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ABSTRACT

Public-health policy makers have many tools to mitigate an
epidemic’s effects. Most related research focuses on the di-
rect effects on those infected (in terms of health, life, or pro-
ductivity). Interventions including treatment, prophylaxis,
quarantine, and social distancing are well studied in this con-
text. These interventions do not address indirect effects due
to the loss of critical services and infrastructures when too
many of those responsible for their day-to-day operations fall
ill. We examine, both analytically and through simulation,
the protection of such essential subpopulations by seques-
tering them, effectively isolating them into groups during an
epidemic. We develop a framework for studying the benefits
of sequestering and heuristics for when to sequester. We also
prove a key property of sequestering placement which helps
partition the subpopulations optimally. Thus we provide a
first step toward determining how to allocate resources be-
tween the direct protection of a population, and protection
of those responsible for critical services.
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1. INTRODUCTION
Society’s resilience to a severe infectious disease epidemic

depends on the continued operation of essential services, e.g.
water, sewer, and power systems, health care, food distri-
bution, law enforcement, leadership, etc. Federal response
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plans [15] offer guidance to businesses and local agencies
for continuity-of-operations planning and identifying critical
infrastructures essential to the country’s ability to provide
necessary services. People who perform these services are es-
sential because they are hard to replace quickly and in their
absence social organization rapidly deteriorates. Reducing
the overall prevalence of infections also affords protection to
critical subpopulations; however, it may not be sufficient.
Sequestering is a social distancing technique that further
protects an essential subpopulation by placing its healthy
members into small groups isolated from the general pop-
ulation and from each other. Protective sequestration was
used effectively during the 1918 pandemic by a few socially
isolated populations [13] and was used to varying effect for
centuries [7], but fell out of use as societies became more
tightly integrated. Nevertheless, protective sequestration
continues to be an important tool to consider for ensuring a
ready national defense force [8].

The logic of protective sequestering may explain its rela-
tive absence in epidemiological and public health policy lit-
erature. Sequestering a small subpopulation is costly and
may have little direct effect on the progress or ultimate
size of an outbreak. Instead, sequestering’s benefits come
from the external and indirect effects on availability of ser-
vices throughout the epidemic. These effects are difficult
to quantify inside the purview of contagion control and lie
outside the scope of a public health system’s responsibilities
to contain an epidemic. Thus, assigning resources to pro-
tect a small subpopulation is difficult to rationalize using
the prevailing methodology. Rather, sequestering presents a
complex problem in which socio-technical interdependencies
must be considered in integrated social decision-and policy-
making.

The strategies needed to protect a small group of socially
essential individuals are different from those intended to re-
duce morbidity and mortality in the general public. Con-
sider quarantine and isolation, which are standard tools for
controlling outbreaks which protect the uninfected by iso-
lating the infected. Sequestering is the converse: protec-
tion of an uninfected subpopulation from the overall pop-
ulation during an outbreak. In this context, small groups
could be housed in military barracks, a requisitioned public



school, industrial facilities, and other socially isolatable lo-
cations. The size of a group would include the number of
co-located sequestered individuals and associated logistical-
support personnel. Minimizing logistical connectivity to the
greater population is a practical challenge, but is outside
our scope. We make the simplifying assumption that such
isolation is total.

The need for protective sequestration is perhaps best high-
lighted by considering a military context [9, 12]. In the
course of its operations, the military creates circumstances
conducive to the spread of infectious disease, as occurred,
for example, in the 1918 influenza pandemic. Naval ships
and military bases contain personnel in confined settings,
wherein infectious diseases can be easily transmitted. Per-
sonnel can be called up and assigned in a way that is care-
fully designed to minimize their total infections. This con-
text also provides authorities the level of control necessary
to effectively sequester a population. We study how early
estimates of individual infection-probabilities can help se-
quester individuals better in such confined settings. The
results reported here arose from investigations into seques-
tration feasibility and optimization for DoD. Some of our
findings are also described in [2, 1].

We use the SIR model (Susceptible, Infectious, Recovered)
of infection [11] over a contact network to develop a formula-
tion of the sequestration problem. Based upon environment
and contact network factors before sequestering, each indi-
vidual has a probability of being latently infected. Once
individuals are placed into groups, those latently infected
will become infectious and may spread the epidemic within
the group. The transmission probability over time p for any
pair depends upon the amount of time until the infectious
person recovers or is removed as well as the environmental
characteristics of the group and epidemic-specific factors.

Using this model we discover and prove an important
property: that an optimal placement of people into groups
places people with others of similar estimated probabilities
of infection (epis). We call this the “well-ordered” property
and use it as the basis for an efficient algorithm for opti-
mal placement. We explore the computational complexity
of our sequestering algorithm along with some of the asso-
ciated trade-offs between running time and memory usage.
In addition to providing optimal partitions of the critical
population, a minor change allows our algorithm to show
when better overall results are achieved by leaving some of
the critical population unsequestered.

We then perform a series of simulations to study the ben-
efits of sequestering as well as the significant trade-offs in-
volved. The main parameters in a sequestering setup are
when to start sequestering (which affects the epis) and what
group sizes to use. The result we are most interested in is the
fraction of the critical population which becomes ill. First
we evaluate the number of infections using optimal group
placement compared with random group placement or not
sequestering at all. Then we study the trade-offs between
epis at the beginning of sequestering, group size, and the
number of infections. Finally, we find that small epi estima-
tion errors, or large errors in only a few estimates, changes
overall infection rates only slightly.

Our results suggest that to be effective, critical workers
should be sequestered very early on during an outbreak. Se-
questering early enough can completely protect the criti-
cal population from illness. On the other hand, beyond a

threshold level of latent infections in the critical population,
sequestering them into densely connected groups may in fact
produce more total infections than result from leaving them
in the general population. The group sizes and the time to
enforce sequestration are both important logistically as well
as socially – from a logistical standpoint, one would like
to keep the group sizes large; from a societal standpoint,
one would like to sequester individuals as late as possible.
Our work provides a method for quantifying the trade-off
between these competing factors.

Throughout our analysis, we make a number of assump-
tions that we state here. First, we assume that individuals
who get infected are removed from the sequestered popu-
lation in a predictable way. Removal is possible only after
the individual is symptomatic; in case of flu-like diseases,
this usually happens a couple of days after the individual is
infectious. We incorporate this time into the transmission
probability p. Second, we assume that epis can be effec-
tively estimated. epis capture the uncertainty inherent in
this complex process; the sensitivity studies reported in the
experimental results section show that our results are fairly
robust. Third, we assume completely mixed groups with
uniform transmission probabilities. Again while not com-
pletely true it appears to be a reasonable assumption for
flu-like illness.

2. DEFINITIONS AND MODELS
The Optimal Sequestering Problem (OSP) is defined as fol-

lows: Given a set M ′ ⊆ M of socially essential individuals,
an upper bound g on group size and an upper bound r on
the number of groups, decide:

1. Triggered Sequestering (TS): the optimal time topt
when the set M ′ of individuals should be removed from
the population, isolating the subset M ′ − M ′′ of M ′

that are infectious and symptomatic, and

2. Optimal Allocation (OA): allocate the asymptomatic
subset M ′′ of M ′ into groups of size at most g with the
total number of groups being no more than r, so that
the expected number of individuals M ′′

exp that eventu-
ally become infected is minimized.

Thus we have two subproblems: (i) finding the best time
when the essential subpopulation should be isolated from the
general population (TS), and (ii) finding the best strategy for
partitioning the individuals who are not yet symptomatic
into groups of size at most m(OA). The earlier the people are
sequestered, the higher the chances of a false alarm and the
cost of supporting them until the outbreak ends. The later
they are sequestered, the more likely that asymptomatic in-
fectious people will be included. This trade-off, which we
begin to explore in Section 4.3, drives the TS subproblem.

For any sequestered subpopulation the best partitioning
into groups for the OA problem separates all of the latently
infected individuals from those who are healthy. While it is
not feasible to know for certain who is latently infected, we
are able to make reasonable estimates of infection probabili-
ties. For example, those living near high areas of infectivity,
those with infected friends and family, and even those living
with school-age children have higher epis. The difference
in epis provides us with an important, exploitable property
when trying to minimize the epidemic’s affects. This sub-
problem has certain degenerate cases, such as when individ-
uals are diagnosed as soon as they become infectious (and



can then be removed from a healthy group before spreading
the disease) or group sizes are small enough to effectively
isolate individuals. We focus our study on the wide range of
more interesting cases.

To put the problem in mathematical notation, we are
given: a set V of n people (or nodes), and a set of groups
with capacities m1,m2, . . . ,mk. Groups are tightly con-
strained locations which are typically small enough that it is
natural to assume that the contact graph within a group is
complete [14]. Larger groups would contain their own con-
tact networks, and assuming a complete graph within each
group provides an upper bound on the total number of in-
fections.

In such isolation, there are only two ways in which a se-
questered individual may be infected: they can carry the
infection from before sequestering began, or they can con-
tract the disease from another in the same group. We quan-
tify the chance that any person v is latently infection as
the external probability of infection or epi, denoted sv. The
symbol “s” in sv denotes “susceptibility”and we assume that
these initial exposures happen independently for all v. The
epis can be estimated by combining computer simulations,
demographic characteristics and ground measurements [10].
For any set of nodes Vi confined to a single group, a subset
Ui of Vi becomes initially infected according to their epis.

For within-group transmission, we use a standard SIR
model over a contact network. For every pair of people in
contact where one is infected and the other susceptible, there
is a transmission probability per minute of contact. Once
someone becomes infected, they progress to infectious, and
then recovered (or removed if symptoms are detected). In
a uniform population we further simplify the rate of trans-
mission to a single value p: the probability of the epidemic
spreading from a person v to another u given that v be-
comes infected and u does not become infected some other
way first.

Using this model, disease transmission within each group
is equivalent to percolation in the Erdős-Rényi random graph
G(Vi, p), and the set of nodes from Vi that finally become
infected are those reachable in the random-graph from some
node in Ui. Figure 1 shows how the random-graph corre-
sponds to disease transmissions.

Given a partition V1, V2, . . . , Vk of the population V , we
can consider the expected number of finally infected nodes,
where the expectation is taken both over the random choice
of the initially infected set given by the epis, as well as the
random choices made in the percolation (disease-spreading)
process. The goal of the OA problem is to find a feasible
partitioning so that the expected number of infections (also
referred to as the outbreak size) is minimized. The inputs
to the problem are the person-to-person transmission prob-
ability p as well as the values sj , for j = 1, 2, . . . , n and mi

for i = 1, 2, . . . , k; the output is the partition.
If the epis vary quite a bit, the partitioning can signifi-

cantly affect the expected outbreak size. In particular, the
natural heuristic of random assignment can perform very
poorly. A simple example of this is the following: let |V | =
k2 and the group capacities be m1 = m2 = · · · = mk = k.
Let si = 1 for i = 1, . . . , k, and sj = 0 for j > k. Assume the
disease is very contagious, so that the presence of an infected
node in a group will infect everyone else in that group: i.e.,
p is essentially one. The optimal solution places all of the
initial k nodes with si = 1 into one group, and partition

Figure 1: A example random-graph instance of a
group with six people. The contact network is a
complete graph (all pairs are connected). Through
a random process only some people are initially in-
fected and only some edges transmit the disease.
Solid red nodes are initially infected, hollow red
nodes become infected later, and hollow black nodes
are uninfected. Red edges are those randomly in-
cluded which result in new infections, and black
edges are those randomly included which do not
transmit the disease (either because they connect
two uninfected nodes, or two nodes both infected
from other sources).

the rest into the remaining k− 1 groups - this would have a
cost of k. However, a random partitioning and assignment
of V to the groups will result in ∼ k(1− 1/e) groups having
some node i ≤ k, which results in an expected outbreak of
size Θ(k2). The optimal solution in this example groups the
nodes according to similar epi values, and our algorithm is
based on this idea; see Figure 2 for an illustration.

3. AN EFFICIENT ALGORITHM FOR SE-

QUESTERING
We now describe our main algorithm for optimal seques-

tering. As discussed earlier, there are two natural contrast-
ing heuristics for grouping people: (i) load-balancing–type
heuristics where we try and keep the total carrier probabili-
ties approximately the same across the groups, which is usu-
ally well-achieved by a random partitioning, and (ii) where
people with high carrier probabilities are all grouped to-
gether where possible: i.e., viewing the objective of number-
of-infected-people as something like a concave function. As
mentioned earlier, the former heuristic can lead to subopti-
mal assignment, and our algorithm is based on a refinement
of the latter heuristic. We start with the following “well-
ordered” property of an optimal solution, and then discuss
how this leads to a natural dynamic programming algorithm.
We say that a partition is well-ordered if for every pair of
groups G1 and G2 there exists a separator x such that either
∀v ∈ G1, sv ≤ x and ∀u ∈ G2, su ≥ x or ∀v ∈ G1, sv ≥ x and
∀u ∈ G2, su ≤ x. In any solution which is not well-ordered
(i.e., there are people u,w ∈ G1 and v ∈ G2 such that
su < sv < sw) then we can switch the group assignments
of two people without increasing the expected number of in-
fections. We formally capture this property in the following
theorem:



Figure 2: Here we see two partitions of a population into two groups each. The nodes represent individuals
and are labeled “high” or “low” based upon the person’s epi. For this example think of “high” being close to
1 and “low” close to 0. The edges represent randomly chosen disease transmission paths. In these instances,
an outbreak spreads from any externally infected person to all others in the same connected component. In
the left example, the population is divided into groups randomly. All but 4 people are connected to those
who are likely infected. In the right example, there is a low epi group and a high epi group. Here all 10
people in the low epi group are likely to remain healthy.

Theorem 1. For any two groups and a subset of the peo-
ple to be assigned to these two groups, there exists an optimal
partition where all epis in one group are less than or equal
to all epis in the other.

Proof of Theorem 1 We use a probabilistic argument
to prove the theorem, so we start by stating some terms and
definitions. For any random event A, Pr[A] is the proba-
bility that A occurs. For any discrete random variable X
with range R, its expected value (essentially a weighted
average) is E[X] =

∑

x∈R
x · Pr[X = x]. In our anal-

ysis, we make heavy use of the linearity of expectation,
which says that for any two random variables X and Y ,
E[X + Y ] = E[X] +E[Y ].

For any person a let Ia denote the probabilistic event that
a is externally infected (thus Pr[Ia] = sa). For any set of
people S, define the random variable XS to be the number of
final infections among the people S. Similarly for any set of
people S, define YS = E[XS∪{a}|Ia] − E[XS∪{a}|Ia] where
a is any person not in S. Intuitively, YS is the expected
marginal number of infections caused when an additional
person added to the group S is externally infected versus
when the additional person is not infected. Using the lin-
earity of expectation we have that E[XS∪{a}] = YSPr[Ia] +

E[XS∪{a}|Ia]. This means that the net cost from swapping
a from a group with S for another person a′ from a group
with S′ is

E[XS∪{a′}] + E[XS′∪{a}]−E[XS∪{a}]−E[XS′∪{a′}]

=(Pr[Ia′ ]− Pr[Ia])(YS − YS′).

There are two parts necessary to prove the theorem. The
first is that if two people a, b are in a group with additional
people S, then Pr[Ia] ≤ Pr[Ib] implies YS∪{a} ≥ YS∪{b}.
We show this by conditioning on the connected components
of the group. Define random variables C to be a connected
component decomposition (a set of disjoint subsets whose
union is the entire group) of the group S ∪ {a, b} and C(x)
to be the set of nodes in the component containing x.

Assuming Pr[Ia] ≤ Pr[Ib] we have:

YS∪{a} =E[XS∪{a,b}|Ib]− E[XS∪{a,b}|Ib]
=
∑

C

Pr[C] ·
(

E[XC(b)|Ib]− E[XC(b)|Ib]
)

=
∑

C:a∈C(b)

Pr[C] · |C(b)| ·
∏

x∈(C(b)−b)

Pr[Ix]

+
∑

C:a 6∈C(b)

Pr[C] ·
(

E[XC(b)|Ib]− E[XC(b)|Ib]
)

≥
∑

C:b∈C(a)

Pr[C] · |C(a)| · Pr[Ib]

Pr[Ia]
·

∏

x∈(C(a)−b)

Pr[Ix]

+
∑

C:b6∈C(a)

Pr[C] ·
(

E[XC(a)|Ia]− E[XC(a)|Ia]
)

=
∑

C

Pr[C] ·
(

E[XC(a)|Ia]− E[XC(a)|Ia]
)

=YS∪{b}.

The second part is that in an optimal solution, if a and
b are in different groups along with Sa and Sb respectively,
then Pr[Ia] < Pr[Ib] implies YSa ≥ YSb

. This can be seen
easily because the cost of swapping a and b is (Pr[Ia] −
Pr[Ib])(YSb

− YSa). If the original partition was optimal,
the change in cost incurred by the swap must be at least 0.
Since by assumption Pr[Ia]− Pr[Ib] < 0, YSb

− YSa cannot
be positive.

Taken together these give that for any a, b, c with Pr[Ia] <
Pr[Ib] < Pr[Ic] with a and c in the same group with Sac oth-
ers and b in a different group with Sb in an optimal solution,
YSac∪{a} ≥ YSac∪{c}. This follows because a and c are in
the same group and YSac∪{a} ≤ YSb

≤ YSac∪{c} because
the group assignment is optimal. Since YSac∪{a} ≤ YSb

≤
YSac∪{c} ≤ YSac∪{a}, the three quantities must be equal and
any two of the three people can be swapped while keeping
the cost optimal. Given any optimal solution, as long as
there exists such a, b, c we can continue making these swaps,



moving those with higher epis to the right, until an optimal
solution of the desired form is reached.

When there are more than two groups, applying Theo-
rem 1 to all pairs of groups yields the following corollary:

Corollary 2. Given any set of groups and a set of
people with known epis, there exists an optimal partition
which orders the groups, and if group i comes before group
j than all of the epis in i are less than or equal to all of the
epis in group j.

Theorem 1 tells us that an optimal solution keeps people
with like epis together, however it does not say when to stop
filling one group and start on the next - this can be deter-
mined by dynamic programming. We develop a dynamic
programming algorithm whose time and space complexities
are exponential in the number of group-sizes r but polyno-
mial in both the number of people and the total number of
groups. Our algorithm, which heavily exploits the symme-
try of infectivities is detailed in Figure 3 for the primary
case in which all group capacities are uniform.

Algorithm Sequester requires the function g(S), which
is the number of infections if the set S forms a group. In
Figure 4, we describe a dynamic programming algorithm to
compute g(S). The proof of Sequester’s optimality follows
from straightforward induction on the dynamic program-
ming arrays which show that it produces an optimal well-
ordered partition and Theorem 1 and Corollary 2, which
show that an optimal well-ordered partition is an optimal
partition.

Also, in Figure 3, Algorithm Sequester is described for
the setting in which all group sizes are uniform. This al-
gorithm can be extended to handle r group types (where a
type i contains ui groups of capacity mi and with a pair-
wise transmission probability pi) by making OPT into an
r+1 dimensional array and computing for all a ∈ [1..n] and
bi ∈ [0..ui]:

OPT (a, b1, . . . ,br) =

r

min
j=0

mj

min
i=0

(OPT (a− i, b1, . . . bj − 1, . . . , br)

+g({a− i+ 1, . . . , a})) .
An interesting feature of our algorithm is that it not only

determines how to optimally partition a critical subpopula-
tion, but it can also be used to determine when it is better
to leave some critical individuals unsequestered. For exam-
ple, if there is one group available for sequestering, a single
individual with a high epi, and many with low epi, then
leaving the high epi person out of the group can result in
more of the critical population remaining healthy. The per-
son who is a likely carrier is left behind to protect the rest
of the critical population. We address this problem of in-
complete sequestering by adding an additional group where
everyone assigned to that group becomes infected. This new
group represents those who are not sequestered. The opti-
mal partition produced by our algorithm for this modified
instance, minus the group where everyone becomes infected,
is an optimal partial placement for the original problem.

3.1 Sequester’s Complexity
To analyze Sequester’s efficiency we break it into two

parts, one part specific to the subroutine g and concerning

mostly initialization, and a second part which concerns the
main function Sequester.

In initializing the function g, we compute and store for
each group, and every possible number of initially infected
people in the group, how many people become finally in-
fected in expectation. If we let mi denote the size of the
ith group when sorted by group sizes, then the permanent
space used after initialization is

∑

i mi. When computing
these values, we need an m3

i sized temporary array for the
intermediate computation. The j, x, y entry in this array
records the probability that there are x people infected by a
path of distance at most j, and y people infected at distance
exactly j. Each entry in these arrays takes time O(m2

i ) to
compute, for a total run-time complexity of O(

∑

i m
5
i ).

Once the initialization is complete, we create an array
OPT of size n ·∏

i
ui. For each entry in OPT we create and

store a matrix A once taking time and space O(maxi m
2
i )

and we make
∑

i
mi calls to g, each of which does O(mi)

arithmetic operations for a total running time of O(n·(∏
i
ui·

∑

j m
2
j )).

In the uniform case where there are u groups all of ca-
pacity m and m · u ≈ n (meaning the total space avail-
able is approximately the number of people), this yields a
space complexity of O(n2/m + m2) and a time complexity
of O(m5 + n2 ·m). Note that a long as the group capacities
scale slowly compared with the population, the m5 term is
not prohibitive. For example, if the maximum group capac-
ity is at most the square root of the population size (m = 100
for a population of 10,000), then m5 is no more than n2 ·m.

3.2 Memory Efficient Adaptation
When dealing with large datasets (n of a hundred thou-

sand or more), the space complexity of O(n2/m +m2) can
be prohibitively expensive. We can greatly improve space
efficiency with a factor of 2 increase in running time us-
ing the following observation: to compute the array after
person i, all we need to have stored are the maxt mt rows
from OPT (i − maxt mt, ∗) to OPT (i − 1, ∗). If we only
want to compute the optimal expected outbreak size, we
can reuse the space from OPT (i mod m + 1, j) for every
entry OPT (i, j) for a space savings factor of n/m. If we
want to compute the optimal partition however, we need to
be able to backtrack through the OPT array, which we can-
not do efficiently if we have to repeatedly recompute it from
scratch for every m people. Instead we have to do something
more clever.

Theorem 3. Suppose we are given an instance of the Se-
questering problem with a single room type and total capac-
ity O(n). We can compute an optimal partition in time
O(m5 + n2m) and space O(m3 + n1.5/

√
m).

The time complexity and initialization space complexity
are taken from above. Here we prove the improved space
bounds for the main phase. For the single group type case,
after computing OPT for c rows (for a value of c to be spec-
ified later), we store the entries for the last m of them, and
reuse the space for OPT in computing the next c people.
This takes space mu1 · n

c
for the saved blocks and c · u for

the frequently overwritten memory. Combined they sum to
O(m·u·n

c
+ c · u) which is minimized when the two terms are

equal: m ·u ·n/c = c ·u and therefore we choose c =
√
m · n.

Since u = O(n/m) this gives a total space complexity of
O(n1.5/

√
m+m2). As the algorithm backtracks to find the



Algorithm Sequester

Given: set V = {1, . . . , n} of people, epis si for each i ∈ V , and k groups of size at most m
Output : partition of V into groups of size at most m, so that the final expected outbreak size
is minimized.

1. Define OPT (a, b) to be the expected number of finally-infected people, in an optimal
solution for the problem restricted to the people indexed {1, 2, . . . , a}, and using groups
{1, 2, . . . , b} (for any a, b that satisfy a ≤ mb). Let g(S) denote the expected number of
infections if the group of individuals S is put in one group.

2. Sort the people in V , such that i < j → si < sj .

3. For all b set OPT (0, b) = 0.

4. For b = 1, . . . , k and for a = 1, . . . , n, compute

OPT (a, b) =
m

min
i=0

[OPT (a− i, b− 1) + g({a− i+ 1, a− i+ 2, . . . , a})].

5. OPT (n, k) gives the expected infection size of an optimal sequestering, and tracing back
through OPT reveals the partitioning which achieves that value.

Figure 3: Algorithm Sequester for the simplest setting in which all allowed group capacities are uniform,
though the final group sizes need not be uniform. The algorithm is a dynamic program, based on the recursive
expression for the optimum.

optimal assignment, each section of c people must be re-
computed exactly once from the saved m people before it.
This method results in a factor of 2 increase in running time,
which is a reasonable trade-off.

4. EXPERIMENTAL ANALYSIS
In this section we examine the behavior of our algorithm

when applied to a few artificial datasets. We look at three
specific aspects:

• How much better is an optimal solution than a random
solution?

• How sensitive are our results to errors in the epi esti-
mates?

• What are the trade-offs between when sequestering is
triggered, group size, and final infection rates.

4.1 Optimal Versus Random Placement
First we study how the epi estimates can be used by our

algorithm. We evaluate the effectiveness of our algorithm,
relative to a random assignment which does not use the epi

estimates, and find that the random assignment could lead
to outbreaks which are twice as large as our algorithm or
larger. Next, we study the sensitivity of our algorithm to
the accuracy of the epi estimates, and find that it is fairly
robust. Thus, the epi estimates provide valuable informa-
tion to policy planners.

In our study, we assume that a critical population (e.g.,
the military) is sequestered at a base a few days after the
onset of an outbreak of a simulated disease in the general
population. We assume that the epi estimates of such indi-
viduals are known; and for our simulations we assume the
epis are exponentially distributed. For a given maximum
group size (we use sizes of m = 20, 30, or 50), we find
the optimal assignment using our algorithm, and compare
it with a random assignment. Figure 5 shows a histogram

of the ratio of an optimal solution to a random solution for
a large number of simulations using a variety of values for
p and quantized exponential like distributions for the epis.
The optimal sequestering by our algorithm is up to 50%
better than a random sequestering, and often at least 25%
better. We see the best improvements at moderate disease
transmission probabilities, and the worst at the extremes
of low or high transmission probabilities. This is because
moderate transmission probabilities permit the most room
for improvement. With low enough probabilities, connected
components are very small, effectively isolating sick individ-
uals from others in the room. When probabilities are large
enough, rooms become almost fully connected, and most of
the population falls ill despite our best efforts.
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Figure 5: Histogram of optimal sequestering’s ra-
tio of expected infection size over that of random
sequestering.



Algorithm for computing g(S).
Given: set S ⊆ V forming a single group
Output : the expected number of infections, E[XS ], in S.

1. Initialization the array P (j, x, y) to contain the probability that there are x infected nodes
at distance at most j from one of i initially infected nodes, and y nodes at exactly distance
j in a G(|S|, p) random graph.

2. Initialize P (0, i, i) = 1 and P (0, ∗, ∗) = 0 for all other entries.

3. For each j from 1 to |S|,
P (j, x, y)

=
∑

0≤z≤x−y

P (j − 1, x− y, z)

(

ℓ− x+ y

y

)

((1− p)z)ℓ−x(1− (1− p)z)y.

Save the array B(i) =
∑|S|

x=0 x ·∑|S|
y=0 P (|S|, i, y).

4. Upon each invocation of g(S), compute A(i, j) – the probabilities that there are i initial
infections among the first j people.

5. A(0, 0) = 1, A(∗, 0) = 0 otherwise, and A(i, j) = A(i, j − 1) · (1− sj) + A(i− 1, j − 1) · sj .
Computing A in this way computes values for several subsets at once, and they can be stored
between calls to g.

6. g(S) =
∑|S|

i=1 A(i, |S|) ∗B(i).

Figure 4: Algorithm for computing g(S) exactly, though in practice a Monte-Carlo estimate can be used.

4.2 EPI Error Sensitivity
This sequestering scenario has an obvious susceptibility to

errors in the epi estimates. For example, if the epi estimates
are no better than random, an optimal sequestering with re-
spect to those estimates would be essentially random with
respect to the true values. To examine the effect of estima-
tion error we performed a number of simulations where we
found the optimal sequestering assignment for a set of epis,
and then compared that assignment’s cost to the cost of the
same assignment but with the epis perturbed. The first way
we perturbed the epis was to change each one by up to 30%
while keeping the sum of the epis constant. This set was de-
signed to measure random, directionally symmetric errors.
In all of our simulations the relative change (absolute value
of perturbed minus optimal divided by optimal) was at most
.0012. This tells us that our assignments are very insensitive
to random, symmetric errors.

We also examine the effect of one sided estimation error.
Using the same sets of parameters from the symmetric case,
we separately examine the effect of increasing and decreas-
ing the epis after an optimal assignment is made. When we
increase all of the epis by 30%, we see a maximum increase
over the estimated values in the expected infected set of at
most 23.4% with an average increase of 8.7%. When we
decrease the epis by 30% we see a decrease in the expected
infected set of at most 26% with an average decrease of 11%.
While the 30% increase is an upper bound (in general a fac-
tor of x bound on epi errors yields at most of factor of x
bound on epidemic size error because in any single connected
component two nodes with increased epis will partially can-
cel each others increase out), it is interesting to note that in
both cases the effect of one sided error is significantly less
than the factor of perturbation of the epis. A full plot of the

scaling factors in our simulations is presented in Figure 6. In
summary, neither under nor over-estimating the epi values
has a compounding effect on our results, and symmetrical
incorrect estimates cancel out in practice. Therefore our se-
questering scheme is fairly insensitive to estimation errors.

Figure 6: Outbreak scaling as a function of epi scal-
ing.

4.3 Trade-offs in Sequestering
We conclude this section by empirically showing some of

the trade-offs involved in an implementation of protective
sequestering.



In this section we use Simfrastructure, Simdemics and
EpiFast, high performance computing (HPC)-based model-
ing environments [3, 6] that provide very detailed and disag-
gregate individual interaction models of large populations,
contagious diseases, and interventions. They represent the
current state of a long development process for HPC-based
complex system modeling and have been used in a variety
of previous studies [4, 6, 5, 10]. They allow one to combine
very detailed and realistic population-level data with mod-
els of within-host disease progression and contagious disease
transmission. Simdemics uses highly resolved population-
activity models that yield detailed and representative urban-
scale social contact networks. The networks are produced
using synthetic information methods in Simfrastructure. In
the studies described here using Simdemics, we implement
and solve OSP for a socially essential population of approx-
imately 188,000 individuals embedded in a representative
and realistic urban social-contact network of approximately
3.7 million in the Washington D.C. metro area. These indi-
viduals have demographic characteristics that are represen-
tative of critical sub-population (e.g. defense force, critical
social workers, etc).

To establish the statistical properties of the system’s range
of behavior, an epidemic outbreak over a large population is
simulated for each experimental case for 50 iterations with
identical conditions and different random seeds. Infections
within the essential subpopulation are tallied for each day
of a 254-day epidemic. This gives us, for every day t, the
distribution of the number of infections within the socially
essential subpopulation on that day. This is used to estimate
the epi for a given individual on any day t. We then simulate
a triggered decision to sequester the protected population on
each successive day t and compute the total number infected
in that subpopulation during the entire epidemic as a conse-
quence of this decision. This amounts to a controlled repre-
sentation of a decision to trigger sequestering at that day. It
allows us to establish the effects of what different threshold
triggers would be, had they been given a priori and used by
the authorities. Therefore we can experimentally compare
in silico, the effects of different triggers.

Next, we consider group size. Because the number of peo-
ple in a sequestered group strongly affects the impact of se-
questering an infectious person in that group, we include a
sweep of this factor in our experimental design. In the sim-
ulation, we sequester the protected population into group
sizes of 30, 50, or 70. Transmissibility of diseases vary, so
the experimental design also factors person-to-person trans-
mission rates (defined as the probability per unit of contact
time that an uninfected person will catch the disease from a
nearby infectious person) of 0.05 and 0.1. These values cor-
respond roughly to infection incidences of 4∗10−5 per minute
over 20 and 40 hours respectively (a rate calibrated to infect
roughly quarter of the general population). To compute the
number of infections if we start sequestering on day t, we
run our optimal partition algorithm on the subpopulation
given the epis for that day. We then add the expected num-
ber of people infected within the sequestered groups to the
number infected before sequestering began. The results are
shown in Figure 7.

These results show that sequestering is most effective when
triggered before the disease has spread very much (when
epis are low) and when the outbreaks within groups are
likely to be small (when the transmissibility times group

Effects of the Timing of Sequestering on Subpopulation
Infection Rates

p = 0.05

p = 0.1

Figure 7: For every day of a simulated epidemic,
these plots show the fraction of the socially essential
population that get sick during the epidemic, if we
start sequestering on that day. Group sizes of 20,
30, and 50 are shown, along with the baseline case
without sequestering. Transmissibilities on the left
are p = 0.05 and p = 0.1 on the right.

size is small). In fact, unless these two factors are kept small
enough, sequestering may lead to more infections within the
critical subpopulation. These plots also suggest a trade-off
between group size, latent infection rate, and final infection
rate.

In any sequestering scenario, total infections can be re-
duced by using smaller group sizes (which may be more ex-
pensive logistically) or triggering when there are lower epis
(leading to a higher rate of unnecessary sequesterings). It is
important to understand how each of these three factors in-
fluences the others. We conduct a series of simulations vary-
ing both epis and group sizes, which for each experiment are
uniform throughout the population. For each simulation, we
record the fraction of the critical population which becomes
ill at any time.

We examine this trade-off in greater detail in Figure 8.
With epis of s and groups of size g, each group has s · g
initial infections in expectation. For any group size g and
transmission probability p, we find that the final infection
rate varies roughly linearly with s up until most of each
group becomes infected. The multiplicative factor between
s and final infection rates depends heavily upon g and p.
When g · p ≪ 1, initial infections tend to infect only a small



number of others. Conversely when g · p ≫ 1, even a single
initial infection will likely lead to much of the group becom-
ing ill, and thus the multiplier approaches g. From this we
derive the heuristic to keep either s · g ≪ 1 so that many
groups contain no infectious people or g · p ≪ 1 so that
each initial infection leads to only a small number of final
infections.

Iso-Contours of Constant Protected Subpopulation
Infection Rate

p = 0.05

p = 0.1

Figure 8: The contour lines indicate equal infection
rates as group size and latent infection rate vary.
The key observation here is that the higher the la-
tent infection rate, the more important group sizing
becomes. If we trigger sequestering late, we can
make up for it to a point, but only with significantly
smaller group sizes or settling for much higher in-
fection rates.

5. CONCLUSION
Planning for a severe epidemic involves many public health

considerations, the understanding of which is continually im-
proved by epidemiological research. Additionally, and out-
side the scope of questions concerning control of a contagious
disease, societal resilience requires the protection of certain
identifiable individuals who have difficult-to-replace skills;
their protection during catastrophic events will require plan-
ning and commitment. The problem we introduce herein has
practical roots and can present the issue to decision-makers
in a way that can support policy decisions, yet requires a so-
phisticated analytical foundation to support them scientifi-

cally. We have shown that preventing a loss of essential skills
through protective sequestering is a very different analytical
problem than those normally addressed by epidemiological
research. Moreover, the problem is technically difficult and
subtle. Our studies highlight strategies based on theoretical
and analytical research but also demonstrate the practical
importance of detailed, computationally-enabled informatic
methods to inform decision makers responsible for plans and
actual implementation.

As a demonstration, we analyzed an influenza-like disease
in a single large American city. Nevertheless the broader
implications go beyond this scenario and we believe the con-
cepts, methods, theoretical setting and qualitative aspects
of the results clearly are applicable to a wide range of similar
critical national and international problems.

We conclude that sequestering essential workers early can
effectively protect them from infection. It is also impor-
tant to start sequestering early in an epidemic – before too
many in the protected subpopulation contract the disease.
Additionally, using small group sizes and removing individ-
uals who become symptomatic reduces the incidence of large
outbreaks. If the latent infection probabilities of individuals
can be estimated or if an approximate ordering of individuals
by these probabilities can be obtained then outbreak sizes
within the essential subpopulation can be further reduced
by as much as 25% or more.

Protection of the essential subpopulation will not usually
affect the overall population’s epidemic outcomes. The use
of resources for protecting socially essential subpopulations
must be evaluated with respect to the value of the protected
functions, e.g., health care delivery, emergency response, etc.
and outside the context of traditional disease control alone.
Protective sequestering will compete for resources with con-
ventional public health interests. The trade-offs involved in
this allocation of resources pose an important open problem
going forward.

Our work provides a solid scaffolding for several areas of
future research into the practical application of sequestering
in an emergency situation. Perhaps the most important con-
siderations are the trade-offs involved in diverting resources
from the protection of the general population to the protec-
tion of the critical population. There are other considera-
tions as well. Within a sequestered population, it is likely
that additional countermeasures will be available to further
contain the epidemic. How should these countermeasures
be allocated? Complete isolation of sequestered groups is
impractical for any length of time, can we accurately ac-
count for the affect of the critical populations contact with
the outside world either through the course of their jobs or
their logistical support? Can we account for different roles
within the critical population - where we wish to minimize
the overall infection rate, but the infection rates of several
different categories of critical workers?
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