequality and the last two inequalities follow from the definition
of C(e), which implies that for anye′ = (u′, v′) ∈ C(e), we must haved(u, u′) ≤ a · ℓ(e′) andℓ(e) ≤ ℓ(e′).
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u

v

euc

vc

ec

uj

vj

ej

Figure 4: For a given linke = (u, v) and setQt,k(e), d(uj , vc) ≤ (2a + 1)d(uc, vc) , whereec, ej ∈ C(e) andec is
the link with longest length in setQt,k(e).

The interference experienced atvc due to all transmitting links inQt,k(e)− {ec} is

Ir(vc) =
∑

ej=(uj ,vj)∈Qt,k(e),j 6=c

J(ej)

d(uj , vc)α
.

Therefore, in order to satisfy the SINR constraint at nodevc we need,

J(ec)/d(uc, vc)
α

[

N0 +
∑

ej∈Qt,k(e),j 6=c J(ej)/d(uj , vc)α
] ≥ β.

Rearranging, we have

J(ec)

d(uc, vc)α
≥ β



N0 +
∑

ej∈Qt,k(e),j 6=c

J(ej)

d(uj , vc)α





≥ βN0 +
βJ(ec)(c− 1)

θ(2a+ 1)αd(uc, vc)α

≥ βJ(ec)(c− 1)

θ(2a+ 1)αd(uc, vc)α
.

This in turn impliesc ≤ θ (2a+1)α

β + 1, and therefore, we have

∀e ∈ E, ∀t,
∑

e′∈Qt,k(e)

X(e′, t) ≤ λ0.

Observing thatC(e) ∩Hi
k ⊆ C(e) ∩Gk, for anyT we have,

∀e ∈ E, ∀k ∈ M, ∀i ∈ L,
∑

e′∈C(e)∩Hi
k

∑

t≤T

X(e′, t) ≤ Tλ0. (8)

Dividing both sides of (8) byT , the Lemma follows from the definition ofx(e) in Section 4.2.

6.3 Link-Flow Scheduling: sufficient conditions

In this section, we show that the programP(λ, I = (V,E,D, J̄)) can be used to derive sufficient conditions for link
flow stability for the instanceI of TM-SINR, for a suitable value of the parameterλ. This requires showing that a
solutionx̄ to the programP(λ, I) can be scheduled feasibly, under suitable conditions onλ andJ̄ . We describe an
algorithmFrameSchedule for constructing a feasible schedule below.
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We assume that time is divided into sufficiently large frames, with the length of each frame|W | = w. Recall the
definitions of∆, Γ and the setsHi

k from Section 4. We further subdivide each frameW into (1 + log∆) · (1 + log Γ)
sub-framesWi,k, such that|Wi,k| = w′ = w/(1 + log∆) · (1 + log Γ), ∀i ∈ L, ∀k ∈ M . We assume that lengths of
sub-framesWi,k, ∀i ∈ L, k ∈ M and thatx(e) · w′ is integral for alle ∈ E. Algorithm FrameSchedule constructs
a periodic scheduleS by repeating a scheduleSW for every frameW . Within each sub-frameWi,k, the algorithm
considers only the edges from the setHi

k and assignss(e) = x(e) · w′ slots for each edgee ∈ Hi
k such via a greedy

coloring scheme. In this scheme we consider the edges in a decreasing order of their lengths and assign time slots to
each edge such that no two edgese, e′ with e ∈ C(e′) are assigned the same time slot. The final schedule is constructed
by combining schedulesSW for all the frames.

Algorithm 1: FrameSchedule

Input : (i) E,(ii)x̄,(iii)W ,(iv)J̄ ,(v)w
Output : Setss(e) for all edgese and scheduleSW

1 for e ∈ E do
2 s(e) = φ
3 end
4 PartitionW into (1 + log∆) · (1 + log Γ) setsWi,k of equal size, fori ∈ L, k ∈ M .
5 for i = ⌊log∆⌋ downto0 do
6 for k = ⌊log Γ⌋ downto0 do

//Greedy Coloring
7 Order edges inHi

k in non-increasing order of their lengths, such thatHi
k,sort = {e1, . . . , es}.

8 for j = 1 to |Hi
k,sort| do

9 s′(ej) =
⋃

e′∈C(ej)∩{e1,...,ej−1}
s(e′)

10 s(ej) = any subset ofWi,k \ s′(ej) of sizew · x(ej)
11 end
12 end
13 end
14 Construct scheduleSW : at each timet ∈ W , schedule all linkse ∈ E with t ∈ s(e).

For the algorithmFrameSchedule to be stable, we need to find conditions under which the algorithm correctly
assigns|s(e)| = x(e) ·w′ number of slots for eache ∈ E. The following Lemma proves that for a suitable value ofλ,
the algorithm is indeed successful.

Lemma 4 AlgorithmFrameSchedule correctly assigns|s(e)| = x(e) ·w′ slots for each edgee, if the link utilization
vectorx̄ satisfies the following conditions∀e ∈ E, ∀i ∈ L, ∀k ∈ M :

∑

e′∈C(e)∩Hi
k

x(e′) ≤ 1

(1 + log∆)(1 + log Γ)

This implies that̄x is any feasible solution to the linear programP( 1
(1+log∆)(1+log Γ) , I).

Proof Let us assume that for some edgeej ∈ Hi
k with link utilization x(ej), algorithmFrameSchedule fails to

assigns(ej) = x(ej) · w′ slots. Therefore, we must have,
∑

e′∈C(ej)∩Hi
k

|s(e′)| > w

(1 + log∆) · (1 + log Γ)
.

Dividing both sides byw, we get
∑

e′∈C(ej)∩Hi
k
x(e′) > 1/(1 + log∆) · (1 + log Γ), which contradicts the condition

on x̄.

Since the programP(λ, I) has size polynomial inn, the link utilization ratesx(e) are rational and of the form
Z1/Z2, with bothZ1, Z2 ≤ 2n

c

, for some constantc. Therefore, the frame sizew is also bounded by2n
c

. As we
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discuss later in Section 6.4, we can modify the link utilization vectorx̄ so that the frame sizew becomes a polynomial
in n, with a slight reduction in the total achievable throughput.

Next, we need to show that the Schedule produced by algorithm1 is indeed valid, wherein the SINR constraints at
every receiver are satisfied.

Lemma 5 Let x̄ be a feasible solution to the programP(1/(1 + log∆)(1 + log Γ), I = (V,E,D, J̄)). Then, Algo-
rithm FrameSchedule produces a feasible schedule corresponding tox̄ for the instanceI ′ = (V,E′,D, (1 + ǫ)J̄
of TM-SINR, whereE′ = {e ∈ E : J(e) ≥ (1 + ǫ)βN0ℓ(e)

α} in which the SINR constraints are satisfied at all

receivers, for constantsa ≥ 2 α

√

48θβ(1+ǫ)
ǫ(α−2) , α > 2, ǫ > 0, andθ = 2.

Proof We show that at any timet, the setEt of links scheduled at this time inS can indeed be transmitted simulta-
neously, while satisfying the SINR constraints at each receiver.

By construction, there exists a setHi
k such thatEt ⊆ Hi

k, for somei ∈ L, k ∈ M . Consider two edgesej , em ∈ Et

with ℓ(ej) ≤ ℓ(em). Since these two edges are scheduled simultaneously, it must be the case thatem 6∈ C(ej), which
impliesd(uj , um) > amax{ℓ(ej), ℓ(em)}. For anyej ∈ Hi

k, we haveJ(ej) ∈ [jmin · 2k, jmin · 2k+1) which implies
J(em) ≤ θJ(ej). Further, we haveℓ(ej) ∈ [2i, 2i+1), and thereforea2i ≥ aℓ(ej)/2. This implies that if we place a
disk of radiusaℓ(ej)/4 centered at the end points of each edge inEt, all these disks would be disjoint.

R0

R1

vj

uj

ej

aℓ(ej)

2aℓ(ej)

Figure 5: For a given linkej = (uj , vj) ∈ Et, construct rings of radiusaℓ(ej) arounduj . We calculate the interference
experienced by nodevj due to other simultaneously transmitting links.

Consider anyej = (uj , vj) ∈ Et. We estimate the SINR atvj in the following manner. As in [7,23], we partition
the plane into ringsRd centered atuj (cf. Figure 5) ford = 0, 1, . . ., each of widthaℓ(ej) arounduj . Each ringRd

consists of all linksem = (um, vm), for which daℓ(ej) ≤ d(uj , um) < (d + 1)aℓ(ej). As derived earlier, for any
em 6= ej , we haved(uj , um) > amax{ℓ(ej), ℓ(em)}, which impliesR0 does not contain any links inEt other than
ej . The area of the ringRd can be calculated as,

A(Rd) = π[((d+ 1)aℓ(ej))
2 − (daℓ(ej))

2]

= πa2(2d+ 1)ℓ(ej)
2

≤ 3πda2ℓ(ej)
2.

and so the non-overlapping disks property implies that the number of transmitters inRd is at most

3πda2ℓ(ej)
2

πa2ℓ(ej)2/16
≤ 48d.

Next, that for eachem ∈ Rd, we haved(um, vj) ≥ (ad− 1)ℓ(ej) ≥ ad
2 ℓ(ej), sincea > 2. Therefore, the interference
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atvj due to nodes inRd denoted byId(vj) is bounded as follows,

Id(vj) ≤ 48 · d · 2α θ · J(ej)
(adℓ(ej))α

= 2α
48 · θ · J(ej)
aαdα−1ℓ(ej)α

.

Summing up the interference over all ringsRd, we have,

∞
∑

d=1

Id(vj) ≤ 2α
48 · θ · J(ej)
aαℓ(ej)α

∞
∑

d=1

1

dα−1

≤ 2α
48 · θ · J(ej)
aαℓ(ej)α

∫ ∞

1

dx

xα−1

≤ 2α48 · θ · J(ej)
aαℓ(ej)α(α− 2)

.

Therefore the SINR at receivervj is at least

SINR(vj) ≥ J(ej)

ℓ(ej)α[N0 +
2α48·θ·J(ej)

aαℓ(ej)α(α−2) ]

=
J(ej)

ℓ(ej)α[N0 +
ǫJ(ej)

(1+ǫ)βℓ(ej)α
]
,

which is at leastβ if aα ≥ 2α 48θβ(ǫ+1)
ǫ(α−2) andJ(ej) ≥ (1 + ǫ)βN0ℓ(ej)

α. We therefore choosea (defined in Section
4.3) that satisfies the above condition. In order guarantee the feasibility and validity of the scheduleS, we add a small
slackǫ to the power levels and enforce the following constraints:∀e ∈ E, J(e) ≥ (1+ ǫ)βN0ℓ(e)

α. This corresponds
to adifferentinstanceI ′ = (V,E′,D, (1 + ǫ)J̄) of TM-SINR, whereE′ = {e ∈ E : J(e) ≥ (1 + ǫ)βN0ℓ(e)

α}. The
vectorx̄ produced by algorithmFrameSchedule is therefore not valid for the original instanceI = (V,E,D, J̄), but
is valid for the instanceI ′ of TM-SINR.

6.4 Putting everything together

For an input instanceI ′ = (V,E′,D, (1 + ǫ)J̄) of TM-SINR, we first compute the optimumlink utilization vector
x̄ by solving the linear programP(1/(1 + log∆) · (1 + log Γ), I = (V,E,D, J̄), whereE′ = {e ∈ E : J(e) ≥
(1+ ǫ)βN0ℓ(e)

α}. We know from Lemma 5 that̄x can be scheduled feasibly for the instanceI ′. The following theo-
rem shows that the rate achieved byx̄ is within a provable factor ofropt(I) - thus, this is abi-criteria approximation,
in which we compare the quality of the solution produced by our algorithm with respect to the optimum for an instance
that uses slightly less power.

Theorem 1 LetI ′ = (V,E′,D, (1+ǫ)J̄) be an instance ofTM-SINR, and letI = (V,E,D, J̄) be the corresponding
instance for which the optimum rateropt(I) is considered, such thatE′ = {e ∈ E : J(e) ≥ (1 + ǫ)βN0ℓ(e)

α}, for
anyǫ > 0. The optimum solution̄x to the programP(1/(1 + log∆) · (1 + log Γ), I) yields a feasible and stablelink
utilizationvector for the instanceI ′, and results in a total throughput of at leastΩ(ropt(I)/λ0(1+log∆)·(1+log Γ)),

for λ0 = θ (2a+1)α

β + 1, θ = 2, anda as defined in Section 4.3.

Proof Let x̄opt be the optimum utilization vector for the instanceI of TM-SINR, achieving a total throughput rate
of ropt(I). From Lemma 3, it follows that̄xopt is a feasible solution if it satisfies the conditions stated in Lemma 3 and

hence is a feasible solution to the programP(λ0, I), for λ0 = θ (2a+1)α

β +1, θ = 2, anda as defined in Section 4.3. We

now scale down thelink utilizationvectorx̄opt to achieve a new vector̄y such that̄y = 1
λ0(1+log∆)·(1+log Γ) x̄opt. Since

P(λ0, I) is a linear program, it follows that̄y is a feasible solution to the programP(1/(1 + log∆) · (1 + log Γ), I),
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and results in a total throughput rate of ropt(I)
λ0(1+log∆)·(1+log Γ) . This implies that the optimum solution̄x to the program

P(1/(1 + log∆) · (1 + log Γ), I) also results in a total throughput rate of at least ropt(I)
λ0(1+log∆)·(1+log Γ) . Finally, by

Lemma 5, it follows that̄x can be scheduled feasibly for the instanceI ′ of TM-SINR. Therefore, the theorem follows.

Our presentation of the LP based technique and AlgorithmFrameSchedule assume a centralized and synchro-
nized setting, with traffic arrivals at a constant bit rate. Further, the running time for AlgorithmFrameSchedule
depends on the frame sizew, which need not be polynomial. However, as we discuss below,the rate vector obtained
from the LP can be modified slightly so that the frame size becomes polynomial, with a slight reduction in total
throughput. Implementing the LP and the scheduling in a distributed are challenging problems, but approaches of [3]
and [12] for distributed flow computation and random access scheduling, respectively, could be useful. One difference,
though, is that these papers are not based on the SINR model.

Modifying the rate vector to ensure polynomial sized frame. We now describe a simple idea to modify the rate vector
x̄ so that the frame size becomes polynomial sized, so that the running time of AlgorithmFrameSchedule becomes
polynomial. This involves the following steps.

1. For each edgee, roundx(e) to the nearest multiple of1/nc for a constantc. In other words, we consider
x′(e) = ⌊x(e)nc⌋

nc .

2. Next, consider a maximum multi-commodity path flow̄f ′ with capacitiesx′(e)cap(e). If the capacities are
scaled by a factor ofnc, all these capacities are integral (and at most a polynomial) because of the previous
step. Therefore,f ′(e) · nc is also integral for eache, using standard properties of network flows. Letx̄′′ =
∑

i f
′
i(e)/cap(e) be the resulting link utilization for the flowf ′().

3. Run AlgorithmFrameSchedule with the link utilization vectorx̄′′, for which the frame sizew will be at most
nc.

It is easy to see that the total throughput resulting from thescaled rate vector̄f ′ is at least1 − 1/nc times the
original, and therefore, the statement of Theorem 1 still holds, but the scheduling step now runs in polynomial time.

7 Throughput Maximization for Uniform Power Levels

In the previous section, we considered a generic case of power levels, where in every edgee ∈ E had an assigned
power levelJ(e). We now consider a specific case of power levels in which all edgese ∈ E have theuniform
(same) power levelJ(e) = J , whereJ ≥ (1 + ǫ)βN0ℓ(e)

α, ∀e ∈ E. We show that the approximation bound of
O((1 + log∆) · (1 + log Γ)) derived on the achievable throughput (cf. Theorem 1 ) can be improved to a(1 + log∆)
approximation for the case ofuniformpower levels.

7.1 Problem Formulation

We consider input instances ofTM-SINR specified asI = (V,E,D, J), with uniformpower level ofJ(e) = J for
every edgee ∈ E. The problem formulation for theTM-SINR problem foruniformpower levels is similar to the one
presented in Section 6.1. Recall that in Section 6.1, we partitioned the setE of edges into setsHi

k based on the edge
lengths and power levels, (i.e.Hi

k = {e = (u, v) ∈ E : ℓ(e) ∈ [2i, 2i+1) ∧ J(e) ∈ [jmin · 2k, jmin · 2k+1)}, ∀i ∈
L, k ∈ M ). Since the power levels areuniform, we only need to partition the setE of edges based on edge lengths.
Therefore we obtain setsHi = {e = (u, v) ∈ E : ℓ(e) ∈ [2i, 2i+1)}, ∀i ∈ L. For an instanceI = (V,E,D, J) of
TM-SINR, we define a different formulationPu(λ, I) by replacing the constraints (7) in the programP(λ, I) by the
constraints

∀e ∈ E, ∀i ∈ L
∑

e′∈C(e)∩Hi

x(e′) ≤ λ. (9)
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7.2 Link-Flow Scheduling: Necessary Conditions

Lemma 6 Let I = (V,E,D, J) be an instance of theTM-SINR problem withuniform power levelJ , and letx̄ ∈
X (I) be any feasiblelink utilization vector. Then,̄x satisfies the following conditions:

∀e ∈ E, ∀i ∈ L,
∑

e′∈C(e)∩Hi

x(e′) ≤ λ1,

whereλ1 = θ (2a+1)α

β +1, θ = 1, anda is the constant defined in Section 4.3. This implies thatx̄ is a feasible solution
to the programPu(λ1, I).

Proof The proof is similar to that of Lemma 3. Recall the notations used in the proof of Lemma 3. For the
case of uniform power levels, we only consider the setsHi∀i ∈ L. We further do not consider the setGk and set
Qt(e) = At(e). By following the sequence of steps used in Lemma 3 and substitutingθ = 1 the Lemma follows.

7.3 Link-Flow Scheduling: Sufficient Conditions

We now consider the sufficient conditions for link-flow stability for the case ofuniform power levels. Algorithm
UniformFrameSchedule is the modified scheduling algorithm for this setting. As in algorithm 1, we assume that
time is divided into sufficiently large frames (W ) of lengthw. We subdivide each frameW into (1 + log∆) sub-
framesWi each of lengthw′ = w/(1 + log∆)∀i ∈ L. We assume thatw′ andx(e) · w′∀e ∈ E are integrals.
Algorithm UniformFrameSchedule constructs a periodic scheduleS by repeating a scheduleSW for every frame
W . Within each sub-frameWi, the algorithm considers only the edges from the setHi and assignss(e) = x(e) · w′

slots for each edgee ∈ Hi by a greedy coloring step.

Algorithm 2: UniformFrameSchedule

Input : (i) E, (ii) x̄, (iii) W , (iv) w
Output : Sets(e) for all e ∈ E, and scheduleSW

1 for e ∈ E do
2 s(e) = φ
3 end
4 PartitionW into 1 + (log∆) setsWi of equal size, fori ∈ L,
5 for i = ⌊log∆⌋ downto0 do

//Greedy Coloring
6 Order edges inHi in non-increasing order of their lengths to obtainHi

sort = {e1, . . . , es}.
7 for j = 1 to |Hi

sort| do
8 s′(ej) =

⋃

e′∈C(e)∩{e1,...,ej−1}
s(e′)

9 s(ej) = any subset ofWi \ s′(ej) of sizex(e) · w
10 end
11 end
12 Construct scheduleSW : at each timet ∈ W , schedule all linkse ∈ E with t ∈ s(e).

We construct a periodic scheduleS using Algorithm 2 by repeating the scheduleSW for each frameW .

Lemma 7 AlgorithmUniformFrameSchedule correctly assigns|s(e)| = x(e) · w′ slots for each edgee, if the link
utilizationvectorx̄ is any feasible solution to the programP( 1

(1+log∆) , I).

Proof The proof is similar to that of Lemma 4. Since we haveuniformpower levels,log Γ = 0. Further we only con-
sider setsHi,∀i ∈ L. By making these modifications to Lemma 4, it follows that algorithmUniformFrameSchedule
indeed assignsx(e) · w′ slots for each edgee. We now derive the conditions under which the schedule is valid.
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Lemma 8 Let x̄ be a feasible solution to the programPu(1/(1 + log∆), I = (V,E,D, J̄)), Then, AlgorithmUni-
formFrameSchedule produces a feasible schedule corresponding tox̄ for the instanceI ′ = (V,E′,D, (1 + ǫ)J̄
of TM-SINR, whereE′ = {e ∈ E : J(e) ≥ (1 + ǫ)βN0ℓ(e)

α} in which the SINR constraints are satisfied at all

receivers, for constantsa ≥ 2 α

√

48θβ(1+ǫ)
ǫ(α−2) , α > 2, ǫ > 0, andθ = 1.

Proof It can be seen that by considering only setsHi, ∀i ∈ L and by substitutinglog Γ = 0, θ = 1, in the proof of
Lemma 5, we can prove the above Lemma.

Theorem 2 LetI ′ = (V,E′,D, (1+ǫ)J̄) be an instance ofTM-SINR, and letI = (V,E,D, J̄) be the corresponding
instance for which the optimum rateropt(I) is considered, such thatE′ = {e ∈ E : J(e) ≥ (1+ǫ)βN0ℓ(e)

α}, for any
ǫ > 0. The optimum solution̄x to the programPu(1/(1+log∆), I) yields a feasible and stablelink utilization vector
for the instanceI ′, and results in a total throughput of at leastΩ(ropt(I)/λ1(1 + log∆)), for λ1 = θ (2a+1)α

β + 1,
θ = 1, anda as defined in Section 4.3.

Proof The proof of Theorem 1 can be applied here by substitutinglog Γ = 0, λ0 with λ1 and programP with Pu.

8 Improved Approximations for Linear Power Levels

We now consider another special case of power levels, in which J(e) = c1ℓ(e)
α, ∀e ∈ E for constantc1 such that

c1 ≥ (1 + ǫ)βN0 - this is also called thelinear power level. Theorem 1 implies an approximation ofO((1 + log∆)2)
for this case, sincelog Γ = O(log∆). In this section, we show that this bound can be improved toO(1 + log∆).

Let J̄ be the power value vector withJ(e) = c1ℓ(e)
α, ∀e ∈ E. Recall the definition of the setsHi from Section

7.1. In order to get a better approximation, we partition theset of edgesE into setsHi based on their lengths. It can
be seen that∀e′, e′′ ∈ Hi, J(e′)/2α ≤ J(e′′) ≤ J(e′), ∀i ∈ L. For an instanceI = (V,E,D, J̄) of TM-SINR, we
consider the programPu(λ, I) (described in Section 7.1) instead of the programP(λ, I).

Lemma 9 LetI = (V,E,D, J̄) be an instance of theTM-SINR problem withlinearpower levelsJ̄ , and letx̄ ∈ X (I)
be any feasiblelink utilization vector. Then,̄x satisfies the following conditions:

∀e ∈ E, ∀i ∈ L,
∑

e′∈C(e)∩Hi

x(e′) ≤ λ2,

whereλ2 = θ (2a+1)α

β + 1, θ = 2α, anda is the constant defined in Section 4.3. This implies thatbarx is a feasible
solution to the programPu(λ2, I),

Proof The proof of Lemma 6 can be applied here, by substitutingθ = 2α.

Theorem 3 LetI ′ = (V,E′,D, (1+ǫ)J̄) be an instance ofTM-SINR, and letI = (V,E,D, J̄) be the corresponding
instance for which the optimum rateropt(I) is considered, such thatE′ = {e ∈ E : J(e) ≥ (1+ǫ)βN0ℓ(e)

α}, for any
ǫ > 0. The optimum solution̄x to the programPu(1/(1+log∆), I) yields a feasible and stablelink utilization vector
for the instanceI ′, and results in a total throughput of at leastΩ(ropt(I)/λ2(1 + log∆)), for λ2 = θ (2a+1)α

β + 1,
θ = 2α, anda as defined in Section 4.3.

Proof The proof of is similar to that of Lemmas 7,8, and Theorem 2. Weuse algorithmUniformFrameSchedule
to schedule the vector̄x. By substitutingθ = 2α andλ1 with λ2 in the proof of Lemma 8 and Theorem 2, the theorem
follows.
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9 Simulations

In this section, we conduct extensive simulations to validate the approximation techniques discussed in Section 6.3 and
gain deeper insights into the theoretical model. Specifically, there are two main goals of our simulations: (i) validate
the theoretical model and verify that the schedule producedby the greedy algorithmFrameSchedule (cf. Section 6.3)
is feasible (i.e. SINR constraints are not violated at any given time), and (ii) compare the approximate solution with the
optimal solution for a reasonable network setting and identify parameters that can allow us to improve the performance
of our model. Our simulation setup is described below.

• Network Type: We consider a road traffic network corresponding to a distribution of 227 cars for a particular
time instance in a region of downtown Portland, OR, obtainedby running the TRANSIMS simulator [24]. We
scaled down this network to fit in a50m× 50m region (cf. Figure 6(a))

• Number of connections:We experiment with varying number of connections, each of the source-destination
pairs are chosen u.a.r. We denote these ask.

• Edge Capacities:All edges have a transmission rate of 5Mbps.

• Transmission power:We perform all experiments for the case of uniform power levels, where every transmitter
can transmit at 40mW. The transmission range was set to 10m.

• Number of seeds:All data points are averaged over 5 runs of the experiment.

9.1 Validation of the theoretical model

In Section 6.3 we have theoretically proved that the rate vectors obtained by solving the LP (cf. Section 6) can be
feasibly scheduled without violating the SINR constraints. In this set of experiments, we verify the correctness of our
theoretical model.Goal: The goal of this experiment is to verify the feasibility of the rates and schedule derived by
the approximation algorithm for theTM-SINR problem in a realistic setting.

For a given network instance, we solve the LP using the Neos solver [27] and obtain the overall throughput and individ-
ual link rates. We then construct a centralized TDMA schedule using the greedy scheduling algorithmFrameSched-
ule and implement this schedule in the Qualnet simulator. The simulator decides if a packet has been successfully
received or not by measuring the signal-to-noise ratio at every receiver and comparing it with the SINR threshold (β).
We observe the overall throughput achieved by the simulatorfor a given schedule and compare this with the throughput
obtained by solving the LP. We study the variation of throughput as a function of the number of connections. In this
set of experiments, we do not consider the impact of routing;for a given set of randomly chosen source destination
pair, we compute the shortest path using the Dijkstra’s algorithm.
Results and Explanation:Figure 6(b) summarizes the results of our experiment averaged over 5 runs. We also plot
the average difference between the LP and the simulator output for different number of connections and provide95%
confidence intervals according to the Gaussian distribution. We observe differences between the LP and the simulator
output. These are mainly due to the delay introduced by transmission of control packets in the simulator. At the
physical layer of the simulator, according to the 802.11 specification, a control packet (known as the PLCP preamble)
is sent before transmitting a data packet. In the greedy scheduling algorithm (FrameSchedule), we divide the entire
time frame into time-slots of equal lengths. In order to ensure that the packets sent at the start of every time-slot
reach before or at the end of every time-slot, we set the duration of the time-slot to be an integral multiple of the
transmission time. For example, if the transmission rate ofevery edge is 5Mbps, and the packet size is 1000 bytes,
the transmission time is1000 ∗ 8/5 = 1600µsecs. The slot duration in this example would byk · 1600µsecs, where
k is the number of packets sent in a given time-slot. The throughput in the scheduling algorithm is measured at the
end of every time slot and is calculated astotal number of bytes received at the end of the time-slot/duration of the
time-slot.We do not consider the effects of propagation delay and the delay due to the transmission of control packets
(control-delay). These delays are considered in the simulator. For successful transmission and reception of packets
in any given time-slot, the simulator requires the durationof the time-slot to be slightly higher than that assumed in
the greedy scheduling scheme. This causes the simulator throughput to be slightly different than the LP throughput.
However, we can incorporate the effect of the control packets and the propagation delay in the LP formulation. The
maximum link capacity of every link in the LP can be calculated aspacket size·8/transmission time + propagation
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delay + control delay. We call this LP asLPcompensated and it can be seen from Figure 6(b), that the throughput
achieved byLPcompensated (denoted asLP C in the plot) matches very closely with the simulator throughput. This
shows that packet loss does not occur in the simulator due to the violations of the SINR constraints. We therefore
conclude that (a) the greedy scheduling algorithmFrameSchedule is feasible, (b) the rates obtained by the LP are
achievable in a realistic setting and, (c) effects of various delays such as propagation, control etc. can be incorporated
in the LP.
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(b) Variation of throughput w.r.t. the number of connectionsas
observed by the LP and the network simulator.

Figure 6: Network map and throughput

9.2 Comparison with the optimal solution

The necessary and sufficient conditions discussed in Sections 6.2, 6.3 conditions correspond to the upper and lower
bounds on network capacity. Based on these bounds, we derivean approximation ratio that indicates how far the ap-
proximate solution can be from the optimal solution in the worst case. In this set of experiments, we aim to gain deeper
insights into our approximation techniques and the bounds by performing a comparison with the optimal solution.
Goal: The goals of this experiment are to (a) observe how far the approximate solution is from the optimal solution for
a reasonable network setting, (b) compare observed approximation ratio with theoretically estimated approximation
ratio, (c) study the impact of different network types on performance of the approximation technique, and (d) identify
parameters for improving the performance of the theoretical model.
For a given network instance, we solve the LP with the sufficiency conditions and calculate the optimal solution by per-
forming an exhaustive search (brute-force technique). Since the brute-force technique is unlikely to scale for networks
with multi-hop paths, we consider only one-hop source destination pairs. We also run the LP with the necessary con-
ditions, in order to obtain an upper bound on the throughput.For a given network instance, we compute theobserved
approximation ratio, which is the ratio of the optimal solution and the LP solution and compare this with the theoreti-
cally derived worst-case approximation ratio, which is theratio of the derived upper bound and the lower bound. For

the case of uniform power levels and uniform link capacitiesthis ratio ismin{k · cap, (2a+ 1)α + β)(1 + log∆)

β
},

wherek denotes the number of connections,cap denotes the maximum transmission rate of every link anda, α, β,∆
are as defined in Section 4. We further compare the LP throughput with the one obtained by running the standard
802.11 random-access MAC protocol in the network simulator. We study the variation of overall throughput as a
function of the number of connections.
Results and Explanation:Figure 7 plots the results of this experiment. We classify our observations in the following
way:

• Impact of length diversity:For the case of non-uniform edge lengths the LP scales down the overall rates by
a scaling factor of1 + log∆, where∆ denotes the maximum inter-point separation (ratio of the maximum
length edge and minimum length edge). Recall that in our approximation scheme, we partition the edges into
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log∆ bins based on their edge lengths, such that each binHi = {e ∈ L : ℓ(e) ∈ [2i, 2i+1)}. We then
consider each bin separately and schedule all the links belonging to it (cf.Section 6.3). For the realistic network
considered, the average length diversity was 6.15 suggesting the use of 3 bins. We observed that (cf. Figure 7(c))
this binning strategy highly underestimates the LP throughput. We therefore experimented with different bin-
widths. By increasing the width of each bin by a quantityp, each bin can accommodate more links making
Hi = {e ∈ L : ℓ(e) ∈ [2i, 2i+p)}. This results in fewer bins and hence, the throughput scaling factor can be
reduced (the scaling factor is equal to the total number of bins). In order to ensure that the schedule is feasible
by increasing the bin width, we impose additional conditions on the value of constanta (cf. Section 6.3). For

the case of uniform power levels, the new constraints on the value ofa are of the forma ≥ 2 α

√

3·22p+2β(1+ǫ)
ǫ(α−2) ,

wherep denotes the increase in the bin-width,p = 1 implies the original case. This condition can be derived
by following the proof for Lemma 4. It should be noted that there is a tradeoff betweenp anda. Increasing the
bin width reduces the scaling factor but increases the lowerbound on the value ofa. The interference set of
every edgeC(e) is based on the value ofa. As the value ofa increases, more links can be included in the set
C(e)∀e ∈ E , resulting in a lower throughput. We experimented with different bin-widthsp (and hence different
number of bins) and different values ofa and observed that the overall throughput is always high whenthere is
only a single bin (which implies that the scaling factor is 1)in the system (cf. Figure 7(c)).

• Approximation Ratio:We compare this approximation ratio obtained from the simulations with the theoretically
estimated approximation ratio (ratio of the upper bound andlower bound). We observe that the upper bound
as determined by the LP monotonically increases with the number of connections and has a value of(k · cap),
wherek denotes the number of connections andcap = 5Mbps is the bandwidth of the system (cf. Figure 7(b)).
The lower bound on the other hand is 1 as we use a single bin in the simulations. We observe that the approx-
imation ratio is much lower than the estimated theoretical approximation ratio. This shows that in practice our
approximation techniques provide a better approximation ratio than predicted and the bounds derived by our
methods are indeed worst-case bounds. This result indicates that the derived upper and lower bounds are weak
and additional research is required to improve these bounds.

• Comparison with 802.11We observe that the results of our approximation techniquesare comparable with the
802.11 protocol (cf. Figure 7(b)). 802.11 is a distributed random-access protocol and its performance is very
close to our centralized technique. However, it should be noted that in order to ensure a fair comparison, the
802.11 simulations were conducted with a fairly high queue size of 12.5MB (≈ 8000 packets). For 802.11
simulation, the rate at which packets arrive at every transmitter was set to the bandwidth (5Mbps in this case);
this ensured that the MAC layer always has a packet to send. Inorder to prevent packet loss due to saturated
queues, the queue sizes for all transmitters were set to a high value. We observed that the 802.11 throughput
decreased significantly when the queue sizes were set to the most commonly used value of 50KB [18] (cf. 7(d)).
In Figure 8 we demonstrate the increase in the queue size at a particular node with simulation time.

We conclude that (a) the bounds derived by our techniques areindeed worst case approximation bounds and in prac-
tice our methods perform better than predicted. Additionalresearch is however required to improve the upper and
lower bounds, (b) the performance of the approximation algorithm is influenced by the length-diversity, (c) higher
performance gains can be achieved by engineering the system. Partitioning the edges into different bins provided less
throughput gains than using a single bin and, (d) the congestion measure proposed in this work can lead to overly
pessimistic estimates for high traffic regimes. Additionalresearch is required in developing an efficient congestion
measure.

10 Improved Approximations for Grid Topologies

We now consider a special case of topology called the grid topology, where in the nodes are placed on a uniform
spacing grid. The approximation obtained from Theorem 1 holds for any arbitrary graph topologies. We show that the
poly-log approximation derived in Section 6 can be improvedto a constant factor approximation for the case of grid
topologies.

For a setV of n nodes, consider a grid of
√
n×√

n with uniform grid spacing ofd units. Let the nodes be placed
on the grid points (cf. Figure 9). LetE ⊆ V × V . For the grid topology, we consider an input instance ofTM-SINR
specified asI = (V,E,D, J̄). We use the problem formulationP(λ, I) as discussed in Section 6.
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as observed by the optimal solution, LP and 802.11 protocol.
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LP with the necessary conditions. The 802.11 protocol ran
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Figure 7: Simulation results comparing LP with the optimal solution and 802.11.
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Figure 9: (a) Demonstrating Manhattan routing: For a grid with uniform grid spacing ofd, the flow on direct edge
e15 = (u1, u5) can be replaced by flows on short edgese12, e23, e34, e45. (b) Demonstrating maximum number of
interfering links for edgeeij : Following the definition from C(e), all the solid edges interfere with edgeeij

Observation 1 [6] For a
√
n × √

n grid, with uniform grid spacing ofd units, for an instanceI = (V,E,D, J̄) of
TM-SINR, a flowf(eij) obtained by solvingP(λ, I) on any direct edgeeij = (ui, uj) between nodesui, uj ∈ V
whereℓ(ei,j) > d, can be replaced by flows on short edges of lengthd using Manhattan routing.

Proof For any nodeui, let row(i) denote the set of nodes that have the samey − coordinate as that ofui and let
col(i) denote the set of nodes that have the samex−coordinate as that ofui. For a given pair of nodes,ui, uj , a node
uk appears in the Manhattan routing path fromui to uj if and only if, ui ∈ row(uk) or uj ∈ col(uk) and bothui, uj

lie at a distance less thanℓ(eij) fromuk. We select all nodes in the Manhattan routing path, such thatdistance between
any two adjacent nodesuk, u

′
k is equal tod. Therefore all the edges in the Manhattan routing path have length equal

to d. The flow off(eij) on edgeeij can now be replaced by flows on edges on the Manhattan routing path (cf. Figure
9). It can be seen that this Manhattan routing scheme satisfies flow conservation constraints.

We now show that by using the Manhattan routing scheme, the total throughput achieved for a grid topology is
within a constant factor away from the optimal solution.

Lemma 10 Let I = (V,E,D, J̄) be an instance of theTM-SINR problem for a
√
n × √

n grid, with uniform grid
spacing ofd units, and let̄x ∈ X (I) be any feasiblelink utilization vector obtained using Manhattan routing. Then,
the necessary conditions for link flow schedulability are:

∀e ∈ E, ∀k ∈ M,
∑

e′∈C(e)∩Hk

x(e′) ≤ λ.

Proof The proof is similar to that of Lemma 3. Since we are using the Manhattan routing, all the schedulable edges
have the same lengthd. Partitioning based on edge lengths is therefore not required. We only need to consider sets
Hk = {jmin · 2k ≤ J(e) < jmin · 2k+1}, ∀k ∈ M, ∀e ∈ E. The Lemma therefore follows by making this minor
modification to the proof of Lemma 3. Note that the above necessary conditions can be extended for the case of
generic, uniform andlinear power levels by replacingλ with λ0, λ1 andλ2 respectively.

Lemma 11 For a
√
n × √

n grid, with uniform grid spacing ofd, with Manhattan routing, the sufficient conditions
for link flow schedulability are as follows:

∀e ∈ E, ∀k ∈ M,
∑

e′∈C(e)∩Hk

x(e′) ≤ λ

c′
,
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wherec′ = (2(2a)(2a+ 1))− 4, a is a constant defined in Section 4.3 and is an integral multiple ofd.

Proof For any transmitting edgeeij = (ui, uj) ∈ E consider a diskD of radiusa · d centered at nodeui. DiskD is
contained within a grid of dimension2a×2a (cf. Figure 9). Since we are using Manhattan routing, all theschedulable
edges have length equalsd. From the definition ofC(eij) (cf. Section 4.3) we know that all the edgese′ = (u′, v′)
that have their transmittersu′ within diskD interfere with edgeeij . The total number of directed edges of lengthd in
a2a× 2a grid are8a(2a+ 1). By excluding the corner edges, the maximum number of edges that can interfere with
a given edgeeij is a constant and is obtained asc′ = 8a(2a+ 1)− 12. We now scale thelink utilizationby a factorc′

to obtain the following sufficient conditions,

∀e ∈ E, ∀k ∈ M,
∑

f∈C(e)∩Hk

x(e) ≤ λ

c′
.

Theorem 4 LetI = (V,E,D, J̄) be an instance ofTM-SINR for a
√
n ×√

n grid, with uniform grid spacing ofd.
The optimum solution̄x to the programP(λ/c′, I) is a feasible and stablelink utilization vector for the instanceI,
and results in a total throughput of at leastΩ(ropt(I)/c′).

Proof Let x̄opt be the optimum utilization vector for the instanceI of TM-SINR, achieving a total throughput rate
of ropt(I). From Lemma 10, it follows that̄xopt is a feasible solution to the programP(λ, I). Further,x̄opt/c

′ is a

feasible solution to the programP(λ/c′, I) and results in a total throughput rate of
ropt(I)

c′
. Therefore, the theorem

follows.

11 Conclusion

We study the problem of throughput maximization in arbitrary wireless networks with SINR constraints from a theo-
retical perspective, and take the first steps toward developing efficient algorithms for this problem. Our results show
that the comparison between SINR and graph-based models is complicated, and for different instances, different mod-
els might give higher estimates of the throughput capacity,suggesting the need for greater care in using these models.
We develop the first provable algorithms for approximating the throughput capacity in the SINR models by means of
a linear programming formulation, extending the recent work of [7,17].

Extending these results to distributed algorithms would make them more useful from a practical point of view. This
paper does not consider power control, and studying the problem of joint power control and throughput maximization
would be an interesting extension. We only consider the AWGN model for specifying the link capacities, extending
this model to include the SINR [1] would also be an interesting problem.
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