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Abstract
While there has been significant progress on algorithmic as-
pects of the Lovász Local Lemma (LLL) in recent years,
a noteworthy exception is when the LLL is used in the
context of random permutations: the “lopsided” version of
the LLL is usually at play here, and we do not yet have
subexponential-time algorithms. We resolve this by develop-
ing a randomized polynomial-time algorithm for such appli-
cations. A noteworthy application is for Latin Transversals:
the best-known general result here (Bissacot et al., improv-
ing on Erdős and Spencer), states that any n× n matrix in
which each entry appears at most (27/256)n times, has a
Latin transversal. We present the first polynomial-time al-
gorithm to construct such a transversal. Our approach also
yields RNC algorithms: for Latin transversals, as well as
the first efficient ones for the strong chromatic number and
(special cases of) acyclic edge-coloring.

1 Introduction

Recent years have seen substantial progress on devel-
oping algorithmic versions of the Lovász Local Lemma
(LLL) and some of its generalizations, starting with the
breakthrough work of Moser & Tardos [31]: see, e.g.,
[20, 21, 25, 34]. However, one major relative of the
LLL that has eluded constructive versions, is the “lop-
sided” version of the LLL (with the single exception
of the CNF-SAT problem [31]). A natural setting for
the lopsided LLL is where we have one or many ran-
dom permutations [16, 26, 29]. This approach has been
used for Latin transversals [9, 16, 39], hypergraph pack-
ing [27], certain types of graph coloring [10], and in
proving the existence of certain error-correcting codes
[24]. However, current techniques do not give construc-
tive versions in this context. We develop a randomized
polynomial-time algorithm to construct such permuta-
tion(s) whose existence is guaranteed by the lopsided
LLL, leading to several algorithmic applications in com-
binatorics.

1.1 The Lopsided Local Lemma and Random
Permutations Suppose we want to select permuta-

∗Department of Applied Mathematics, University of Maryland,

College Park, MD 20742. Research supported in part by NSF

Award CNS-1010789. Email: davidgharris29@hotmail.com
†Department of Computer Science and Institute for Advanced

Computer Studies, University of Maryland, College Park, MD

20742. Research supported in part by NSF Award CNS-1010789.
Email: srin@cs.umd.edu.

tions π1, . . . , πN , where each πk is a permutation on
the set [nk] = {1, . . . , nk}. In addition we have a set B
of “bad events.” We want to select permutations π such
that no bad event is true. The lopsided version of the
Lovász Local Lemma (LLL) can be used to prove that
such permutations exist, under suitable conditions.

We suppose that that the set of bad events B
consists of atomic bad-events. Each B ∈ B is a set
of tuples B = {(k1, x1, y1), . . . , (kr, xr, yr)}; it is true iff
we have (πk1(x1) = y1)∧· · ·∧(πkr (xr) = yr). (Complex
bad-events can usually be decomposed into atomic bad-
events, so this does not lose much generality.)

To apply the Lopsided Local Lemma in this setting,
we need to define a dependency graph with respect to
these bad-events. We say two bad events B,B′ are
connected if they overlap in one slice of the domain or
range of a permutation; namely, that there are some
k, x, y1, y2 with (k, x, y1) ∈ B, (k, x, y2) ∈ B′ or there
are some k, x1, x2, y with (k, x1, y) ∈ B, (k, x2, y) ∈ B′.
We write this B ∼ B′; note that B ∼ B. The following
notation will be useful: for pairs (x1, y1), (x2, y2), we
write (x1, y1) ∼ (x2, y2) if x1 = x2 or y1 = y2 (or
both). Another way to write B ∼ B′ is that “there
are (k, x, y) ∈ B, (k, x′, y′) ∈ B′ with (x, y) ∼ (x′, y′)”.

We will use the following notation at various points:
we write (k, x, ∗) to mean any (or all) triples of the form
(k, x, y), and similarly for (k, ∗, y), or (x, ∗) etc. Another
way to write the condition B ∼ B′ is that there are
(k, x, ∗) ∈ B, (k, x, ∗) ∈ B′ or (k, ∗, y) ∈ B, (k, ∗, y) ∈
B′.

Now suppose we select each πk uniformly at random
and independently. This defines a probability space,
to which we can apply the lopsided LLL. One can
show that the probability of avoiding a bad event B
can only be increased by avoiding other bad events
B′ 6∼ B [27]. Thus, in the language of the lopsided
LLL, the relation ∼ defines a negative-dependence graph
among the bad-events. (See [26, 27, 29] for a study of
the connection between negative dependence, random
injections/permutations, and the lopsided LLL.) Hence,
the standard lopsided-LLL criterion is as follows:

Theorem 1.1. ([27]) Suppose that there is some as-
signment µ : B → [0,∞) such that for all bad-events



B ∈ B we have

µ(B) ≥ P (B)
∏
B′∼B

(1 + µ(B′)).

Then the random process has a positive probability of
selecting permutations π1, π2, . . . , πN which avoid all the
bad-events.1

The positive probability here is however typically
exponentially small, as is standard for the LLL. As
mentioned above, a variety of papers have used this
framework for proving the existence of various combi-
natorial structures. Unfortunately, the algorithms for
the LLL, such as Moser-Tardos resampling [31], do not
apply in this setting. The problem is that such al-
gorithms have a more restrictive notion of when two
bad-events are dependent; namely, that they share vari-
ables. (The Moser-Tardos algorithm allows for a re-
stricted type of dependence called lopsidependence: two
bad-events which share a variable but always agree on
that value, are counted as independent. This is not
strong enough to generate permutations.) So we do not
have an algorithm to generate such permutations, we
can merely show that they exist.

We develop an algorithmic analog of the LLL for
permutations. The necessary conditions for our Swap-
ping Algorithm are the same as for the probabilistic
LLL (Theorem 1.1); however, we will construct such
permutations in randomized polynomial (typically lin-
ear or near-linear) time. Our setting is far more complex
than in similar contexts such as those of [31, 21, 34],
and requires many intermediate results first. The main
complication is that when we encounter a bad event
involving “πk(x) = y”, and we perform our algorithm’s
random swap associated with it, we could potentially be
changing any entry of πk. In contrast, when we resample
a variable in [31, 21, 34], all the changes are confined to
that variable. There is a further technical issue, which is
that the current witness-tree-based algorithmic versions
of the LLL, such as [31, 21], identify, for each bad-event
B in the witness-tree τ , some necessary event occurring
with probability at most P (B). This is not the proof
we employ here; there are significant additional terms
(“(nk − A0

k)!/n!” – see the proof of Lemma 3.1) that
are gradually “discharged” over time. We also develop
RNC versions of our algorithms. Going from serial to
parallel is fairly direct in [31]; our main bottleneck here
is that when we resample an “independent” set of bad
events, they could still influence each other.

1This condition about the existence of such a µ, is equivalent
to the more-familiar LLL formulation “there exists x : B → [0, 1)

such that for all B ∈ B, P (B) ≤ x(B)
∏

B′∼B:B′ 6=B(1− x(B′))”:
just set µ(B) = x(B)/(1− x(B)).

1.2 Applications We present algorithmic applica-
tions for three classical combinatorial problems: Latin
transversals, the strong chromatic number, and acyclic
edge-coloring. In addition to the improved bounds, we
wish to highlight two features here. First, our algorith-
mic approach goes beyond Theorem 1.1: as we will see
shortly, one of our (asymptotically-optimal) algorithmic
results on Latin transversals, could not even have been
shown nonconstructively using the lopsided LLL prior to
this work. Second, the acyclic-edge-coloring application
is striking in that its statement does not involve permu-
tations; indeed, all existing Local Lemma-based results
for acyclic edge-coloring use the standard (“asymmet-
ric”) LLL, not the lopsided version. We reduce the prob-
lem to one involving (random) injections, to which our
framework is applicable. Since coloring problems nat-
urally come with injection (distinctness) requirements,
we hope this method will be applicable to other coloring
problems as well.

The study of Latin squares and the closely-related
Latin transversals is a classical area of combinatorics,
going back to Euler and earlier [12]. Given an m × n
matrix A with m ≤ n, a transversal of A is a choice
of m elements from A, one from each row and at most
one from any column. Perhaps the major open problem
here is: given an integer s, under what conditions will A
have an s-transversal : a transversal in which no value
appears more than s times [9, 15, 16, 37, 38, 39]? The
usual type of sufficient condition sought here is an upper
bound ∆ on the number of occurrences of any given
value in A. That is, we ask: what is the maximum ∆ =
∆(s;m,n) such that any m×n matrix A in which each
value appears at most ∆ times, is guaranteed to have an
s-transversal? The case s = 1 is perhaps most studied,
and 1-transversals are also called Latin transversals.
The case m = n is also commonly studied (and includes
Latin squares as a special case), and we will also focus
on these. It is well-known that L(1;n, n) ≤ n − 1 [38].
In perhaps the first application of the lopsided LLL
to random permutations, Erdős & Spencer essentially
proved a result very similar to Theorem 1.1, and used
it to show that L(1;n, n) ≥ n/(4e) [16]. (Their paper
shows that L(1;n, n) ≥ n/16; the n/(4e) lower-bound
follows easily from their technique.) To our knowledge,
this is the first Ω(n) lower-bound on L(1;n, n). Alon
asked if there is a constructive version of this result [2].
Building on [16] and using the connections to the LLL
from [35, 36], Bissacot et al. showed nonconstructively
that L(1;n, n) ≥ (27/256)n [9]. Our result makes this
constructive.

The lopsided LLL has also been used to study
the case s > 1 [39]. Here, we prove a result that
is asymptotically optimal for large s, except for the



lower-order O(
√
s) term: we show (algorithmically) that

L(s;n, n) ≥ (s − O(
√
s)) · n. An interesting fact is

that this was not known even nonconstructively before:
Theorem 1.1 roughly gives L(s;n, n) ≥ (s/e)·n. We also
give faster serial and perhaps the first RNC algorithms
with good bounds, for the strong chromatic number.
Strong coloring is quite well-studied [3, 8, 18, 22, 23],
and is in turn useful in covering a matrix with Latin
transversals [6]. Finally, we develop the first RNC
algorithms for (special cases of) acyclic edge-coloring,
a well-studied problem [4, 7, 19, 17, 30, 32, 33]. As
mentioned above, this is a problem that does not appear
to involve permutations; we hope our methods based on
(random) injections and the permutation LLL, will be
useful for other coloring problems also.

2 The Swapping Algorithm

We will analyze the following Swapping Algorithm algo-
rithm to find a satisfactory π1, . . . , πN :

1. Generate the permutations π1, . . . , πN uniformly at
random and independently.

2. While there is some true bad-event:

3. Choose some true bad-event B ∈ B arbitrarily.
For each permutation that is involved in B, we
perform a swapping of all the relevant entries.
(We will describe the swapping subroutine
“Swap” shortly.) We refer to this step as a
resampling of the bad-event B.

Each permutation involved in B is swapped
independently, but if B involves mul-
tiple entries from a single permutation,
then all such entries are swapped simul-
taneously. For example, if B consisted
of triples (k1, x1, y1), (k2, x2, y2), (k2, x3, y3),
then we would perform Swap(π1;x1) and
Swap(π2;x2, x3), where the “Swap” procedure
is given next.

The swapping subroutine Swap(π;x1, . . . , xr) for a per-
mutation π : [t]→ [t] as follows:

Repeat the following for i = 1, . . . , r:

• Select x′i uniformly at random among [t] −
{x1, . . . , xi−1}.

• Swap entries xi and x′i of π.

Note that at every stage of this algorithm all the πk
are permutations, and if this algorithm terminates, then
the πk must avoid all the bad-events. So our task will
be to show that the algorithm terminates in polynomial
time. We measure time in terms of a single iteration of

the main loop of the Swapping Algorithm: each time
we run one such iteration, we increment the time by
one. We will use the notation πTk to denote the value
of permutation πk after time T . The initial sampling of
the permutation (after Step (1)) generates π0

k.
The swapping subroutine seems strange; it would

appear more natural to allow x′i to be uniformly selected
among [t]. However, the swapping subroutine is nothing
more than than the Fisher-Yates Shuffle for generating
uniformly-random permutations. If we allowed x′i to be
chosen from [t] then the resulting permutation would
be biased. The goal is to change πk in the minimal way
to ensure that πk(x1), . . . , πk(xr), π

−1
k (y1), . . . , π−1

k (yr)
are adequately randomized.

There are alternative methods for generating ran-
dom permutations, and many of these have equivalent
behavior to our Swapping subroutine. We will some-
times use such equivalences without proof. One class of
algorithms that has a very different behavior is the com-
monly used method to generate random reals ri ∈ [0, 1],
and then form the permutation by sorting these reals.
When encountering a bad-event, one would resample
the affected reals ri. In our setting, where the bad-
events are defined in terms of specific values of the
permutation, this is not a good swapping method be-
cause a single swap can drastically change the permu-
tation. When bad-events are defined in terms of the
relative rankings of the permutation (e.g. a bad event
is π(x1) < π(x2) < π(x3)), then this is a better method
and can be analyzed in the framework of the ordinary
Moser-Tardos algorithm.

3 Witness trees and witness dags

To analyze the Swapping Algorithm, following the
Moser-Tardos approach [31], we introduce the concept
of an execution log and a witness tree. The execution
log consists of listing every resampled bad-event, in the
order that they are resampled. We form a witness tree
to justify a certain resampling E, for example the last
resampling. We start with the event E, and create a
single node in our tree labeled by this event. We move
backward in time; for each bad-event B we encounter,
we add it to the witness tree if B ∼ B′ for some event
B′ already in the tree: we choose such a B′ that has
the maximum depth in the current tree (breaking ties
arbitrarily), and make B a child of this B′ (there could
be many nodes labeled B′). If B 6∼ B′ for all B′ in the
current tree, we ignore this B and keep moving back-
ward in time. To make this discussion simpler we say
that the root of the tree is at the “top” and the deep
layers of the tree are at the “bottom”. The top of the
tree corresponds to later events, the bottom of the tree
to the earliest events.



For the remainder of this section, the dependence
on the “justified” bad-event E at the root of the tree
will be understood; we will omit it from the notation.

We will use the term “witness tree” in two closely-
related senses in the following proof. First, when we
run the Swapping Algorithm, we produce a witness tree
τ̂ ; this is a random variable. Second, we might want to
fix some labeled tree τ , and discuss hypothetically under
what conditions it could be produced or what properties
it has; in this sense, τ is a specific object. We will
always use the notation τ̂ to denote the specific witness
tree which was produced by running the Swapping
Algorithm.

The critical lemma that allows us to analyze the
behavior of this algorithm is:

Lemma 3.1. Let τ be a witness tree, with nodes labeled
B1, . . . , Bs. For any event E, the probability that τ was
produced as the witness tree corresponding to event E,
is at most

P (τ̂ = τ) ≤ P (B1) · · ·P (Bs)

We define the probability of a bad-event P (B) as
follows: if the event contains r1, . . . , rN elements from
each of the permutations 1, . . . , N , then we have

P (B) =
(n1 − r1)!

n1!
. . .

(nN − rN )!

nN !

This is simply the probability that B would occur, if all
the permutations had been chosen uniformly at random
initially.

This lemma is superficially similar to the corresponding
lemma in Moser-Tardos [31]. However, the proof will be
far more complex, and we will require many intermedi-
ate results first. The main complication is that when we
encounter a bad-event involving πk(x) = y, and we per-
form the random swap associated with it, then we could
potentially be changing any entry of πk. By contrast, in
the usual Moser-Tardos algorithm, when we resample a
variable, all the changes are confined to that variable.
However, as we will see, the witness tree will leave us
with enough clues about which swap was actually per-
formed that we will be able to narrow down the possible
impact of the swap.

The analysis in the next sections can be very
complicated. We have two recommendations to make
these proofs easier. First, the basic idea behind how to
form and analyze these trees comes from [31]; the reader
should consult that paper for results and examples
which we omit here. Second, one can get most of
the intuition behind these proofs by considering the
situation in which there is a single permutation, and

the bad-events all involve just a single element; that
is, every bad-event has the form π(xi) = yi. In this
case, the witness dags (defined later) are more or less
equivalent to the witness tree. (The main point of the
witness dag concept is, in effect, to reduce bad-events to
their individual elements.) When reading the following
proofs, it is a good idea to keep this special case in
mind. In several places, we will discuss how certain
results simplify in that setting.

The following proposition is the main reason the
witness tree encodes sufficient information about the
sequence of swaps:

Proposition 3.1. Suppose that at some time t we have
πtk(x) 6= y, and at some later time t′ > t we have

πt
′

k (x) = y. Then there must have occurred at some
intermediate time t′′ some bad-event including (k, x, ∗)
or (k, ∗, y).

Proof. Let t′′ ∈ [t, t′ − 1]′ denote the earliest time at
which we had πt

′′+1(x) = y; this must be due to some
swaps (k, x1, y1), . . . , (k, xr, yr) at time t′′. Suppose that
the swap which first caused π(x) = y was at swapping xi
of permutation k, which at that time had πk(xi) = y′i,
with some x′′.

After this swap, we have πk(xi) = y′′ and πk(x′′) =
y′i. Evidently x′′ = x or xi = x. In the first case, the
bad event at time t′′ included (k, x, ∗) as desired and we
are done.

So suppose x′′ = x and y′i = y. So at the time of the
swap, we had πk(xi) = y. The only earlier swaps in this
resampling were with x1, . . . , xi−1; so we must have had
either πt

′′

k (xj) = y for some j ≤ i. But, at the beginning

of this swap, we had πt
′′

k (xj) = yj for all j = 1, . . . , r.
This implies that y = yj for some j = 1, . . . , r; this in
turn implies that the bad-event at time t′′ did in fact
involve (k, ∗, y) as desired.

In proving Lemma 3.1, we will not need to analyze
the interactions between the separate permutations, but
rather we will be able to handle each permutation in
a completely independent way. For a permutation πk,
we define the witness dag for permutation πk; this is a
relative of the witness tree, but which only includes the
information for a single permutation at a time.

Definition 3.1. (Witness dags) For a permutation
πk, a witness dag for πk is defined to be a directed
acyclic simple graph, whose nodes are labeled with pairs
of the form (x, y). If a node v is labeled by (x, y), we
write v ≈ (x, y). This graph must in addition satisfy the
following properties:

1. If any pair of nodes overlaps in a coordinate, that
is, we have v ≈ (x, y) ∼ (x′, y′) ≈ v′, then nodes



v, v′ must be comparable (that is, either there is a
path from v to v′ or vice-versa).

2. Every node of G has in-degree at most two and out-
degree at most two.

We also may label the nodes with some auxiliary
information, for example we will record that the nodes
of a witness dag correspond to bad-events or nodes in a
witness tree τ .

We will use the same terminology as for witness
trees: vertices on the “bottom” are close to the source
nodes of G (appearing earliest in time), and vertices on
the “top” are close to the sink nodes of G (appear latest
in time).

The witness dags that we will be interested in are
derived from witness trees in the following manner.

Definition 3.2. (Projection of a witness tree)
For a witness tree τ , we define the projection of τ onto
permutation πk which we denote Projk(τ), as follows.

Suppose we have a node v ∈ τ which is labeled by
some bad-event B = (k1, x1, y1), . . . , (kr, xr, yr). For
each i with ki = k, we create a corresponding node
v′i ≈ (xi, yi) in the graph Projk(τ). We also include
some auxiliary information indicating that these nodes
came from bad event B, and in particular that all such
nodes are part of the same bad-event.

We add edges to Projk(τ) as follows. For each node
v′ ∈ Projk(τ), labeled by (x, y) and corresponding to
v ∈ τ , we examine all occurrences of nodes labelled
(k, x, ∗). All such occurrences are comparable; we find
the node u′ corresponding to u ∈ τ which is closest to
the source. In other words, we find the occurrence u′

which appears “next-highest” in the dag. We create an
edge from v′ to u′. Similarly, we find the next-highest
occurrence w ∈ τ of a bad-event labeled by (k, ∗, y); we
create an edge from v′ to w′.

Note that u,w must appear strictly higher in τ ,
because of the way new bad-events are added to witness
trees. This implies that Projk(τ) is acyclic. Also, note
that it is possible that u = w; in this case we only add
a single edge to Projk(τ).

Expository Remark: In the special case when
each bad-event contains a single element, the witness
dag is a “flattening” of the tree structure. Each node in
the tree corresponds to a node in the witness dag, and
each node in the witness dag points to the next highest
occurrence of the domain and range variables.

Basically, the projection of τ onto k tells us all of
the swaps of πk that occur. It also gives us some of
the temporal information about these swaps that would
have been available from τ . If there is a path from v to v′

in Projk(τ), then we know that the swap corresponding
to v must come before the swap corresponding to v′. It
is possible that there are a pair of nodes in Projk(τ)
which are incomparable, yet in τ there was enough
information to deduce which event came first (because
the nodes would have been connected through some
other permutation). So Projk(τ) does discard some
information from τ , but it turns out that we will not
need this information.

To prove Lemma 3.1, we will prove (almost) the
following claim: Let G be a witness dag for permutation
πk; suppose the nodes of G are labeled with bad-events
B1, . . . , Bs. Then the probability that G = Projk(τ̂), is
at most

P (G = Projk(τ̂)) ≤ Pk(B1) . . . Pk(Bs)

where, for a bad-event B we define Pk(B) in a similar
manner to P (B); namely that if the bad-event B
contains rk elements from permutation k, then we have

Pk(B) = (nk−rk)!
nk! .

Unfortunately, proving this rigorously runs into
some technical complications. These can be resolved,
but it is cumbersome to do so and we will not directly
need this result as stated. However, this should defi-
nitely be thought of as the informal justification for the
analysis in Section 4.

4 The conditions on a permutation πk∗ over
time

For the purposes of Section 4, we will fix a permutation
πk∗ . The dependence on k = k∗ will be hidden hence-
forth; we will discuss simply π,Proj(τ), and so forth.
We will also hide the dependence on E, which is the
seed event for building the witness tree.

In this section, we will describe conditions that πt

must satisfy at various times t during the execution of
the Swapping Algorithm. This analysis can be divided
into three phases.

1. We define the future-subgraph at time t, denoted
Gt. This is a kind of graph which encodes necessary
conditions on πt. We define and describe some
structural properties of these graphs.

2. We analyze how a future-subgraph Gt imposes
conditions on the corresponding permutation πt,
and how these conditions change over time.

3. We compute the probability that the swapping
satisfies these conditions.

We will prove (1) and (2) in Section 4. In Section 5
we will put this together to prove (3) for all the
permutations.



4.1 The future-subgraph Suppose we have fixed a
target graph G, which could hypothetically have been
produced as the projection of τ̂ onto πk∗ . We begin the
execution of the Swapping Algorithm and see if, so far,
the dag G appears to have a possibility of appearing
as the projection of the witness tree. This is a kind of
dynamic process, in which we are monitoring whether
it is still possible to have G = Proj(τ̂) and, if so, what
conditions this would entail.

We define the future-subgraph of G at time t,
denoted Gt, as follows.

Definition 4.1. (The future-subgraph) Initially
G0 = G. We define the future-subgraphs Gt for t > 0
inductively. When we run the Swapping Algorithm, as
we encounter a bad-event (k1, x1, y1), . . . , (kr, xr, yr),
we update Gt as follows:

1. Suppose that ki = k∗, and Gt contains a source
node labeled (xi, yi). We remove that source node
from Gt.

2. Suppose that ki = k∗, and Gt has a source labeled
(xi, y

′′) where y′′ 6= yi or (x′′, yi) where x′′ 6= xi.
Then, as will be shown in shown in Proposition 4.1,
we can immediately conclude G is impossible; we
set Gt+1 = ⊥, and we can abort the execution of
the Swapping Algorithm.

We let Gt+1 denote the graph after applying these
updates.

The following Proposition tells us that Gt correctly
describes the future swaps that must occur:

Proposition 4.1. For any time t ≥ 0, let τ̂≥t denote
the witness tree built for the event E, but only using the
execution log from time t onwards. Then if Proj(τ̂) = G
we also have Proj(τ̂≥t) = Gt.

Note that if Gt = ⊥, the latter condition is obviously
impossible; in this case, we are asserting that whenever
Gt = ⊥, it is impossible to have Proj(τ̂) = G.

Proof. We prove this by induction on t. When t = 0,
this is obviously true as τ̂≥0 = τ̂ and G0 = G.

Suppose we have Proj(τ̂) = G; at time t we
encounter a bad-event B = (k1, x1, y1), . . . , (kr, xr, yr).
By inductive hypothesis, Proj(τ̂≥t) = Gt.

Suppose first that τ̂≥t+1 does not contain any bad-
events B′ ∼ B. Then, by our rule for building the
witness tree, we have τ̂≥t = τ̂≥t+1. Hence we have
Gt = Proj(τ̂≥t+1). When we project this graph onto
permutation k, there cannot be any source node labeled
(k, x, y) with (x, y) ∼ (xi, yi) as such node would be
labeled with B′ ∼ B. Hence, according to our rules for

updating Gt, we have Gt+1 = Gt. So in this case we
have τ̂≥t = τ̂≥t+1 and Gt = Gt+1 and Proj(τ̂≥t) = Gt;
it follows that Proj(τ̂≥t+1) = Gt+1 as desired.

Next, suppose τ̂≥t+1 does contain B′ ∼ B. Then
bad-event B will be added to τ̂≥t, placed below any such
B′. When we project τ̂≥t, then for each i with ki = k∗

we add a node (xi, yi) to Proj(τ̂≥t). Each such node is
necessarily a source node; if such a node (xi, yi) had a
predecessor (x′′, y′′) ∼ (xi, yi), then the node (x′′, y′′)
would correspond to an event B′′ ∼ B placed below B.
Hence we see that Proj(τ̂≥t) is obtained from Proj(τ̂≥t)
by adding source nodes (xi, yi) for each (k∗, xi, yi) ∈ B.

So Proj(τ̂≥t) = Proj(τ̂≥t+1) plus the addition of
source nodes for each (k∗, xi, yi). By inductive hypoth-
esis, Gt = Proj(τ̂≥t), so that Gt = Proj(τ̂≥t+1) plus
source nodes for each (k∗, xi, yi). Now our rule for up-
dating Gt+1 from Gt is to remove all such source nodes,
so it is clear that Gt+1 = Proj(τ̂≥t+1), as desired.

Note that in this proof, we assumed that Proj(τ̂) =
G, and we never encountered the case in which Gt+1 =
⊥. This confirms our claim that whenever Gt+1 = ⊥ it
is impossible to have Proj(τ̂) = G.

By Proposition 4.1, the witness dag G and the
future-subgraphs Gt have a similar shape; they are
all produced by projecting witness trees of (possibly
truncated) execution logs. Note that if G = Proj(τ)
for some tree τ , then for any bad-event B ∈ τ , either
B is not represented in G, or all the pairs of the form
(k∗, x, y) ∈ B are represented inG and are incomparable
there.

The following structural decomposition of a witness
dag G will be critical.

Definition 4.2. (Alternating paths) Given a wit-
ness dag G, we define an alternating path in G to be
a simple path which alternately proceeds forward and
backward along the directed edges of G. For a vertex
v ∈ G, the forward (respectively backward) path of v
in G, is the maximal alternating path which includes v
and all the forward (respectively backward) edges ema-
nating from v. Because G has in-degree and out-degree
at most two, every vertex v has a unique forward and
backward path (up to reflection); this justifies our refer-
ence to “the” forward and backward path. These paths
may be even-length cycles.

Note that if v is a source node, then its backward
path contains just v itself. This is an important type
of alternating path which should always be taken into
account in our definitions.

One type of alternating path, which is referred to as
the W-configuration, will play a particularly important
role.



Definition 4.3. (The W-configuration) Suppose
v ≈ (x, y) has in-degree at most one, and the backward
path contains an even number of edges, terminating at
vertex v′ ≈ (x′, y′). We refer to this alternating path as
a W-configuration. (See Figure 1.)

Any W-configuration can be written (in one
of its two orientations) as a path of vertices
labeled (x0, y1), (x1, y1), (x2, y1), . . . , (xs, ys), (xs, ys+1);
here the vertices (x1, y1), . . . , (xs, ys) are at the “base”
of the W-configuration. Note here that we have writ-
ten the path so that the x-coordinate changes, then the
y-coordinate, then x, and so on. When written this
way, we refer to (x0, ys+1) as the endpoints of the W-
configuration.

If v ≈ (x, y) is a source node, then it defines a W-
configuration with endpoints (x, y). This should not be
considered a triviality or degeneracy, rather it will be the
most important type of W-configuration.

(x0, y1) (x4,y5)

Figure 1: A W-configuration of length 9, with endpoints
(x0, y5).

4.2 The conditions on πtk∗ encoded by Gt At
any given time t, the current future-subgraph Gt gives
certain necessary conditions on π. Proposition 4.2
describes a certain set of conditions that plays a key
role in the analysis.

Proposition 4.2. Suppose we have a witness dag G
for permutation π. Let πt denote the value of permuta-
tion π at time t and Gt be the future-subgraph at time
t.

A necessary condition to have G = Proj(τ̂) is
the following: For every W-configuration in Gt with
endpoints (x0, ys+1), we must have πt(x0) = ys+1.

For example, if v ≈ (x, y) is a source node of Gt,
then πt(x) = y.

Proof. We prove this by induction on s. The base case is
s = 0; in this case we have a source node (x, y). Suppose
πt(x) 6= y. In order for the witness tree to contain some
bad-event containing (k∗, x, y), we must at some point
t′ > t have πt

′
(x) = y; let t′ be the minimal such time.

By Proposition 3.1, we must encounter a bad-event

containing (k∗, x, ∗) or (k∗, ∗, y) at some intervening
time t′′ < t′. If this bad-event contains (k∗, x, y) then
necessarily πt

′′
(x) = y contradicting minimality of t′. So

there is a bad-event (k∗, x, 6= y) or (k∗, 6= x, y) earlier
than the earliest occurrence of π(x) = y. This event
(k∗, x, 6= y) or (k∗, 6= x, y) projects to a source node
(x, 6= y) or ( 6= x, y) in Gt. But then (x, y) cannot also
be a source node of Gt.

We now prove the induction step. Suppose we have
a W-configuration with base (x1, y1), . . . , (xs, ys). At
some future time t′ ≥ t we must encounter a bad-
event involving some subset of the source nodes, say
the bad event includes (xi1 , yi1), . . . , (xir , yir ) for 1 ≤
r ≤ s. As these were necessarily source nodes, we
had πt

′
(xi1) = yi1 , . . . , π

t′(xir ) = yir for l = 1, . . . , r.
After the swaps, the updated Gt+1 has r + 1 new
W-configurations. By inductive hypothesis, the up-
dated permutation πt

′+1 must then satisfy πt
′+1(x0) =

yi1 , π
t′+1(xi1) = yi2 , . . . , π

t′+1(xir ) = ys+1.
We may suppose without loss of generality that the

resampling of the bad event first swaps xi1 , . . . , xir in
that order. Let π′ denote the result of these swaps;
there may be additional swaps to other elements of the
permutation, but we must have πt+1(xil) = π′(xil) for
l = 1, . . . , r.

In this case, we see that evidently xi1 swapped
with xi2 , then xi2 swapped with xi3 , and so on, until
eventually xir was swapped with x′′ = (πt

′
)−1ys+1. At

this point, we have π′(x′′) = yi1 . At the end of this
process, we must have πt

′+1(x0) = yi1 . We claim that
we must have x′′ = xi0 . For, if x′′ is subsequently
swapped, then we would have πt

′+1(x) = yi1 where x is
one of the source nodes in the current bad-event; but x0

is at the top of the W-configuration and is not a source
node.

This implies that we must have (πt
′
)−1ys = x′′ =

x0; that is, that πt
′
(x0) = ys. This in turn implies that

πt(x0) = ys+1. For, by Proposition 3.1, otherwise we
would have encountered a bad-event involving (x0, ∗) or
(∗, ys+1); in either case, we would have a predecessor
node (x0, ∗) or (∗, ys+1) in Gt, which contradicts that
we have a W-configuration.

Proposition 4.2 can be viewed equally as a defini-
tion:

Definition 4.4. (Active conditions) We refer to
the conditions implied by Proposition 4.2 as the active
conditions of the graph Gt; we can view them as a set of
pairs Active(G) = {(x′1, y′1), . . . , (x′s, y

′
s)} such that each

(x′i, y
′
i) are the endpoints of a W-configuration of G.

We also define Atk to be the cardinality of
Active(Gt), that is, the number of active conditions of
permutation πk at time t. (The subscript k may be omit-



ted in context, as usual.)

When we remove source nodes (x1, y1), . . . , (xr, yr)
from Gt, the new active conditions of Gt+1 are related
to (x1, y1), . . . , (xr, yr) in a particular way.

Lemma 4.1. Suppose G is a future-subgraph with source
nodes v1 ≈ (x1, y1), . . . , vr ≈ (xr, yr). Let H = G−v1−
· · · − vr denote the graph obtained from G by removing
these source nodes. Let Z = {(x1, y1), . . . , (xr, yr)}.
Then there is a partition of the set Z into two groups
Z = Z0 t Z1 with the following properties:

1. There is an injective function f : Z1 → Active(H),
with the property that (x, y) ∼ f((x, y)) for all
(x, y) ∈ Z1

2. |Active(H)| = |Active(G)| − |Z0|

Intuitively, we are saying that every node (x, y) we
are removing is either explicitly constrained in an “in-
dependent way” by some new condition in the graph H
(corresponding to Z1), or it is almost totally uncon-
strained (corresponding to Z0). We will never have the
bad situation in which a node (x, y) is constrained, but
in some implicit way depending on the previous swaps.

Expository remark: We have recommended bear-
ing in mind the special case when each bad-event con-
sists of a single element. In this case, we would
have r = 1; and the stated theorem would be that
either |Active(H)| = |Active(G)| − 1; OR we have
|Active(H)| = |Active(G)| and (x1, y1) ∼ (x′1, y

′
1) ∈

Active(H).

Proof. Let Hi denote the graph G − v1 − · · · − vi.
We will recursively build up the sets Zi0, Z

i
1, f

i, where
{(x1, y1), . . . , (xi, yi)} = Zi0 t Zi1, and which satisfy the
given conditions up to stage i.

Now, suppose we remove the source node vi from
Hi−1. This will destroy the active condition (xi, yi) ∈
Active(Hi−1); it may add or subtract other active con-
ditions as well. We will need to update Zi−1

0 , Zi−1
1 , f i−1.

One complication is that f i−1 may have mapped
(xj , yj), for j < i, to an active condition of Hi−1 which
is destroyed when vi is removed. In this case, we must
redefine f i(xj , yj) to map to a new active condition.

The first effect of removing vi from Hi−1 is to
remove (xi, yi) from the list of active conditions. Note
that we cannot have f i−1(xj , yj) = (xi, yi) for j < i, as
the xi 6= xj , yi 6= yj . So far the function f i−1 remains a
valid mapping from Zi−1

1 .
There are now a variety of cases depending on the

forward-path of vi in Hi−1.

1. This forward path consists of a cycle, or the forward
path terminates on both sides in forward-edges.

This is the easiest case. Then no more active
conditions of Hi−1 are created or destroyed. We
update Zi1 = Zi−1

1 , f i = f i−1, and Zi0 = Zi−1
0 ∪

{(xi, yi)}. One active condition is removed, in net,
from Hi−1; hence |Active(Hi)| = |Active(Hi−1)| −
1.

2. This forward path contains a forward edge on
one side and a backward edge on the other.
For example, suppose the path has the form
(X1, Y1), (X1, Y2), (X2, Y2), . . . , (Xs, Ys+1), where
the vertices (X1, Y1), . . . , (Xs, Ys) are at the base,
and the node (X1, Y1) has out-degree 1, and the
node (Xs, Ys+1) has in-degree 1. Suppose that
we remove the source node (xi, yi) = (Xj , Yj) for
1 ≤ j ≤ s. (See Figure 2.) In this case, we do
not destroy any W-configurations, but we create a
new W-configuration with endpoints (Xj , Ys+1) =
(xi, Ys+1).

We now update Zi1 = Zi−1
1 ∪ {(xi, yi)}, Zi0 =

Zi−1
0 . We define f i = f i−1 plus we map (xi, yi)

to the new active condition (xi, Ys+1). In net,
no active conditions were added or removed, and
|Active(Hi)| = |Active(Hi−1)|.

(X4, Y5)

(X2, Y2)

(X2, Y3)

Figure 2: When we remove (X2, Y2), we create a new
W-configuration with endpoints (X2, Y5).

3. This forward path was a W-configuration
(X0, Y1), (X1, Y1), . . . , (Xs, Ys), (Xs, Ys+1) with
(X1, Y1), . . . , (Xs, Ys) on the base, and we had
(xi, yi) = (Xj , Yj). This is the most complicated
situation; in this case, we destroy the origi-
nal W-configuration with endpoints (X0, Ys+1)
but create two new W-configurations with end-
points (X0, Yj) and (Xj , Ys+1). We update
Zi0 = Zi−1

0 , Zi1 = Zi−1
1 ∪ {(xi, yi)}. We will set

f i = f i−1, except for a few small changes.

Now, suppose f i−1(xl, yl) = (X0, Ys+1) for
some l < i; so either xl = X0 or yl =
Ys+1. If it is the former, we set f i(xl, yl) =
(X0, Yj), f

i(xi, yi) = (Xj , Ys+1). If it is the lat-
ter, we set f i(xl, yl) = (Xj , Ys+1), f i(xi, yi) =



(X0, Yj).. If (f i−1)−1(X0, Ys+1) = ∅ then we sim-
ply set f i(xi, yi) = (X0, Yj).

In any case, f i is updated appropriately, and in the
net no active conditions are added or removed, so
we have |Active(Hi)| = |Active(Hi−1)|.

5 The probability that the swaps are all
successful

In the previous sections, we determined necessary condi-
tions for the permutations πt, depending on the graphs
Gt. In this section, we finish by computing the proba-
bility that the swapping subroutine causes the permu-
tations to, in fact, satisfy all such conditions.

Proposition 5.1 states the key randomness condition
achieved by the swapping subroutine. The basic intu-
ition behind this is as follows: suppose π : [n] → [n]
is a fixed permutation with π(x) = y, and we call
π′ = Swap(π;x). Then π′(x) has a uniform distribution
over [n]. Similarly, π′−1(y) has a uniform distribution
over [n]. However, the joint distribution is not uniform
— there is essentially only one degree of freedom for the
two values.

Proposition 5.1. Suppose n, r, s, q are non-negative
integers obeying the following constraints:

1. 0 ≤ r ≤ q ≤ n

2. 0 ≤ s ≤ min(q, r)

3. q + (r − s) ≤ n

Let π be a fixed permutation of [n], and let π′ =
Swap(π;x1, . . . , xr). Let (x′1, y

′
1), . . . , (x′q, y

′
q) be a given

list with the following properties:

(4) All x′ are distinct; all y′ are distinct

(5) For i = 1, . . . , s we have (xi, π(xi)) ∼ (x′i, y
′
i)

Then the probability that π′ satisfies all the constraints
(x′, y′) is at most

P (π′(x′1) = y′1 ∧ · · · ∧ π′(x′q) = y′q) ≤
(n− r)!(n− q)!
n!(n− q − r + s)!

Expository remark: Consider the special case
when each bad-event contains a single element. In that
case, we have r = 1. There are two possibilities for s;
either s = 0 in which case this probability on the right
is 1− q/n (i.e. the probability that π′(x1) 6= y′1, . . . , y

′
q);

or s = 1 in which case this probability is 1/n (i.e. the
probability that π′(x1) = y′1).

Proof. We can prove this by induction on s, r; this
requires a lengthy but elementary argument, which we
omit here for reasons of space.

We apply Proposition 5.1 to upper-bound the prob-
ability that the Swapping Algorithm successfully swaps
when it encounters a bad event.

Proposition 5.2. Suppose we encounter a bad-event
B at time t containing elements (k, x1, y1), . . . ,
(k, xr, yr) from permutation k (and perhaps other ele-
ments from other permutations). Then the probability
that πt+1

k satisfies all the active conditions of its future-
subgraph, conditional on all past events and all other
swappings at time t, is at most

P (πt+1
k satisfies Active(Gk,t+1)) ≤ Pk(B)

(nk −At+1
k )!

(nk −Atk)!
.

Recall that we have defined Atk to be the number of
active conditions in the future-subgraph corresponding to
permutation πk at time t, and we have defined Pk(B) =
(nk−r)!
nk! .
Expository remark: Consider the special case

when each bad-event consists of a single element. In
this case, we would have Pk(B) = 1/n. The stated
theorem is now: either At+1 = At, in which case the
probability that π satisfies its swapping condition is 1/n;
or At+1 = At − 1; in which case the probability that π
satisfies its swapping condition is 1−At+1/n.

Proof. Let H denote the future-subgraph Gk,t+1 af-
ter removing the source nodes corresponding to
(x1, y1), . . . , (xr, yr). Using the notation of Lemma 4.1,
let s = |Z1| and let Active(H) = {(x′1, y′1), . . . , (x′q, y

′
q)}.

where q = At+1
k .

For each (x, y) ∈ Z1, we have y = πt(x), and there
is an injective function f : Z1 → Active(H) and (x, y) ∼
f((x, y)). We can assume without loss of generality
Z1 = {(x1, y1), . . . , (xs, ys)} and f(xi, yi) = (x′i, y

′
i).

In order to satisfy the active conditions on Gk,t+1, the
swapping must cause πt+1(x′i) = y′i for i = 1, . . . , q.

By Lemma 4.1, we have nk ≥ Atk = At+1
k + (r − s),

so all the conditions of Proposition 5.1 are satisfied.

Thus this probability is at most (nk−r)!
nk! ×

(nk−q)!
(nk−q−r+s)! =

(nk−r)!(nk−At+1
k )!

nk!(nk−At
k)!

.

We have finally all the pieces necessary to prove
Lemma 3.1.

Lemma 5.1. Let τ be a witness tree, with nodes labeled
B1, . . . , Bs. For any event E, the probability that τ was
produced as the witness tree corresponding to event E,
is at most

P (τ̂ = τ) ≤ P (B1) · · ·P (Bs)

Proof. Suppose the witness tree τ contains T nodes.
Consider a subtree τ ′ ⊆ τ , with T ′ ≤ T nodes, obtained



by successively removing leaf nodes. We will prove the
following by induction on T ′: The probability, starting
at any state of the Swapping Algorithm and for any
seed-event E, that the subsequent swaps would produce
the subtree τ ′, is at most

P (τ̂≥T−T ′ = τ ′) ≤
∏
B∈τ ′

P (B)×

N∏
k=1

nk!

(nk − |Active(Projk(τ ′))|)!
.

The base case T ′ = 0 is vacuously true. To
show the induction step, note that in order for τ ′ to
be produced, some B ∈ τ ′ must at some point be
resampled. Now integrate over the first such resampled
B, and applying Proposition 5.2 in combination with
the induction hypothesis.

We now consider the necessary conditions to pro-
duce the entire witness tree τ , and not just fragments
of it. First, the original permutations π0

k must sat-
isfy the active conditions of the respective witness dags
Projk(τ). For each permutation k, this occurs with

probability
(nk−A0

k)!
nk! . Next, the subsequent sampling

must be compatible with τ ; applying the previous re-
sult with T ′ = T (i.e. τ ′ = τ) yields that this has

probability
∏
B∈τ P (B) ×

∏N
k=1

nk!
(nk−A0

k)!
. In total we

have

P (τ̂ = τ) ≤
∏
k

(nk −A0
k)!

nk!
×
∏
B∈τ

P (B)×
N∏
k=1

nk!

(nk −A0
k)!

=
∏
B∈τ

P (B).

We note one counter-intuitive aspect to this proof.
The natural way of proving this lemma would be to
identify, for each bad-event B ∈ τ , some necessary
event occurring with probability at most P (B). This
is the general strategy in Moser-Tardos [31] and related
constructive LLL variants such as [21]. This is not
the proof we employ here; there is an additional factor
of (nk − A0

k)!/n! which is present for the original
permutation and is gradually “discharged” as active
conditions disappear from the future-subgraphs.

6 The constructive LLL for permutations

Now that we have proved the key lemma regarding
witness trees, the remainder of the analysis is essentially
the same as for the Moser-Tardos algorithm [31]. Using
arguments and proofs from [31] with our key lemma, we
can now easily show our key theorem:

Theorem 6.1. Suppose there is some assignment of
weights µ : B → [0,∞) which satisfies, for every B ∈ B
the condition

µ(B) ≥ P (B)
∏
B′∼B

(1 + µ(B′))

Then the Swapping Algorithm terminates with probabil-
ity one. The expected number of iterations in which we
resample B is at most µ(B).

In the “symmetric” case, this gives us the well-
known LLL criterion:

Corollary 6.1. Suppose each bad-event B ∈ B has
probability at most p, and is dependent with at most
d bad-events. Then if ep(d + 1) ≤ 1, the Swapping
Algorithm terminates with probability one; the expected
number of resamplings of each bad-event is O(1).

Some extensions of the LLL, such as the observation
of Pegden regarding independent sets in the dependency
graph [34], or the partial-resampling of [21], follow
almost immediately here. There are a few extensions
which require slightly more discussion, which is done
next in Sections 6.1 and 6.2.

6.1 Lopsidependence As in [31], it is possible to
slightly restrict the notion of dependence. Two bad-
events which share the same valuation of a variable
are not forced to be dependent. We can re-define the
relation ∼ on bad-events as follows: for B,B′ ∈ B, we
have B ∼ B′ iff

1. B = B′, or

2. there is some (k, x, y) ∈ B, (k, x′, y′) ∈ B′ with
either x = x′, y 6= y′ or x 6= x′, y = y′.

In particular, bad-events which share the same triple
(k, x, y), are not caused to be dependent.

Proving that the Swapping Algorithm still works in
this setting requires only a slight change in our definition
of Projk(τ). Now, the tree τ may have multiple copies
of any given triple (k, x, y) on a single level. When this
occurs, we create the corresponding nodes v ≈ (x, y) ∈
Projk(τ); edges are added between such nodes in an
arbitrary (but consistent) way. The remainder of the
proof remains as before.

6.2 LLL for injective functions The analysis of
[27] considers a slightly more general setting for the
LLL, in which we select random injections fk : [mk]→
[nk], where mk ≤ nk. In fact, our Swapping Algorithm
can be extended to this case. We simply define a
permutation πk on [nk], where the entries πk(mk +



1), . . . , πk(nk) are “dummies” which do not participate
in any bad-events. The LLL criterion for the extended
permutation πk is exactly the same as the corresponding
LLL criterion for the injection fk. Because all of
the dummy entries have the same behavior, it is not
necessary to keep track of the dummy entries exactly;
they are needed only for the analysis.

7 A parallel version of the Swapping Algorithm

The Moser-Tardos resampling algorithm for the ordi-
nary LLL can be transformed into an RNC algorithm
by allowing a slight slack in the LLL’s sufficient condi-
tion [31]. The basic idea is that in every round, we se-
lect a maximal independent set of bad-events to resam-
ple. Using the known distributed/parallel algorithms
for MIS, this can be done in RNC; the number of re-
sampling rounds is then shown to be logarithmic whp
(“with high probability”), in [31].

In this section, we will describe a parallel algorithm
for the Swapping Algorithm, which runs along the same
lines. However, everything is more complicated than in
the case of the ordinary LLL. In the Moser-Tardos al-
gorithm, events which are not connected to each other
cannot affect each other in any way. For the permu-
tation LLL, such events can interfere with each other,
but do so rarely. Consider the following example. Sup-
pose that at some point we have two active bad-events,
“πk(1) = 1” and “πk(2) = 2” respectively, and so we
decide to resample them simultaneously (since they are
not connected to each other, and hence constitute an
independent set). When we are resampling the bad-
event πk(1) = 1, When we are resampling the bad-event
πk(1) = 1, we may swap 1 with 2; in this case, we are
automatically fixing the second bad-event as well. The
sequential algorithm, in this case, would only swap a
single element. The parallel algorithm should likewise
not perform a second swap for the second bad-event, or
else it would be over-sampling. Avoiding this type of
conflict is quite tricky.

Let n = n1 + · · · + nK ; since the output of the
algorithm will be the contents of the permutations
π1, . . . , πk, this algorithm should be measured in terms
of n. Hence we must show that this algorithm runs in
logO(1) n time. We will make the following assumptions
in this section. First, we assume that |B|, the total
number of potential bad-events, is polynomial in n. This
assumption can be relaxed if we have the proper kind of
“separation oracle” for B. Next, we assume that every
element B ∈ B has size |B| ≤ M = logO(1) n. This
holds in all cases that we are aware of.

We describe the following Parallel Swapping Algo-
rithm:

1. In parallel, generate the permutations π1, . . . , πN
uniformly at random.

2. We now go through a series of rounds while there
is some true bad-event. In round i (i = 1, 2, . . . ,)
do the following:

3. Let Vi,1 ⊆ B denote the set of bad-events
which are currently true at the beginning of
round i. We will attempt to fix the bad-events
in Vi,1 through a series of sub-rounds. This
may introduce new bad-events, but we will not
fix any newly created bad-events until round
i+ 1.

We repeat the following for j = 1, 2, . . . as
long as Vi,j 6= ∅:

4. Let Ii,j be a maximal independent set
(MIS) of bad-events in Vi,j .

5. For each true bad-event B ∈ Ii,j , choose
the swaps corresponding to B. Namely,
if we have some bad-event B involving
triples (k1, x1, y1), . . . , (kr, xr, yr), then
we select each zl ∈ [nkl ], which is the ele-
ment to be swapped with πkl(xl) accord-
ing to procedure Swap. Do not perform
the indicated swaps at this time though!
We refer to (k1, x1), . . . , (kr, xr) as the
swap-sources of B and the (k1, z1), . . . ,
(kr, zr) as the swap-mates of B.

6. Select a random ordering ρi,j of the el-
ements of Ii,j . Consider the graph Gi,j
whose vertices correspond to elements of
Ii,j : add an edge connecting B with B′

if ρi,j(B) < ρi,j(B
′) and one of the swap-

mates of B is a swap-source of B′. Gener-
ate I ′i,j ⊆ Ii,j as the lexicographically-first
MIS (LFMIS) of the resulting graph Gi,j ,
with respect to the vertex-ordering ρi,j .

7. For each permutation πk, enumerate all
the transpositions (x z) corresponding
to elements of I ′i,j , arranged in order
of ρi,j . Say these transpositions are,
in order (x1, z1), . . . (xl, zl), where l ≤
n. Compute, in parallel for all πk, the
composition π′k = πk(xl zl) . . . (x1 z1).

8. Update Vi,j+1 from Vi,j by removing all
elements which are either no longer true
for the current permutation, or are con-
nected via ∼ to some element of I ′i,j .

This algorithm can be viewed as simulating the
sequential Swapping Algorithm, with a particular choice
of selecting which bad-event to resample. Because



our analysis of the sequential Swapping Algorithm was
already based on an arbitrary choice of which bad-event
to resample, we immediately have the proposition:

Proposition 7.1. Consider the execution log of re-
sampled bad events, ordered by sub-rounds i, j and by
the orders ρi,j within a sub-round. Let τ̂ be the corre-
sponding witness tree. Then

P (τ̂ = τ) ≤
∏
B∈τ

P (B)

Proof. As one examines the bad-events in this order,
then the choice of swaps for a given true bad-event
B depends only on the “past” (events with a smaller
value of i, j or ρ.) Hence we can construct a witness
tree, ordered by i, j, ρ instead of time, and apply similar
probabilistic arguments to the sequential algorithm. It
is absolutely critical in this argument that are able
to order the bad-events in this way, such that any
probabilities of performing a certain swapping for a
given bad event depends only on the “past”. If in
step (6), we had selected I ′i,j to be an arbitrary MIS
of Ii,j , then we could no longer guarantee this, and the
dependencies would be much harder to control.

We now must analyze the steps of this algorithm
and show they can be implemented in parallel polyloga-
rithmic time. We must also show that the total number
of sub-rounds is itself polylogarithmic.

Most of the steps of this algorithm can be imple-
mented using standard parallel algorithms. For exam-
ple, step (1) can be performed simply by having each
element of [nk] choose a random real and then executing
a parallel sort. The independent set Ii,j can be found
in time in polylogarithmic time using [5, 28].

The difficult step to parallelize is in selecting the
LFMIS I ′i,j . In general, the problem of finding the
LFMIS is P-complete [11], hence we do not expect a
generic parallel algorithm for this. However, what saves
us it that the ordering ρi,j and the graph Gi,j are
constructed in a highly random fashion.

This allows us to use the following greedy algorithm
to construct I ′i,j , the LFMIS of Gi,j :

1. Let H1 be the directed graph obtained by orienting
all edges of Gi,j in the direction of ρi,j . Repeat the
following for s = 1, 2, . . . ,:

2. If Hs = ∅ terminate.

3. Find all source nodes of Hs. Add these to I ′i,j .

4. Construct H ′s+1 by removing all source nodes
and all successors of source nodes from H ′s.

The output of this algorithm is the LFMIS I ′i,j . Each
step can be implemented in parallel time O(1). The
number of iterations of this algorithm is the length of
the longest directed path in G′i,j . So it suffices it show
that, whp, all directed paths in G′i,j have length at most
polylogarithmic in n.

Proposition 7.2. Let I ⊆ B be an an arbitrary inde-
pendent set of true bad-events, and suppose all elements
of B have size ≤M .

Generate ρ as a random ordering of I and for each
element of I generate the associated swap-mates. Form
the directed graph on G in which there is an edge from
B to B′ iff ρ(B) < ρ(B′) and one of the swap-mates of
B is a swap-source of B′.

Then whp, every directed path in G has length
O(M + log n).

Proof. If |I| ≤ 5(M + log n) this is clear, so we suppose
|I| > 5(M + log n) in this proof. One of the main ideas
below is to show that for the typical B1, . . . , Bl ∈ I,
where l = 5(M + log n), the probability that B1, . . . , Bl
form a directed path is small.

Suppose we select B1, . . . , Bl ∈ I uniformly at
random without replacement. Let us analyze how these
could form a directed path in G.

First, it must be the case that ρ(B1) < ρ(B2) <
· · · < ρ(Bl). This occurs with probability 1/l!.

Next, it must be that the swap-mates of Bs overlap
the swap-sources of Bs+1, for s = 1, . . . , l − 1. Now,
Bs has O(M) swap-mates; each such swap-mate can
overlap with at most one element of I, since I is
an independent set. Conditional on having chosen
B1, . . . , Bs, there are a remaining |I| − s choices for
Bs+1. This gives that the probability of having Bs with
an edge to Bs+1, conditional on the previous events,
is at most M

|I|−s . (The fact that swap-mates are chosen

randomly does not give too much of an advantage here.)
Putting this all together, the total probability that

there is a directed path on B1, . . . , Bl is

P (directed path B1, . . . , Bl) ≤
M l−1(|I| − l)!

(|I| − 1)!l!

Since the above was for a random B1, . . . , Bl, the
probability that there is some such path (of length l) is
at most

P (some directed path) ≤ |I|!
(|I| − l)!

× M l−1(|I| − l)!
(|I| − 1)!l!

= |I| × M l−1

l!

≤ n× M l−1

(l/e)l



≤ n−Ω(1),

since l = 5(M + log n).

So far, we have shown that each sub-round of the
Parallel Swapping Algorithm can be executed in parallel
time logO(1) n. Next, we show that whp that number of
sub-rounds corresponding to any round is bounded by
logO(1) n.

Proposition 7.3. Suppose |B| = nO(1) and all ele-
ments B ∈ B have size |B| ≤ M . Then whp, we have
Vi,j = ∅ for some j = O(M log n).

Proof. We will first show the following: Let B ∈ I,
where I is an arbitrary independent set of B. Then

with probability at least 1 − 1−e−M

M we have B ∈ I ′ as
well, where I ′ is the LFMIS associated with I.

Suppose B involves rk elements from permutations
k = 1, . . . , N . As I is an independent set, each element
of [nk] is involved in at most one element of I. Suppose
that the other elements of I which intersect permutation
k involve respectively r′k,1, . . . , r

′
k,s elements from that

permutation. Note that rk + (r′k,1 + · · ·+ r′k,s) ≤ nk.
Then B will be put into I ′ if none of the swap-mates

of those other elements, which have a smaller value of
ρ, overlap with B in that permutation. We say that in
this case B is undominated in permutation k.

We will analyze the ordering ρ using the standard
trick, in which each element B ∈ I chooses a rank
W (B) ∼ Uniform[0, 1], independently and identically.
The ordering ρ is then formed by sorting in increasing
ordering of W . In this way, we are able to avoid the
dependencies induced by the rankings. For the moment,
let us suppose that the rank W (B) is fixed at some real
value w.

Now consider a permutation k, and consider some
bad-event B′ which contains r′k,l elements from that
permutation k. The probability that B is undominated
by B′ through permutation k is

P (B undominated by B′ |W (B) = w)

= (1− w) + w
(nk − rk)!(nk − r′k,l)!
nk!(nk − rk − r′k,l)!

≥ 1−
wr′k,lrk

n− r′k,l + 1

Here, the factor of w reflects the fact that, conditional
on a fixed value for W (B) = w, the element B′ has
ρ(B′) < ρ(B) with probability w.

All such events are independent (conditional on
W (B) = w); this implies that the total probability that

B is undominated in permutation k is at least

P (B undominated in permutation k |W (B) = w)

≥
s∏
l=1

(
1−

wr′k,lrk

n− r′k,l + 1

)

The quantity 1 − wr′k,lrk
n−r′k,l+1 is log-concave in r′k,l; hence

this product is minimized when there are s = nk − rk
other elements with r′k,1, . . . , r

′
k,s = 1. This yields

P (B undominated in permutation k |W (B) = w)

≥
(

1− wrk
nk

)nk−rk

≥ e−rkw

Take the product over all permutations k, bearing
in mind that

∑
k rk = |B| ≤ M . This gives us that the

total probability that B is undominated, conditional on
W (B) = w, is at least e−Mw. Now integrate over W (B);
this gives us

P (B undominated in permutation k) ≥
∫ 1

w=0

e−Mwdw

=
1− e−M

M

Now, using this fact, we show that Vi,j is decreasing
quickly in size. For, suppose B ∈ Vi,j . So B ∼ B′

for some B′ ∈ Ii,j , as Ii,j is a maximal independent
set (possibly B = B′). We will remove B from Vi,j+1

if B′ ∈ I ′i,j , which occurs with probability at least

1− 1−e−M

M . As B was an arbitrary element of Vi,j , this

shows that E
[
|Vi,j+1| | Vi,j

]
≤ (1− 1−e−M

M )|Vi,j |.
For j = Ω(M log n), this implies that

E
[
|Vi,j |

]
≤ (1− 1− e−M

M
)Ω(M logn)|Vi,1| ≤ n−Ω(1)

This in turn implies that Vi,j = ∅ with high
probability, for j = Ω(M log n).

To finish the proof, we must show that the number
of rounds is itself bounded whp. For this we have the
following proposition:

Proposition 7.4. Let B be any resampling performed
at the ith round of the Parallel Swapping Algorithm
(that is, B ∈ I ′i,j for some integer j > 0.) Then the
witness tree corresponding to the resampling of B has
height exactly i.

Proof. First, note that if we have B ∼ B′ in the
execution log, where B occurs earlier in time, and the



witness tree corresponding to B has height i, then the
witness tree corresponding to B′ must have height i+1.
So it will suffice to show that if B ∈ I ′i,j , then we must
have B ∼ B′ for some B′ ∈ I ′i−1,j′ .

At the beginning of round i, it must be the case
that πi makes the bad-event B true. By Proposition 3.1,
either the bad-event B was already true at the beginning
of round i− 1, or some bad-event B′ ∼ B was swapped
at round i− 1. If it is the latter, we are done.

So suppose B was true at the beginning of round
i − 1. So B was an element of Vi−1,1. In order for B
to have been removed from Vi−1, then either we had
B ∼ B′ ∈ I ′i−1,j′ , in which case we are also done, or
after some sub-round j′ the event B was no longer true.
But again by Proposition 3.1, in order for B to become
true again at the beginning of round i, there must have
been some bad-event B′ ∼ B encountered later in round
i− 1.

This gives us the key bound on the running time of
the Parallel Swapping Algorithm. We give only a sketch
of the proof, since the argument is identical to that of
[31].

Theorem 7.1. Suppose |B| = nO(1) and that for all

B ∈ B′ we have |B| ≤ logO(1) n.
Suppose also that ε > 0 and that there is some

assignment of weights µ : B → [0,∞) which satisfies,
for every B ∈ B, the condition

µ(B) ≥ (1 + ε)P (B)
∏
B′∼B

(1 + µ(B′))

Then, whp, the Parallel Swapping Algorithm terminates

after logO(1) n
ε rounds. The total time for these rounds

is logO(1) n
ε .

Proof. This proof is essentially identical to the corre-
sponding result in [31].

8 Algorithmic Applications

The LLL for permutations plays a role in diverse combi-
natorial constructions. Using our algorithm, nearly all
of these constructions become algorithmic. We examine
a few selected applications now.

8.1 Latin transversals Suppose we have an n × n
matrix A. The entries of this matrix come from a set
C which are referred to as colors. A Latin transversal
of this matrix is a permutation π ∈ Sn, such that no
color appears twice among the entries A(i, π(i)); that
is, there are no i 6= j with A(i, π(i)) = A(i′, π(i′)). A
typical question in this area is the following: suppose
each color c appears at most ∆ times in the matrix.

How large can ∆ be so as to guarantee the existence of
a Latin transversal?

In [16], a proof using the probabilistic form of
the Lovász Local Lemma for permutations was given,
showing that ∆ ≤ n/(4e) suffices. This was the
first application of the LLL to permutations. This
bound was subsequently improved by [9] to the criterion
∆ ≤ (27/256)n; this uses a variant of the probabilistic
Local Lemma which is essentially equivalent to Pegden’s
variant on the constructive Local Lemma. Using our
algorithmic LLL, we can almost immediately transform
the existential proof of [9] into a constructive algorithm.
To our knowledge, this is the first polynomial-time
algorithm for constructing such a transversal.

Theorem 8.1. Suppose ∆ ≤ (27/256)n. Then there
is a Latin transversal of the matrix. Furthermore,
the Swapping Algorithm selects such a transversal in
polynomial time.

Proof. For any quadruples i, j, i′, j′ with A(i, j) =
A(i′, j′), we have a bad-event (i, j), (i′, j′). Such an
event has probability 1

n(n−1) . We give weight µ(B) = α

to every bad event B, where α is a scalar to be deter-
mined.

This bad-event can have up to four types of neigh-
bors (i1, j1, i

′
1, j
′
1), which overlap on one of the four co-

ordinates i, j, i′, j′; as discussed in [9], all the neighbors
of any type are themselves neighbors in the dependency
graph. Since these are all the same, we will analyze just
the first type of neighbor, one which shares the same
value of i, that is i1 = i. We now may choose any value
for j1 (n choices). At this point, the color A(i1, j1) is
determined, so there are ∆ − 1 remaining choices for
i′1, j

′
1.
By Lemma 3.1 and Pegden’s criterion [34], a suf-

ficient condition for the convergence of the Swapping
Algorithm is that

α ≥ 1

n(n− 1)
(1 + n(∆− 1)α)4

Routine algebra shows that this has a positive real
root α when ∆ ≤ (27/256)n.

In [39], Szabó considered a generalization of this
question: suppose that we seek a transversal, such that
no color appears more than s times. When s = 1, this
is asking for a Latin transversal. Szabó gave similar
criteria “∆ ≤ γsn” for s a small constant. Such
bounds can be easily obtained constructively using the
permutation LLL as well.

By combining the permutation LLL with the partial
resampling approach of [21], we can provide asymptot-
ically optimal bounds for large s:



Theorem 8.2. Suppose ∆ ≤ (s − c
√
s)n, where c is a

sufficiently large constant. Then there is a transversal of
the matrix, in which each color appears no more than s
times. This transversal can be constructed in polynomial
time.

Proof. For each set of s appearances of any color, we
have a bad event. We use the partial resampling
framework, to associate the fractional hitting set which

assigns weight
(
s
r

)−1
to any r appearances of a color,

where r = d
√
se.

We first compute the probability of selecting a
given r-set X. From the fractional hitting set, this

has probability
(
s
r

)−1
. In addition, the probability

of selecting the indicated cells is (n−r)!
n! . So we have

p ≤
(
s
r

)−1 (n−r)!
n! .

Next, we compute the dependency of the set X.
First, we may select another X ′ which overlaps with X
in a row or column; the number of such sets is 2rn

(
∆
r−1

)
.

Next, we may select any other r-set with the same color
as X (this is the dependency due to ./ in the partial
resampling framework; see [21] for more details). The
number of such sets is

(
∆
r

)
.

So the LLL criterion is satisfied if

e×
(
s

r

)−1
(n− r)!
n!

×
(

2rn

(
∆

r − 1

)
+

(
∆

r

))
≤ 1

Simple calculus now shows that this can be satisfied
when ∆ ≤ (s − O(

√
s))n. Also, it is easy to detect a

true bad-event and resample it in polynomial time, so
this gives a polynomial-time algorithm.

Our result depends on the Swapping Algorithm in a
fundamental way — it does not follow from Theorem 1.1
(which would roughly require ∆ ≤ (s/e)n). Hence,
prior to this paper, we would not have been able to
even show the existence of such transversals; here we
provide an efficient algorithm as well. To see that our
bound is asymptotically optimal, consider a matrix in
which the first s + 1 rows all contain a given color, a
total multiplicity of ∆ = (s+ 1)n. Then the transversal
must contain that color at least s+ 1 times.

8.2 Strong chromatic number of graphs Sup-
pose we have a graph G, with a given partition of the
vertices into k blocks each of size b, i.e., V = V1t· · ·tVk.
We would like to b-color the vertices, such that every
block has exactly b colors, and such that no edge has
both endpoints with the same color (i.e., it is a proper
vertex-coloring). This is referred to as a strong coloring
of the graph. If this is possible for any such partition of
the vertices into blocks of size b, then we say that the
graph G has strong chromatic number b.

A series of papers [3, 8, 18, 22] have provided bounds
on the strong chromatic number of graphs, typically in
terms of their maximum degree ∆. In [23], it is shown
that when b ≥ (11/4)∆ + Ω(1), such a coloring exists;
this is the best bound currently known. Furthermore,
the constant 11/4 cannot be improved to any number
strictly less than 2. The methods used in most of these
papers are highly non-constructive, and do not provide
algorithms for generating such colorings.

In this section, we examine two routes to construct-
ing strong colorings. The first proof, based on [1], builds
up the coloring vertex-by-vertex, using the ordinary
LLL. The second proof uses the permutation LLL to
build the strong coloring directly. The latter appears to
be the first RNC algorithm with a reasonable bound on
b.

We first develop a related concept to the strong col-
oring known as an independent transversal. In an inde-
pendent transversal, we choose a single vertex from each
block, so that the selected vertices form an independent
set of the graph.

Proposition 8.1. Suppose b ≥ 4∆. Then G has an
independent transversal, which can be found in expected
time O(n∆).

Furthermore, let v ∈ G be any fixed vertex. Then G
has an independent transversal which includes v, which
can be found in expected time O(n∆2).

Proof. Use the ordinary LLL to select a single vertex
uniformly from each block. See [9], [21] for more details.
This shows that, under the condition b ≥ 4∆, an
independent transversal exists and is found in expected
time O(n∆).

To find an independent transversal including v, we
imagine assigning a weight 1 to vertex v and weight zero
to all other vertices. As described in [21], the expected
weight of the independent transversal returned by the
Moser-Tardos algorithm, is at least Ω(w(V )/∆), where
w(V ) is the total weight of all vertices. This implies
that that vertex v is selected with probability Ω(1/∆).
Hence, after running the Moser-Tardos algorithm for
O(∆) separate independent executions, one finds an
independent transversal including v.

Using this as a building block, we can form a strong
coloring by gradually adding colors:

Theorem 8.3. Suppose b ≥ 5∆. Then G has a strong
coloring, which can be found in expected time O(n2∆2).

Proof. (This proof is almost identical to the proof of
Theorem 5.3 of [1]). We maintain a partial coloring of
the graph G, in which some vertices are colored with
{1, . . . , b} and some vertices are uncolored. Initially all



vertices are uncolored. We require that in a block, no
vertices have the same color, and no adjacent vertices
have the same color. (This only applies to vertices which
are actually colored).

Now, suppose some color is partially missing from
the strong coloring; say without loss of generality there
is a vertex w missing color 1. In each block i = 1, . . . , k,
we will select some vertex vi to have color 1. If the
block does not have such a vertex already, we will simply
assign vi to have color 1. If the block i already had some
vertex ui with color 1, we will swap the colors of vi and
ui (if vi was previously uncolored, then ui will become
uncolored).

We need to ensure three things. First, the vertices
v1, . . . , vk must form an independent transversal of G.
Second, if we select vertex vi and swap its color with
ui, this cannot cause ui to have any conflicts with its
neighbors. Third, we insist of selecting w itself for the
independent traversal.

A vertex ui will have conflicts with its neighbors if
vi currently has the same color as one of the neighbors of
ui. In each block, there are at least b−∆ possible choices
of vi that avoid that; we must select an independent
transversal among these vertices, which also includes
the designated vertex w. By Proposition 8.1, this can
be done in time O(n2∆2) as long as b ≥ 4∆.

Whenever we select the independent transversal
v1, . . . , vk, the total number of colored vertices increases
by at least one: for, the vertex w becomes colored
while it was not initially, and in every other block the
number of colored vertices does not decrease. So, after
n iterations, the entire graph has a strong coloring; the
total time is O(n2∆2).

The algorithm based on the ordinary LLL is slow
and is inherently sequential. Using the permutation
LLL, one can obtain a more direct and faster construc-
tion; however, the hypothesis of the theorem will need
to be slightly stronger.

Theorem 8.4. Suppose we have a given graph G of
maximum degree ∆, whose vertices are partitioned into
blocks of size b. Then if b ≥ 256

27 ∆, it is possible to
strongly color graph G in expected time O(n∆). If
b ≥ ( 256

27 + ε)∆ for some constant ε > 0, there is an
RNC algorithm to construct such a strong coloring.

Proof. We will use the permutation LLL. For each
block, we assume the vertices and colors are identified
with the set [b]. Then any proper coloring of a block
corresponds to a permutation of Sb. When we discuss
the color of a vertex v, we refer to πk(v) where k is the
block containing vertex v.

For each edge f = 〈u, v〉 ∈ G and any color
c ∈ [1, . . . b], we have a bad-event that both u and

v have color c. (Note that we cannot specify simply
that u and v have the same color ; because we have
restricted ourselves to atomic bad-events, we must list
every possible color c with a separate bad event.)

Each bad-event has probability 1/b2. We give
weight µ(B) = α to every bad event, where α is a scalar
to be determined.

Now, each such event (u, v, c) is dependent with four
other types of bad-events:

1. An event u, v′, c′ where v′ is connected to vertex u;

2. An event u′, v, c′ where u′ is connected to vertex v;

3. An event u′, v′, c where u′ is in the block of u and
v′ is connected to u′;

4. An event u′, v′, c where v′ is in the block of v and
u′ is connected to v′

There are b∆ neighbors of each type. For any
of these four types, all the neighbors are themselves
connected to each other. Hence an independent set of
neighbors of the bad-event (u, v, c) can contain one or
zero of each of the four types of bad-events.

Using Lemma 3.1 and Pegden’s criterion [34], a
sufficient condition for the convergence of the Swapping
Algorithm is that

α ≥ (1/b2) · (1 + b∆α)4

When b ≥ 256
27 ∆, this has a real positive root α∗

(which is a complicated algebraic expression). Further-
more, in this case the expected number of swaps of each
permutation is ≤ b2∆α∗ ≤ 256

81 ∆. So the Swapping Al-
gorithm terminates in expected time O(n∆). A similar
argument applies to the parallel Swapping Algorithm.

8.3 Acyclic edge-coloring We now consider a clas-
sical coloring problem that is notable because there is
no obvious permutation in its description; however, our
framework still proves useful.

Given a graph G, the acyclic edge-coloring problem
is to produce a proper edge-coloring with a “small”
number C of colors, with the additional property that
there are no even-length cycles in G in which the edges
receive exactly two colors. Introduced by Grünbaum
in 1973 [19], this problem has received a good deal of
attention [4, 7, 17, 30, 32, 33]. Letting ∆ denote the
maximum degree of G, recall that ∆ ≤ C ≤ ∆ + 1
if we only wanted a proper edge-coloring; thus, much
work on the problem has studied C as a function of ∆.
The best bound currently known, due to [17], is that
C = 4∆−4 is admissible; this bound is also constructive.
The algorithm of [17] is based on choosing colors for the
edges in a sequential fashion, to systematically avoid



all repeated edge-colors and 4-cycles. Cycles of length
6 or more cannot be avoided in this way; for these, a
resampling-based approach similar to [31] is employed.
This algorithm seems difficult to parallelize because
the possible colors of an edge are dependent on its
neighbors.

Older algorithms for this problem are based on the
ordinary (asymmetric) LLL; each edge chooses a color
independently, and conflicts are resampled. The most
recent paper to use this analysis is [33]; this shows
that the LLL and the algorithm of [31] produce a
coloring when C ≥ 9.62∆. These algorithms are easy
to parallelize using [31].

We apply the permutation LLL to show that C ≥
8.42∆ + O(1) suffices. This almost directly leads to
an RNC algorithm that achieves the fewest colors of
any known RNC algorithm; again, the notable feature
is that there is no obvious “permutation” in the problem
description:

Theorem 8.5. Suppose ∆ is sufficiently large and C ≥
8.42∆. Then the graph G has an acyclic edge-coloring
with C colors. Furthermore, if C,∆ are constants sat-
isfying this condition, then there is an RNC algorithm
to find it.

Proof. We assume that ∆ is sufficiently large through
the course of this proof, and include an ε slack in our
bounds on C. This simplifies many of the bounds and
arguments.

The construction has two parts. First, one assigns
each edge to randomly “belong” to one of its two
endpoints. This can be done using the ordinary LLL. It
is not hard to see that we can assign edges to vertices
such that each vertex owns at most ∆′ ≤ (1 + ε)∆/2
edges.

After this is done, each vertex chooses a random
injection from the ∆′ edges it owns to the set of c colors.
The idea here is that we systematically prevent two
edges incident to a vertex v from sharing a color, if they
are both owned by the vertex v. It is possible that one
or both of these edges are owned by the other vertices;
in this case, we must resample those edges. These types
of conflicts cannot be systematically avoided.

We two types of bad-events. In the first type, two
edges incident on the same vertex share a color c1. In
the second type, there is a cycle of length 2l ≥ 4, in
which the colors alternate between c1 and c2. For a
bad-event of the first type we define µ(B) = α and for
any bad-event B of the second type which depends on
2l edges, we define µ(B) = αl, where α is a constant to
be determined.

Now, given a fixed edge f ∈ G and fixed color c,
one can verify that the sum of µ(B), over all bad-events

B which contain π(f) = c, is at most

t ≤ 3∆′α+ (C − 1)

∞∑
l=2

αl(2∆′)2l−2

= 3∆′α+
4α2(C − 1)(∆′)2

1− 4α(∆′)2

The presence of the constant 3 is notable here; this is
because it is impossible for two edges owned by the same
vertex to have the same color. Using the ordinary LLL,
this constant would instead be 4.

Given a bad-event B of length 2l, we use Pegden’s
criterion to count the sum of µ(B′) over the neighbor-
hoods of B. B contains 2l edges, each with a specified
color. For each combination of edge and color, there
may be a single child with the same edge (but possibly
a different color), and there may be a single child using
the same color for the originating vertex (but assigned
to a different edge). Hence, for such an event B, we
have ∑

independent sets X
of neighbors of B

∏
B′∈X

µ(X) ≤ ((1 + Ct)(1 + ∆′t))2l

This gives us the following LLL criterion: for any
bad-event B of length 2l, we must have

P (B) ≤ αl

((1 + Ct)(1 + ∆′t))2l

The probability of B is at most (C − 1)−2l; so this is
satisfied for all B if

1 ≤ (C − 1)2α

((1 + Ct)(1 + ∆′t))2

Routine algebraic manipulations show that this has
a real positive solution α > 0 when C ≥ 16.8296∆′. For
∆ sufficiently large, this is satisfied when C ≥ 8.42∆.

This does not immediately give us an algorithm
to construct such a coloring, because the number of
potential bad-events is not polynomially bounded in
size. However, as discussed in [20], one can truncate
the set of cycles under consideration to length O(log n).
With high probability, longer cycles will have no bad-
events, even if we do not explicitly check them.

Now, the short cycles satisfy the conditions of The-
orem 7.1, so the Parallel Swapping Algorithm finds an
acyclic edge-coloring with high probability in logO(1) n
rounds.

9 Conclusion

The algorithm we have developed in this paper appears
to be a special case of a more general paradigm. Namely,



suppose we want to assign variables X1, . . . , Xn to sat-
isfy some constraint satisfaction problem. These con-
straints have two types: there are “local constraints,”
which are isolated, sporadic constraints that depend on
only a few variables at a time; there are also “global con-
straints,” which are large-scale and highly structured.
A random approach works well to satisfy the local con-
straints, but totally fails for the global constraints. In
this case, a compromise is needed: we choose the vari-
ables X1, . . . , Xn in a structured way so that the global
constraints are automatically satisfied. Now there may
still be a few isolated local constraints left unsatisfied,
and so we need to perform some small modifications to
fix these.

While this paper has examined global constraints
of the form Xi 6= Xj for certain values of i, j, the local
lemma has been applied to a variety of other probability
distributions. The works [26, 29] survey a range of
probabilistic settings in which the lopsided LLL may
be applied, which includes hypergraph matchings, set
partitions, and spanning trees. Another example comes
from [14], which applies an LLL variant to the space of
Hamiltonian cycles.

This type of algorithm requires a “local correction”
step that satisfies two properties. First, it introduces
enough randomness so that local constraints may be
satisfied probabilistically; second, it only makes a small
change to the variables, so that constraints which were
already satisfied are not too disrupted. Note that these
properties are in conflict: we could simply resample all
of the affected variables, which introduces the maximal
amount of randomness as well as disruption.

The algorithm of [17] for acyclic edge-colorings is
especially notable in this regard, because it uses this
paradigm of algorithms in a setting not directly covered
by any form of the LLL.

We may ask the question: what types of global
structures admit this form of resampling algorithm?
What are the precise criteria on the randomness and
locality of the resampling step?
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Universities Press (1974).

[13] Hahn, G., Thomassen, C.: Path and cycle sub-Ramsey
numbers and an edge-colouring conjecture. Discrete
Mathematics 62-1, pp. 29-33 (1986)

[14] Dudek, A., Frieze, A., Rucinski, A.: Rainbow Hamilton
cycles in uniform hypergraphs. The Electronic Journal
of Combinatorics 19-1: P46 (2012)
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