
IMPROVED BOUNDS AND ALGORITHMS FOR GRAPH CUTS
AND NETWORK RELIABILITY‡

DAVID G. HARRIS1 AND ARAVIND SRINIVASAN2

Abstract. Karger (SIAM Journal on Computing, 1999) developed the first fully-polynomial
approximation scheme to estimate the probability that a graph G becomes disconnected, given that
its edges are removed independently with probability p. This algorithm runs in O(n5+o(1)ε−3) time
to obtain an estimate within relative error ε.

We improve this runtime in two key ways, one algorithmic and one graph-theoretic. From an
algorithmic point of view, there is a certain key sub-problem encountered by Karger, for which a
generic estimation procedure is employed. We show that this sub-problem has a special structure
for which a much more efficient algorithm can be used. From a graph-theoretic point of view, we
show better bounds on the number of edge cuts which are likely to fail. Karger’s analysis depends
on bounds for various graph parameters; we show that these bounds cannot be simultaneously tight.
We describe a new graph parameter, which simultaneously influences all the bounds used by Karger,
and use it to obtain much tighter estimates of the behavior of the cuts of G. These techniques allow
us to improve the runtime to O(n3+o(1)ε−2); our results also rigorously prove certain experimental
observations of Karger & Tai (Proc. ACM-SIAM Symposium on Discrete Algorithms, 1997). Our
proofs, while rigorous, are motivated by certain non-rigorous differential-equation approximations
which, however, track the worst-case trajectories of the relevant parameters.

A key driver of Karger’s approach (and other cut-related results) is his earlier bound on the
number of small cuts: we also show how to improve this when the min-cut size is “small” and odd,
augmenting, in part, a result of Bixby (Bulletin of the AMS, 1974).

1. Introduction. Let G be a connected undirected multi-graph with vertex set
V ; as usual, we let |V | = n. Unless stated otherwise, the graphs we deal with will be
multi-graphs with no self-loops, presented in adjacency-matrix format. We define R(p),
the reliability polynomial of G, to be the probability that the graph remains connected
when edges are removed independently with probability p. One can verify that this
is a polynomial in p. This polynomial has various physical applications, for example
determining the reliability of a computer network or power grid. Although there is
no currently known algorithm for estimating R(p), the complementary probability
U(p) = 1 − R(p), which we call the unreliability of the graph, can be estimated in
polynomial time. In a breakthrough paper ([7], see also [8]), Karger developed the first
fully-polynomial randomized approximation scheme (FPRAS) to estimate U(p) up to
relative error ε in time polynomial in n and 1/ε; even a constant-factor approximation
was not known prior to his work.

We let exp(x) denote ex; all logarithms are to base e unless indicated other-
wise. With an appropriate choice of parameters, Karger’s algorithm can run in time

exp(3 log n+
√

log n
√

4 log n+
√

2 log(1/ε) + o(log n)). In particular, if ε = Θ(1), this

is O(n5+o(1)). (We assume that ε ≤ O(1), say ε ≤ 1/2, throughout.) Karger’s algo-
rithm is based on an algorithm for finding graphs cuts which have close to minimal
weight. This algorithm is the Contraction Algorithm, first introduced by [6]. This
algorithm has emerged as an important building block for many graph algorithms.

1Department of Applied Mathematics, University of Maryland, College Park, MD 20742. Re-
search supported in part by NSF Award CNS-1010789. Email: davidgharris29@hotmail.com.

2Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742. Research supported in part by NSF Award CNS-1010789.
Email: srin@cs.umd.edu.
‡A preliminary version of this work appeared in the Proc. ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2014.

1

Just as importantly, it can be viewed as a stochastic process which provides structural
results about the graph cuts, for example, a bound on the number of small cuts.

In this paper, we provide a more detailed analysis of the Contraction Algorithm
and its consequences. This enables us to show a variety of improved bounds and
algorithms for graph problems. The focus of this paper is on improving the algorithm
for estimating U(p).

The following definition will be useful:
Definition 1.1. The minimum cut-size in G, also known as the edge-connectivity

of G, will be denoted by c. Given α ≥ 1, an “α-cut” in G is cut with at most αc edges.

Our results.

The main focus of our analysis is a much faster algorithm for estimate U(p):
Theorem 1.2. There is an algorithm to estimate U(p) in time n3+o(1)ε−2.
Our analysis of the Contraction Algorithm will also allow purely structural bounds

on the cut structure of certain graphs:
Theorem 1.3. Suppose c is an odd constant and α ≥ 1. Then there are at

most O(nα
2c
c+1) α-cuts. This exponent is optimal, in the sense that one cannot show

a bound of O(nαx) for any x < 2c
c+1 . (The constant term in the asymptotic notation

may depend on c).
In [10], an algorithm called the Recursive Contraction Algorithm was developed

for finding all α-cuts. We obtain a small improvement to this algorithm for the general
problem of finding α-cuts. Unlike the previous improvements, this only reduces the
logarithmic terms:

Theorem 1.4. There is an algorithm that accepts as input a graph G and a
real number α ≥ 1. This algorithm succintly enumerates, with high probability, all
α-cuts of G in time O(n2α log n). By contrast, the algorithm of [10] requires time
O(n2α log2 n).

1.1. Overview of Karger’s algorithm, and our improvements. Karger’s
algorithm for estimating U(p) essentially consists of two separate algorithms, depend-
ing on the size of U(p). When U(p) > n−2−δ, where δ is some constant, then Monte
Carlo sampling provides an accurate estimate. As the samples are unbiased with
relative variance 1/U(p), then after n2+δε−2 samples we estimate U(p) accurately.
Naively, it might appear to require n2 time to compute a sample (the cost of reading
in the adjacency matrix), but Karger describes a method of sparsifying the graph
to reduce this to n1+o(1). We will not modify Karger’s algorithm for Monte Carlo
sampling.

When U(p) is small, then Monte Carlo sampling no longer can produce an accu-
rate estimate. In the regime U(p) < n−2−δ, Karger develops an alternative algorithm.
In this case, Karger shows that the event of graph failure is dominated by the event
that a small cut of G has failed. This is done by analyzing the number of cuts of
small weight. In particular, there is some α∗ such that U(p) is closely approximated
by the probability that an α∗-cut has failed. Karger provides an upper bound on the
critical value α∗; for example, when ε = Θ(1), we have α∗ ≤ 1 + 2/δ = O(1).

This significantly simplifies the problem, because instead of having to consider the
exponentially large collection of all cuts of G, we can analyze only the polynomial-size
collection of α∗-cuts. Using an algorithm developed in [10], the Recursive Contraction
Algorithm, Karger’s algorithm can catalogue all such α∗-cuts in time n2α∗+o(1). We
refer to this as the cut-enumeration phase of Karger’s algorithm. Note that there is
a tradeoff between the Monte Carlo phase and cut-enumeration phase, depending on
the size of δ.

2

Having catalogued all such small cuts, we need to piece them together to estimate
the probability that one of them has failed. For this, Karger uses as a subroutine a
statistical procedure developed by Karp, Luby, Madras [12]. This procedure can ex-
amine any collection of partially overlapping clauses, to provide an unbiased estimate
with relative error O(1) that one such clause is satisfied. By running ε−2 iterations
of this, we achieve the desired error bounds for U(p). The running time is linear in
the size of the collection of clauses. We refer to this as statistical sampling phase of
Karger’s algorithm.

We will improve both the cut-enumeration phase and statistical sampling phase
of Karger’s algorithm. To improve the cut-enumeration phase, we will show a tighter
bound on α∗. In [11], a version of Karger’s algorithm was programmed and tested
on real graphs. This found experimentally that the average number of cuts needed to
accurately estimate the graph failure probability was about n3, not the worst case n5

as predicted by [7]. In this paper, we show this fact rigorously. We will show that the
number of small graph cuts in reliable graphs is far smaller than in general graphs.
This is the most technical part of our paper; we briefly describe our methodology for
proving this.

The basic idea is to analyze the dynamics of the Contraction Algorithm, and to
show that any small cut C has a large probability of being selected by this algorithm.
The Contraction Algorithm is a complicated stochastic process, and the graph G can
change in difficult and unpredictable ways through its evolution. We approximate the
Contraction Algorithm by a continuous, deterministic dynamical system. This gives
rise to a system of differential equations, which can be solved in closed form. Even
though our approximation was basically heuristic, it turns out that the solution to the
differential system is correct, and can be proved accurate rigorously. It turns out that
the heuristic approximations represent the worst-case behavior for the Contraction
Algorithm. Furthermore, we prove this by induction, which depends on knowing the
answer in advance — which we would not have been able to do without our heuristic
approximation!

This analysis is quite difficult technically, because it requires analyzing the three-
way interconnections between the number of α-cuts of G, the effectiveness of the
Contraction Algorithm, and the value of U(p). The critical parameter that ties these
three together is the expected number of failed graph cuts.

Our improvement to the statistical sampling phase is more straightforward. The
algorithm of [12] is able to handle very general collections of clauses, which can overlap
in complicated ways. However, this is unnecessary for our purposes. We will show that
the collection of cuts produced by the cut-enumeration phase has a simple distribution,
both statistically and computationally. This allows us to use a faster and simpler
statistical procedure to piece together the α∗-cuts. As a result, the running time of
each sample reduces to about O(n2); in particular, we do not need to read the entire
collection of α∗-cuts for each sample.

In total, we reduce the running time of Karger’s algorithm to about n3+o(1)ε−2.
Obtaining faster run-times with Karger’s recipe appears to be quite difficult; for if
c is the size of the min-cut, then in the regime where pc ≥ n−2+Ω(1), it is not clear
how to stop only at “small” cuts, and one appears to need Monte-Carlo sampling —
which requires a runtime that matches ours.

We note that another approach to estimating U(p) has been discussed in [15]. This
algorithm finds a pair of minimal cuts which are mostly disjoint, and hence there is a
negligible probability that both cuts fail simultaneously. By continuing this process, it

3

is found in [15] experimentally that a branching process can efficiently enumerate the
probability that some small cut fails. While this algorithm is promising, the analysis
of [15] is fully experimental, and it appears that in the worst case this approach might
require super-polynomial time.

Obtaining an FPRAS – or even a constant-factor approximation – for R(p) re-
mains a very intriguing open problem.

1.2. Outline. In Sections 2 and 3, we begin by reviewing some key results and
definitions concerning graph cuts. Most of these results are recapitulations of [7].

In Section 4, we introduce the Contraction Algorithm, an algorithm described
by [10]. This algorithm provides an efficient randomized procedure for finding small-
weight cuts in G. It also can be viewed as a probabilistic process which can used
to estimate the number of such cuts, thus providing purely structural bounds on
G. We will be interested in the following question, which is more general than that
considered by [10]: suppose we are given a fixed target cut C of G. Under what
circumstances does the Contraction Algorithm select C? What can we say about the
dynamics of the Contraction Algorithm in those cases in which C will ultimately be
selected? We will prove a series of technical Lemmata which describe these dynamics.
Roughly speaking, these show that the Contraction Algorithm has a uniform behavior
regardless of which target cut C (if any) we are interested in.

In Section 5 we apply this machinery to analyze the Contraction Algorithm in
the case in which the (unweighted) graph G has c an odd constant. These results are
not necessary for our analysis of Karger’s algorithm. We include them here for two
reasons. First, the number of small cuts is basically known in the case of even c —
the worst case behavior comes from a cycle graph, in which there are n vertices in a
ring with c/2 edges between successive vertices. Further bounds in this case would
require adding extra conditions, say on the minimality of these cuts; this appears to
be quite difficult. The case of odd c has been mostly overlooked in the literature.

Second, the case of small odd c provides an easier warm-up exercise for the analysis
in Section 6. In Section 5, we keep track of the number of minimum cuts remaining
in G during the evolution of the Contraction Algorithm; in Section 6 we must keep
track of the number of cuts of all sizes. Section 6 analyzes how the dynamics of the
Contraction Algorithm are affected by the magnitude of U(p). The critical parameter
is Z̄, the expected number of failed cuts in G. We show how Z̄ affects the number of
edges which are available in any round of the Contraction Algorithm, and we show
how Z̄ itself changes during the execution.

The proof method used in Sections 5, 6 is worth noting. We give a function f ,
and prove by induction that the probability of a cut surviving the Contraction Al-
gorithm is at least f . This function f is very complicated and could not have been
guessed from first principles. Instead, we first simplify our stochastic process using
some unwarranted independence and monotonicity assumptions, and then translate
the stochastic time-steps into a differential equation which can be solved in closed-
form. This heuristic analysis gives us the mysterious function f , which we then
rigorously prove correct. In particular, these “unwarranted independence and mono-
tonicity assumptions” actually correspond to the worst-case behavior of our stochastic
process!

In Section 7, we apply the analysis of Section 6 to show that α∗, which is the bound
of the size of the cuts necessary to approximate U(p), is smaller than the bound given
by Karger. We note that while Karger gave a simple bound which could be computed
explicitly, our bound depends on the graph parameter Z̄ which we cannot determine

4

easily. However, using this formula, one can determine an upper bound on the total
number of iterations of the Contraction Algorithm that are needed to find the α∗-cuts;
this bound is irrespective of Z̄.

In Section 8, we analyze the Recursive Contraction Algorithm. This is an algo-
rithm which allows us to run the Contraction Algorithm “in bulk”. If we are interested
in finding many graph cuts, we must run the Contraction Algorithms multiple times.
However, most of the work for processing the graph can be amortized across these
multiple runs. In particular, we can essentially reduce the running time for the Con-
traction Algorithm from n2 (dominated by reading the original graph) to na where a
is a small constant.

In Section 9, we describe a new statistical sampling algorithm to analyze the
resulting collection of α∗-cuts. We show that this algorithm has a faster running
time, and is just as accurate, as the algorithm of [12] used in [7, 8]. In Section 10,
we describe how to combine all the pieces and obtain a full algorithm. This includes
deciding when to use Monte Carlo sampling and when to enumerate the small cuts,
a detail omitted in [7]. Finally, Section 11 concludes.

2. Preliminaries. For a multi-graph G, we define a cut of G to be a partition of
the vertices into two classes V = A tA′, with A,A′ 6= ∅, such that the removal of all
edges crossing from A to A′ disconnects the graph. We must distinguish this from an
edge-cut, which is a subset E′ of the edges of G such that removal of E′ disconnects
G. Observe that every cut of G induces an edge-cut of G. The weight or size of an
edge-cut is the number of edges it contains. We say an edge-cut is minimum if it has
the smallest size of all edge-cuts, and we denote by c the size of the smallest edge-cut.
We say an edge-cut is minimal if no proper subset is an edge-cut.

We note that any cut corresponds to a unique edge-cut. Although not every
edge-cut corresponds to a cut, we can observe that any minimal edge-cut corresponds
to a unique cut. We say that a cut is minimal iff the corresponding edge-cut is
minimal. Note that the graph may contain up to 2n−1 cuts and up to 2m edge-cuts.
For the most part, we will only consider minimal cuts in this paper. In this case, the
distinction between a cut and an edge-cut disappears; every minimal cut corresponds
to a unique minimal edge-cut, and vice-versa. We will often abuse notation so that
a cut C may refer to either the vertex-partition or the edge-cut it induces. Unless
stated otherwise, whenever we refer to a cut C, we view C as a set of edges.

As mentioned before, for any α ≥ 1 we define an α-cut to be a cut whose corre-
sponding edge-cut has at most αc edges.

In this paper, we seek to estimate the probability that graph becomes disconnected
when edges are removed independently with probability p. When edges are removed
in this way, we say that an edge-cut fails iff all the corresponding edges are removed.
In this case, we may concern ourselves solely with cuts. The reason for this is that
graph G becomes disconnected iff some minimal edge-cut of G fails (which in turn
happens iff some cut of G fails). As there are far fewer cuts than edge-cuts, we will
mostly be concerned with cuts.

This method can be generalized to allow each edge to have its own independent
failure probability pe. As described in [7], given a graph G with non-uniform edge
failure probabilities, one can transform this to a multi-graph G′ with uniform edge
failure probabilities by replacing each edge of G with a bundle of edges, and setting
p appropriately. This may cause a large increase in the number of edges in the graph
and a large increase in the size of the minimum cut c. Because this transformation
can greatly increase the number of edges m, we will describe the running time of our

5

algorithms as a function of n alone.
We will assume that the graph G is presented as an adjacency matrix with n2

words. Each word records the number of edges that are present between the indicated
vertices. As described in [6], it is possible to transform an arbitrary graph, in which
the number of edges may be unbounded, into one with cells of size O(log(1/ε)+log n)
with similar reliability; hence the arithmetic operations will take polylogarithmic time
in any computational model. This transformation may have a running time which is
super-polynomial in n, although it is close to linear time as a function of the input data
size. We will ignore these issues, and simply assume that we can perform arithmetic
operations to precision ε and random number generation of an entire word in a single
time step. In most cases, the arithmetic operations can be done in lower precision, at
least for the inner-most loops, but we will not consider these issues.

As our algorithm closely parallels Karger’s, we use the notation of [7] wherever
possible. Recall that c is the size of the smallest edge-cut. As in [7], we let pc = n−2−δ,
with δ > 0 being the case of primary interest (the complementary case can be handled
by simple Monte-Carlo sampling). We note that δ can be determined in time n2+o(1),
simply by finding the size of the minimum cut. Hence we can assume δ is known.
Often we will derive estimates assuming δ ≥ δ0 for some constant δ0 > 0. This
assumption allows us to simplify many of the asymptotic notations, whose constant
terms may depend on δ0. In fact, our algorithm is best balanced when δ → 0. It is
not hard to see that all of our asymptotic bounds when δ ≥ δ0 can be relaxed to allow
δ → 0 sufficiently slowly, for example as δ = 1/ log log log log n.

We will be very interested in α-cuts, where normally α should be thought of as
essentially constant. (In fact, the case where α = O(1) would be basically sufficient
to analyze all of our algorithmic improvements.) We will show how to bound the
number of such small cuts, and we will show that overlap among these cuts is also
controlled. The following is a well-known theorem of [5], and indeed, the rest of this
section is basically a recapitulation of Karger’s work from [5].

Theorem 2.1. ([5]) The number of α-cuts is at most n2α.
The following combinatorial principle will be used in a variety of contexts.
Lemma 2.2. Let F : R → R be any increasing function with the property that,

for any α ≥ 1, the number of α-cuts is at most F (α). Let g : R → [0,∞) be any
continuous decreasing real-valued function. Then we have∑

Cuts C of weight
|C|≥αc

g(|C|/c) ≤ F (α)g(α) +

∫ ∞
x=α

g(x)dF (x)

Proof. This is simply integration by parts.
Combining Lemma 2.2 and Theorem 2.1, gives a simple proof of the following

result from [7]:
Corollary 2.3. Let 0 < q < n−2, α ≥ 1. Then we have∑

Cuts C of weight
|C|≥αc

q|C|/c ≤ (n2q)α
1

1 + logn2

log q

In particular, if q ≤ n−2−Ω(1), then we have∑
Cuts C of weight

|C|≥αc

q|C|/c = O((n2q)α)

6

Proof. Apply Lemma 2.2, using F (x) = n2x and g(x) = qx. We have∑
Cuts C of weight

|C|≥αc

q|C|/c ≤ qαn2α +

∫ ∞
x=α

qx × 2n2x log ndx = (n2q)α
1

1 + logn2

log q

As an example of how this principle may be used we have the following result.
This will later be strengthened in Proposition 7.1.

Corollary 2.4. ([7]) Suppose δ ≥ δ0 for some constant δ0 > 0. Then the
probability that a cut of weight ≥ αc fails is at most O(n−αδ).

Proof. By the union-bound, the probability that a cut of weight ≥ αc fails is at
most

P(Cut of weight > αc fails) ≤
∑

Cuts C of weight
|C|≥αc

(pc)|C|/c

Now apply Corollary 2.3.
This leads to one of the key theorems of Karger’s original work:
Theorem 2.5. ([7]) Suppose δ ≥ δ0 for some constant δ0 > 0. Then U(p) can be

approximated, up to relative error O(ε), by the probability that a cut of weight ≤ α∗c
fails, where

α∗ = 1 + 2/δ − log ε

δ log n

Proof. The absolute error committed by ignoring cuts of weight α∗c is the prob-
ability that such a cut fails; by Corollary 2.4 it is at most O(n−α

∗δ).
The minimum cut of G fails with probability pc = n−2−δ, so we have U(p) ≥ pc =

n−2−δ.
Hence the relative error committed by ignoring cuts of weight ≥ α∗c is at most

Rel err = O(
n−α

∗δ

n−2−δ) = O(ε)

We do not want to get ahead of ourselves, but one of the main goals of this paper
will be to improve on the estimate of Theorem 2.5. In proving Theorem 2.5, we used
two quite different bounds. These bounds are tight separately, but for very different
kinds of graphs. In estimating the absolute error, we bound the number of α-cuts that
may appear in G by O(n2α). This is tight for cycle graphs, as discussed in Lemma 3.1,
in which there are a very large number of cuts. On the other hand, when we estimate
U(p) ≥ pc, we are assuming that the graph has just a single small cut. As we will
show, no graph can have both bounds be simultaneously tight.

3. The total number of failed cuts. We define the random variable Z to
be the number of cuts of G which fail when edges are removed independently with
probability p. The expectation of Z is

Z̄ =
∑

cuts C

p|C|.

7

This is an overestimate of the graph failure probability which ignores the overlap
between the cuts. The quantity Z̄ will play a crucial role in our estimates. We begin
by recalling some results of [7] which bound the random variable Z:

Lemma 3.1. Let pc = n−2−δ for δ ≥ 0. Suppose we remove edges from G with
probability p, and let H denote the resulting graph. Then

P(H has ≥ r connected components) ≤ e−1(e/r)rn−rδ/2 ≤ n−rδ/2

Proof. As shown in [13], [14], [7], the probability that H has ≥ r connected
components under edge-failure probability p, is at most the probability that the graph
C has ≥ r connected components under edge failure q = pc/2, where C is the cycle
graph which contains n vertices and an edge between successive vertices in the cycle.
If r edge bundles fail in C, then the resulting number of distinct components is
max(1, r). Hence the probability that C results in r distinct components is at most
the probability a binomial random variable, with n trials and success probability q,
is at least r.

We can use the Chernoff bound to estimate the probability of such an extreme
deviation. In this case, the mean of the binomial is µ = nq = n−δ/2 and the relative
deviation is D ≥ rnδ/2 − 1. By the Chernoff bound,

P(≥ r connected components) ≤ (
eD

(1 +D)1+D
)µ

≤ e−1(e/r)rn−rδ/2 ≤ n−rδ/2

Lemma 3.2. Suppose δ > 0. Suppose we remove edges from G with probability p,
then

P(Z ≥ t) ≤ e−1
(e

1 + log2 t

)1+log2 t

n−(1+log2 t)δ/2 ≤ n−δ log2 t/2

Proof. Let H be the graph obtained after edges fail with probability p. Let r be
the number of connected components of H, and let G′ be the graph obtained from G
by contracting all components of H. So G′ has r vertices. Note that any cut of G′ is
a cut of G as well. Hence the minimal cut of G′ has size ≥ c, so G′ has at least rc/2
edges.

Suppose Z ≥ t, so there are t distinct cuts in G. Hence t ≤ 2r−1, that is, the
graph H has r ≥ 1 + log2 t connected components. By Lemma 3.1, the probability of
this event is at most e−1(e

1+log2 t
)1+log2 tn−δ(1+log2 t)/2.

The quantity Z̄ is much more tractable than U(p), but they are nearly equivalent
asymptotically:

Proposition 3.3. For δ ≥ δ0 > 0, we have U(p) = Θ(Z̄) .

Proof.

By the union bound, U(p) ≤ Z̄.

Now note U(p) = P(Z ≥ 1) = E[Z]
E[Z|Z≥1] . So it suffices to show that E[Z | Z ≥

1] = O(1).

8

By Lemma 3.2, we have

E[Z | Z ≥ 1] =
∑
x

P(Z ≥ x | Z ≥ 1)

≤
∑
x

min(1,P(Z ≥ x)n2+δ)

≤
∑
x

min(1, n− log2 xδ/2n2+δ)

≤
∑
i

2i min(1, n−iδ/2n2+δ)

For i and n sufficiently large, the term 2in−iδ/2n2+δ is less than e−Ω(i), so the sum-
mands decays exponentially and the sum converges to a constant.

We note that Z̄ is itself bounded:
Corollary 3.4. For δ ≥ δ0 > 0, we have n−2−δ ≤ Z̄ ≤ n−2−δn2+o(1).
Proof. The bound Z̄ = n−2−δn2+o(1) follows immediately from Lemma 2.3.
The bound Z̄ ≥ n−2−δ follows since the probability that the minimum cut fails

is n−2−δ.

4. The Contraction Algorithm. The key to our analysis is an algorithm of
[10] for finding cuts in a graph. This algorithm is called the Contraction Algorithm,
and can be summarized as follows. Suppose we wish to find α-cuts of G.

1. Repeat the following while G has at least d2α+ 1e vertices:

2. Select an edge e of G uniformly at random.

3. Let G′ denote the graph obtained by contracting the edge

e ∈ G. This reduces the number of vertices of G by one.

Eliminate any resulting self-loops from G′

4. Update G← G′.
5. Once the graph G has reduced to d2αe vertices, select a cut

uniformly at random among all cuts of G.
We are only partially interested in the Contraction Algorithm as an algorithm

per se, that is, we do not intend to execute this procedure. Rather, we will use this
algorithm as a tool to analyze the number of cuts that are present in the graph. Note
that this algorithm produces a single randomly chosen cut; the size of this cut is
variable.

We will show that, for an arbitrary cut C, the contraction algorithm selects C
with a certain probability. In this type of analysis, we regard C as fixed. We refer to
C as the target cut. During the evolution of the Contraction Algorithm, we start with
the original graph G and obtain a variety of subgraphs by contracting edges. For each
r decreasing from n down to d2αe, we obtain a subgraph Gr with r vertices and Mr

edges (where Gn = G). In order for the Contraction Algorithm to find C, this cut
must remain in all the subgraphs Gr. In this case we say the Contraction Algorithm
succeeded. We emphasize that the Contraction Algorithm is run without any target
in mind, and hence we cannot really say that it succeeds or fails; this is only relative
to a notional target.

The contraction process for C. The Contraction Algorithm can be thought of as
a branching process, in which at each stage we select one edge in the current graph
Gr and obtain a new subgraph Gr−1. In order to find the probability of retaining the
target cut C, we define the contraction process for C as follows. In each iteration,
we uniformly select an edge of Gr other than C itself. This can be thought of as a

9

kind of sequential importance sampling in which we are trying to estimate the number
of paths which preserve C: at each stage, we count how many choices are available
which preserve C, but we never choose to visit any path which removes C (because
exploring such a path can provide no information).

The contraction process can be applied to any edge-set L, not only a cut. In
this case, it is possible for the edges in L to be contracted, even though they are
not themselves selected, if another edge with the same end-points is selected. (This
never happens if L is a cut). The Contraction Algorithm can be thought of as the
contraction process for the empty edge set.

We define the random variable MG,C
r to be the number of edges in Gr starting

with graph G, when we run the contraction process for C. Also define

SG,Cr =
c

MG,C
r+1

+ · · ·+ c

MG,C
n

;

recall here that c is the weight of the min-cut.
When the cut C or graph G is understood, we sometimes omit them and write

Mr and Sr. To simplify some notations, when r is a real number, we define Sr = Sdre.
Showing an upper bound on SG,Cr is key to proving that the target α-cut C is

selected with high probability:
Lemma 4.1. Let α ≥ 1.
The probability that the Contraction Algorithm selects a given α-cut C is at least

P(select C) ≥ e−O(α)E[− exp(αSG,C2α)]

Note that by Jensen’s inequality, this implies that

P(select C) ≥ e−O(α) exp(−αE[SG,C2α])

Proof. In order to select C, the following events must happen. First, for each
iteration r = n, . . . , d2α+1e, we must select an edge of Gr other than those contained
in C. The probability of this event is at least 1 − αc/Mr. Finally, we must select
the cut C from the graph Gd2αe. This graph has 2d2αe−1 cuts, so we select C with
probability at least 2−2α. The probability of retaining C up to G2α is the expected
value of the product, over r = d2α + 1e, . . . , n, of (1 − αc/Mr). Note that this
expectation is taken only over the paths through the branching process which retain
C. Hence, this expectation can also be thought of as the unconditioned expectation
for the contraction process for C; this equivalence is useful to keep in mind.

Note that each subgraph Gr has minimum cut at least c, and in particular, Mr ≥
rc/2 with certainty.

Putting these together, the total probability of retaining G is at least

P(select C) ≥ E[2−2α
n∏

i=d2α+1e

(1− αc

Mr
)]

≥ 2−2αE[

n∏
i=d2α+1e

exp(−αc/Mr)
1− αc

rc/2

exp(− αc
rc/2)

]

(since x 7→ ex(1− x) decreases in [0, 1] and since Mr ≥ rc/2)

= 2−2αE[exp(−αS2α)

n∏
i=d2α+1e

(1− 2α

r
) exp(

2α

r
)]

10

≥ 2−2α

(
n

2α

)−1

(
n

2α+ 1
)2αE[exp(−αS2α)]

≥ e−O(α)E[exp(−αS2α)] (by Stirling’s formula)

Note that

Sr ≤
n∑

i=r+1

c

ic/2
≤ 2 log(n/r) (4.1)

with certainty. Combining this with Lemma 4.1, we get a simple and well-known
lower bound on the probability of retaining C that does not depend on any other
properties of G:

Corollary 4.2. The probability that the Contraction Algorithm selects a given
α-cut C is at least

P(select C) ≥ e−O(α)(n/(2α))−2α.

During the contraction process for C, the cut C complicates the dynamics. In
particular, cuts C ′ that overlap heavily with C are preserved with high probability.
The following series of lemmas show how we can “factor out C”. To do so, we will
analyze not G itself, but graphs related to G by edge contraction. We define the
graph G/L to be the result of contracting in G the edges in the set L; G/{e} will
often be referred to just as G/e. We show that the Contraction Process for C can
be approximated by the Contraction Algorithm on G/L, where L ⊆ C is a set of
well-chosen edges from the cut C.

Lemma 4.3. Let C be a cut of a connected graph G and let L a subset of the edges
of G. Suppose r > |L|. Then the random variable MG,C

r stochastically dominates

|L|+M
G/L,C/L
r−|L| . Note that C/L is not necessarily a cut of G/L.

In particular we have

E[SG,Cr] ≤ E[S
G/L,C/L
r−|L|]

Proof. As described in [7], there is an alternative description of the contraction
process for G,C: for each edge e ∈ G − C, we select a random permutation of the
edges. We then process these edges in order, either contracting the edge or ignoring
it if it was already contracted.

Now consider a coupling experiment: given a permutation ρ of the edges e ∈ G,
we run respectively the contraction processes on the graphs G/L and G, using the
common permutation ρ to order the relevant edges in both cases.

When ρ is fixed in this way, the relevant terms MG,C
r and M

G/L,C/L
r−|L| are fully

deterministic. We claim that for a fixed ρ, we have

MG,C
r ≥MG/L,C/L

r−|L| + |L|

and this will show our claim.
Now fix ρ, and list the edges of G−C in order of ρ as e1, e2, . . . , em−|C|. Observe

that the contraction process for both G,C and G/L,C/L successively selects these
edges in this order, and contracts it if still present in the graph (either G or G/L

11

respectively). We say that the process is at stage k if it has processed edges e1, . . . , ek
in order.

Suppose that when this process is at stage k, then the graph G has reduced to
r vertices and contains s edges of L. Then the contraction process for G/L at this
stage must have r′ ≥ r − s vertices, as it has at most s additional edges contracted
away. Also note that every edge in G/L at stage k also remains in graph G, and in
addition G has s edges which are not present for G/L. Hence we have

MG,C
r ≥MG/L,C/L

r′ + s ≥MG/L,C/L
r−s + s

Next, note that every time the number of vertices is decreased by one in the
process, so too must the number of edges be reduced by at least one. Hence we have

M
G/L,C/L
r−s + s ≥MG/L,C/L

r−s−1 + s+ 1 ≥ . . .MG/L,C/
r−|L| + |L|.

and our claim is proved.
To illustrate how we can use Lemma 4.3, suppose we are interested in the con-

traction process for C, where C contains very few edges. In this case, if we apply this
lemma with L = C, then we would have

E[SG,Cr] ≤ E[S
G/C
r−|C|] ≈ E[SG/Cr]

that is, the contraction process for C has approximately the same behavior as the
contraction algorithm on the graph G/C. In fact, we will use precisely this strategy
in Section 5. For a general graph, however, the number of edges in the cut C may be
far larger than n. In this case, Lemma 4.3 cannot be directly applied with L = C.
Instead of contracting away the entire cut C, we will contract only a small, well-
chosen subset of its edges. This will largely, but not entirely, remove the influence of
C from the residual graph G/L. In analyzing the contraction process for C, we will
need to keep track of not only the cut C, but all the other cuts of G as well. The
follow lemmas illustrate how such cuts C ′ can be tracked throughout the contraction
process.

Lemma 4.4. Let θ ∈ (0, 1); θ could be a function of n or other parameters. Given
G and the target α-cut C, there is a subset of the edges L ⊆ C with the following
properties:

1. |L| ≤ O(α logn
θ).

2. For any cut C ′ disjoint to L, we have |C ′ − C| ≥ (1 − θ)|C ′|. (Recall that
C,C ′ here should be interpreted as sets of edges.)

We refer to the second condition as the θ-cut-independence property (with respect
to C).

Proof. Choose L to be a random subset of C of size exactly 3α logn
θ . (If this

number is larger than the number of edges in C, we simply set L = C, in which case
the lemma is trivially true.)

Let C ′ be any cut of G of weight |C ′| = α′c, and satisfying |C ′ −C| < (1− θ)C ′.
Thus C ′ overlaps in at least θα′c edges with C. The probability that no such edges
are chosen in L is

P(C ′ disjoint to L) =

(
αc−θα′c

(3/θ)α logn

)(
αc

(3/θ)α logn

)
≤ (

αc− θα′c
αc

)(3/θ)α logn

≤ n−3α′

12

By the union bound, the probability that there is some such cut C ′ is at most

P(Some cut C ′ has |C ′ − C| ≤ (1− θ)|C ′|) ≤
∑

Cuts C′

(n−3)|C
′|/c

By Lemma 2.3, this is O(n−1), where the constant term is independent of θ. In
particular, for n sufficiently large, such an L exists.

Finally, we show that cuts C ′ that do not overlap too much with C are destroyed
during the contraction process with high probability:

Proposition 4.5. Let C ′ be any cut of G. Then the probability of retaining C ′

through a single iteration of the contraction process for L ⊆ C is at most

P(retain C ′) ≤ 1− |C
′ − C|
|E|

In particular, if G has θ-cut-independence with respect to C, then

P(retain C ′) ≤ 1− |C
′|(1− θ)
|E|

Proof. In a single iteration of the contraction process, we select an edge of G−L
uniformly at random. There are |E|−|L| such edges, hence we select an edge of C ′−L
with probability |C′−L|

|E|−|L| . So the probability of retaining C ′ is

P(retain C ′) ≤ 1− |C
′ − L|

|E| − |L|
≤ 1− |C

′ − C|
|E|

as desired.

5. Bounds for small, odd c. Our ultimate goal for this algorithm is show that
the reliability of a graph influences the number of cuts it can have. As a warm-up
exercise, we will show that graphs with connectivity c, where c is a constant odd
number, have noticeably fewer α-cuts than the worst case (where c is even and the
graph is a cycle with each edge having multiplicity c). This result is not needed for
our main algorithm, and can be skipped.

For the purposes of this section only, we regard c as constant. So the constant
terms hidden in the asymptotic notations may depend on c. Using techniques devel-
oped in Section 6, it is possible to develop estimates in which c is allowed to grow
unboundedly. However, when c is large these estimates are not very useful.

We use the following fact about the minimum cuts of G, when c is odd. This is
shown in [1], [2]:

Proposition 5.1. Suppose G has minimum cut c, for c odd. Then G has at
most 2n mincuts, which are represented by the edges of a spanning tree of G.

Although our goal is the Contraction Process for a cut C, it will suffice to analyze
the unconditioned Contraction Algorithm. The basic strategy of this proof is use
induction on the number of vertices to show a bound on Si. We will need to track
the behavior of Si not only for the original graph G, but for subgraphs H which arise
during the evolution of the Contraction Algorithm. Specifically, in order to prove the
induction, we will need to generalize the induction hypothesis to track the number of
minimum-weight cuts in these subgraphs.

The induction proof by itself is not very intuitive, because it requires guessing a
bound on E[Si] and then proving that this bound is correct. The proof by itself gives

13

very little help in deriving this bound. So we will give an intuitive and non-rigorous
derivation of the proof. We will then prove rigorously that the bound we obtain is in
fact correct.

Suppose we start with a graph G with r vertices and k minimum-weight cuts;
note that k ≤ 2r by Proposition 5.1. This fact that k ≤ 2r is the only part of the
proof where we use the assumption that c is odd. At each stage of the contraction
process, we have

E[Si−1] = E[Si] + E[c/Mi]

where Mi is the number of edges in the subgraph Gi and Si = c
MG
i+1

+ · · ·+ c
MG
n
. As

shown in Proposition 4.5, at every step, the expected number of minimum cuts in the
graphs Gi decreases by e−c/Mi , hence the expected number of minimum cuts in the
graph Gi should be about E[ki] ≈ E[ke−Si] ≈ ke−E[Si].

Now the neighborhood of each vertex of Gi defines a cut. As Gi has ki minimum
cuts, this implies that at most ki vertices may have the minimum degree c, while the
others must have degree at least c+ 1, so that

Mi ≥ kic/2 + (i− ki)(c+ 1)/2

and hence

c/Mi ≤
c

kic/2 + (i− ki)(c+ 1)/2

=
c

i · [(ki/i)c/2 + (1− ki/i)(c+ 1)/2]

≤ ki
i

2

i
+ (1− ki

i
)

2c

(c+ 1)i
,

where in the last line, we used Jensen’s inequality for E[1/Z] with Z being a two-point
distribution. Thus we get the approximation

E[c/Mi] ≤
E[ki]

i

2

i
+ (1− E[ki]

i
)

2c

(c+ 1)i

≈ 2(ke−E[Si] + ci)

(1 + c)i2

This gives us a recurrence relation in E[Si]:

E[Si−1] = E[Si] +
2(ke−E[Si] + ci)

(1 + c)i2

We relax this recurrence relation to a differential equation

dE[Si]

di
= −2(ke−E[Si] + ci)

(1 + c)i2

Sr = 0

which can be solved in closed form to obtain

E[Si] = log
[(i/r)

2
c+1 r(2k + (c− 1)r)− 2ik

(c− 1)i2

]
14

This derivation makes a number of unwarranted independence and monotonicity
assumptions on the behavior of the random variables, which do not hold in general.
The most problematic of these is extending Proposition 4.5 to multiple steps of the
Contraction Algorithm, assuming independence at each step. However, as we will
see, this argument does accurately capture the worst-case behavior for all the ran-
dom variables. That is, even though the random variables are not independent, any
dependency would only give us better bounds.

We contrast this approach with that of [16], which gives a survey of methods
to use differential equations to solve stochastic systems. As in [16], we make some
heuristic assumptions to convert the stochastic system to a dynamical system. Most
notably, we assume that a random variable X acts like a deterministic variable which
is equal to E[X]. We then solve this using differential equations. This gives us a good
starting hypothesis for the behavior of the stochastic system, which we then seek to
prove rigorously.

However, in [16], the usual strategy at this point is to use concentration inequali-
ties to prove that the random variables are in fact close to their means. In that case,
the heuristic assumptions we made earlier were approximately correct, so it is not a
surprise that the behavior of the stochastic and dynamical systems agree. In our case,
we are not able to show concentration inequalities for the relevant random variables.
The reason is that a single step of the Contraction Algorithm, namely contracting an
edge, can change the graph in a far-reaching way; this makes it hard to show the type
of “local effect” required for a concentration inequality.

By contrast, we will prove that any violation of these heuristic assumptions will
only help us; we do not necessarily show that the heuristic assumptions are true or
approximately true. This is very similar to how one can apply Jensen’s inequality to
interchange the expectation of a function with the function of its expectation. As in
Jensen’s inequality, our proof relies very strongly on the concavity and monotonicity
properties of the function we are estimating.

In the following theorem, we carry out this approach and prove that our heuristic
formula is in fact a correct bound:

Theorem 5.2. Let c > 1. Define the function

f(i, r, k) = log
[(i/r)

2
c+1 r(2k + (c− 1)r)− 2ik

(c− 1)i2

]
Suppose H is a graph with r vertices, k cuts of weight c, and no cuts of weight

< c. (If k > 0, c is the minimum cut). Then for i sufficiently large and r ≥ i we have
E[SHi] ≤ f(i, r, k).

Proof. For simplicity, we will defer some technical analysis of the function f to
after the main proof. First, note that by Proposition 5.3, the function f is well-defined
for appropriate parameters.

We prove the Theorem by induction on r. When r = i, we have Si = f(i, r, k) = 0.

Now suppose r ≥ i + 1, and H has m edges and k ≤ 2r cuts of weight c. In the
first step of the Contraction Algorithm, we select an edge of H to contract, arriving
at a new graph H ′. So we have E[SHi] = c/m + EH′E[SH

′

i]. We have broken the
expectation into two components. First, we randomly select the next subgraph H ′;
then, we continue the contraction algorithm on that subgraph.

The graph H ′ has r− 1 vertices and has K ′ ≤ 2(r− 1) weight-c cuts. Here K ′ is
a random variable. By Proposition 4.5, we have E[K ′] ≤ ke−c/m.

15

By the inductive hypothesis, we have

E[SH
′

i] ≤ f(i, r − 1,K ′)

By Proposition 5.4, this is a concave-down increasing function of K ′, hence by
Jensen’s inequality we have

E[SHi] ≤ c/m+ f(i, r − 1, ke−c/m)

First suppose k ≤ r. Now the neighborhood of each vertex of H defines a cut,
and for r ≥ 3 these are all distinct. Hence at most k vertices may have the minimum
degree c, while the others must have degree at least c+ 1. That implies that

m ≥ rc/2 + (r − k)/2

By Proposition 5.5, the expression c/m + f(i, r − 1, k−c/m) is decreasing in m.
Then we have the bound

E[SHi] ≤ 2c

−k + r + cr
+ f(i, r − 1, ke−

2c
cr−k+r)

≤ f(i, r, k) by Proposition 5.6.

Suppose k ≥ r. Then we have m ≥ rc/2, so we have the bound

E[SHi] ≤ 2

r
+ f(i, r − 1, ke−

2
r)

≤ f(i, r, k) by Proposition 5.7.

This completes the induction.
To complete this proof, we must verify that f has certain concavity and mono-

tonicty properties.
Proposition 5.3. For 1 ≤ i ≤ r, the function f is well-defined.
Proof. We need to show that the argument of the logarithm is strictly greater

than 0. We have

r
(
i
r

) 2
c+1 ((c− 1)r + 2k)− 2ik

(c− 1)i2
≥
r2
(
i
r

) 2
c+1

i2
> 0

Proposition 5.4. For 1 ≤ i ≤ r and c ≥ 1 the function f(i, r, k) is an increasing,
concave-down function of k.

Proof. The function f applies the logarithm function to an argument which is a
linear function of k. The slope of that linear function is

2r((i/r)
2
c+1 − (i/r))

(c− 1)i2
> 0

for c > 1 and 0 ≤ i ≤ r.
Proposition 5.5. Suppose c ≥ 3 and i, k, r ≥ 0. Then the expression

c/m+ f(i, r, ke−c/m)

is a decreasing function of m.

16

Proof. Let t = c/m. We wish to show that t+ f(i, r, ke−t) is increasing in t.
Differentiating with respect to t, it suffices to show that

2k((i/r)− (i/r)
2
c+1)

(i/r)
2
c+1 ((c− 1)ret + 2k)− 2(i/r)k

+ 1 ≥ 0

By differentiating with respect to i (viewing i as a continuous parameter), we see
that the left-hand side of the above expression is increasing in i. Hence it suffices to
show that this holds when i → 0. In this case, as i → 0, the terms (i/r)2/(c+1) are
negligible compared to the linear terms in (i/r), so the above approaches a limit as
i→ 0 of

(c− 1)ret

(c− 1)ret + 2k

which is obviously positive.
Proposition 5.6. For c ≥ 3, r ≥ i+ 1 and k ≤ r we have

2c

−k + r + cr
+ f(i, r − 1, ke−

2c
cr−k+r) ≤ f(i, r, k)

Proof. It suffices to show that

exp
(2c

−k + r + cr
+ f(i, r − 1, ke−

2c
cr−k+r)

)
− exp(f(i, r, k)) ≤ 0

This “simplifies” to showing that

(c− 1)(r − 1)2
(

i
r−1

) 2
c+1

e
2c

cr−k+r + 2k(r − 1)
(

i
r−1

) 2
c+1 − r

(
i
r

) 2
c+1 ((c− 1)r + 2k)

(c− 1)i2

is non-positive. Removing terms of known sign, it suffices to show that

(c−1)(r−1)2

(
1

r − 1

) 2
c+1

e
2c

cr−k+r +2k(r−1)

(
1

r − 1

) 2
c+1

−r
(

1

r

) 2
c+1

((c−1)r+2k)

(5.1)
is non-positive. We prove this next.

The second derivative of (5.1) with respect to k is given by

(c− 1)

(
1

r − 1

) 2
c+1−2

(
4c2e

2c
cr−k+r

(cr − k + r)4
+

4ce
2c

cr−k+r

(cr − k + r)3

)
≥ 0

This implies that (5.1) is either increasing in k, or initially decreasing before increas-
ing. In either case, it attains its maximum value at either k = 0 or k = r. So it
suffices to show that (5.1) is non-positive in these two cases.

When k = 0, our goal simplifies to

e
2c
cr+r

(
1

r − 1

)− 2c
c+1

≤
(

1

r

)− 2c
c+1

⇔e1/r(r − 1) ≤ r

17

which holds for all r ≥ 0 since e−1/r ≥ 1− 1/r.
Similarly, when k = r, our goal becomes

(c− 1)e2/r(r − 1)
2c
c+1 + 2r(r − 1)

(
1

r − 1

) 2
c+1

− (c+ 1)r
2c
c+1 ≤ 0. (5.2)

To prove this, we make the transformation y = c−1
c+1 ; note that 1/2 ≤ y ≤ 1. Thus we

need to establish

(r − 1)y ·
[
r(1− y) + ye2/r(r − 1)

]
≤ ry+1, i.e.,

1− y + ye2/r(1− 1/r) ≤
(

r

r − 1

)y
.

Now, elementary calculus shows that e2/r(1− 1/r) ≤ 1 + 1/r for r ≥ 1. (Set z = 1/r
and observe that the derivative of e2z(1 − z), which is e2z(1 − 2z), is at most 1 for
positive z since e−2z ≥ 1− 2z.) Thus, it suffices to prove that

1 + y/r ≤
(

r

r − 1

)y
for r > 1 and 1/2 ≤ y ≤ 1. However, note that since e−1/r ≥ 1 − 1/r, we have that
r
r−1 ≥ e

1/r. Thus it is enough to show that 1 + y/r ≤ ey/r, which is indeed the case.

Proposition 5.7. For c ≥ 3, r ≥ i+ 1 we have

2

r
+ f(i, r − 1, ke−

2
r) ≤ f(i, r, k)

Proof. It suffices to show that

exp
(2

r
+ f(i, r − 1, ke−

2
r

)
− exp(f(i, r, k)) ≤ 0

This simplifies to

(r − 1)
(

i
r−1

) 2
c+1 (

(c− 1)e2/r(r − 1) + 2k
)
− r

(
i
r

) 2
c+1 ((c− 1)r + 2k)

(c− 1)i2
≤ 0

Hence it suffices to show that(
1

r − 1

) 2
c+1−1 (

(c− 1)e2/r(r − 1) + 2k
)

+

(
1

r

) 2
c+1−1

(−cr − 2k + r) ≤ 0

The LHS of this can be easily seen to be decreasing in k, so it suffices to show
that this holds at k = r. In this case we need to show that(

1

r − 1

) 2
c+1−1 (

(c− 1)e2/r(r − 1) + 2r
)
− (c+ 1)

(
1

r

)− 2c
c+1

≤ 0

which is straightforward.

18

A similar argument deals with the case c = 1. We omit the proof, as it is
essentially identical to Theorem 5.2:

Proposition 5.8. Suppose H is a graph with r vertices and cut-value 1, and
with k ≤ r cuts of weight 1 (i.e., bridges). Then for i sufficiently large and r ≥ i we
have

E[SHi] ≤ log
[r − k log(i/r)

i

]
Theorem 5.2 gives us a very precise estimate of E[Si]. Usually, a cruder and

simpler estimate suffices:
Lemma 5.9. Suppose G has minimum cut c, for c odd and constant. Then we

have

E[Si] =
2c

c+ 1
log(n/i) +O(1)

where the constant term does not depend on c.
Proof. The graph G has n vertices and k ≤ 2n cuts of weight c.
First suppose c ≥ 3. Then by Theorem 5.2 we have

E[SGi] ≤ f(i, n, 2n)

= log

(
(c+ 3)(i/n)

2
c+1 − 4(i/n)

(c− 1)(i/n)2

)

≤ log
[(c+ 3)(i/n)2/(c+1)

(c− 1)(i/n)2

]
+

4(i/n)1−2/(c+1)

c+ 1

=
2c

c+ 1
log(n/i) + (1 + log(3/2))

A similar proof, using Proposition 5.8, applies when c = 1.
We can now estimate the probability of selecting the α-cut C:
Theorem 5.10. Suppose c is an odd constant and C is an α-cut. Then C is

selected by the Contraction Algorithm with probability

P(Contraction Algorithm selects cut C) ≥ e−Oc(α)(n/α)−
2αc
c+1 = Ωc(n

−α 2c
c+1).

Proof. First, suppose n < αc + 2α. In this case, the simple analysis of the
Contraction Algorithm of Corollary 4.2 (which ignores the fact that c is odd) shows
that the probability of selecting C is at least exp(−O(α))(n/α)−2α. For n < αc this
is exp(−O(α)).

Next, suppose n > αc+ 2α. We now have

E[SG,C2α] ≤ E[SG,C2α+αc] + 2 log(
αc

2α
)

≤ E[S
G/C,∅
2α] +O(1) by Lemma 4.3

≤ 2c

c+ 1
log(n/α) +O(1)

Hence the probability of selecting C is at least e−O(α)(n/α)−α
2c
c+1 .

19

When α grows large, the super-exponential term α−α
2c
c+1 dominates the simply

exponential term e−O(α). So the terms involving α alone are bounded, and

P(Contraction Algorithm selects cut C) = Ω(n−α
2c
c+1).

The following example shows that we cannot achieve any probability of the form
n−αx where x is a constant with x < 2c

c+1 :

Proposition 5.11. Let c be odd, and let α = k c+1
2c with k an integer. Then there

is a graph G of minimum cut c in which the number of α-cuts is

(
n

α
)

2c
c+1α exp(Ω(α))

Proof. Consider a cycle graph consisting of bundles of (c+1)/2 edges between each
adjacent pair of vertices, except for one edge bundle of (c − 1)/2 edges. This graph
has minimum cut c. Suppose we select any k edge-bundles which use the (c + 1)/2
edges to fail. This gives a cut of weight k(c+ 1)/2, which is k c+1

2c times the minimum

cut as indicated. There are
(
n−1
k

)
such choices, so the total number of such α-cuts is

at least (
n− 1

k

)
=

(
n− 1

2αc
1+c

)
= (

n

2α
)

2c
c+1α exp(Ω(α)).

6. The effects of graph reliability on the Contraction Algorithm. We
now show how the graph reliability affects the behavior of the Contraction Algorithm.
We begin with a warm-up exercise, which will illustrate some of the ideas in the proof.
We then discuss how this simple proof falls short and how to improve it, at the cost
of greater complexity.

Suppose we are given a target cut C. We show how to draw a connection between
Z̄ and the behavior of the Contraction Algorithm. If Z̄ is large (say as large as
n2pc), then the graph G could be essentially like the cycle graph, and the Contraction
Algorithm is tight. So we will suppose Z̄ is much smaller than this.

Proposition 6.1. Suppose pc = n−2−δ and Z̄ = n−2−δ+β, where δ ≥ δ0 > 0.
(Here, δ, β should be thought of as “parameters” of the graph; δ measures the

probability that the smallest cut of G fails, while β ∈ [0, 2 + o(1)] counts the number
of small cuts. The case β = 0 means there is only a single small cut and the other
cuts are very large; the case β = 2 corresponds to the cycle graph).

Define

h(β, δ, x) =

2(2 + δ)(log(3− β + δ)− log(2− β + δ + x)) if x ≥ β
2(2 + δ)(log(3− β + δ)− log(2 + δ)) + 2(β − x) if x ≤ β ≤ 1

2(1− x) if β ≥ 1

Then for x ∈ [0, 1] we have

Si ≤ h(β, δ,
log i

log n
) log n

20

Proof. Consider iteration i during the Contraction Algorithm, arriving at a sub-
graph with i vertices. The neighborhoods of each vertex v determine a cut with weight
dv, where dv is the degree of v.

As the neighborhood of each vertex of Gi is a distinct cut, we have∑
v

pdv ≤ Z̄e−d/c(1−θ)E[Si].

Now note that ip
∑
v dv
i ≤

∑
v p

dv by concavity. Hence we have

ipd ≤ Z̄

which in turn implies that

Mi ≥
i log(Z̄/i)

2 log p

We also have the bound Mi ≥ ic/2, which is a better bound for i ≤ nβ . We thus
have

Si ≤
n∑

r=i+1

min(
c

rc/2
,

2c log p

r log(Z̄/r)
)

≤
∫ n

r=i

min(
c

rc/2
,

2c log p

r log(Z̄/r)
)dr

≤ h(β, δ, x) log n by simple calculus

This simple proof demonstrates the effect of the graph reliability on the behavior
of the Contraction Algorithm. In fact, this Proposition 6.1 is already sufficient to
obtain a substantially improved run-time compared to Karger’s algorithm. We will
also need this Proposition 6.1 for technical reasons later in this paper.

However, Proposition 6.1 is not tight, because it assumes that the value of Z̄ does
not change during the execution of the Contraction Algorithm. But in fact, most of
the cuts in the graph are being contracted away, and these disappear from Z̄. Hence
in reality, Z̄ should be decreasing rapidly.

To describe this behavior at least intuitively, suppose we are given a target cut
C and the graph G with r vertices and which has θ-cut-independence with respect to
C. In order to estimate E[Si], we need to estimate E[c/Mi] for the graph Gi obtained
during the evolution of the Contraction Process for C.

Suppose that all of the cuts of G have size d ≥ c. In this case, in any individ-
ual step of the Contraction Process, a cut C ′ survives with probability e−(1−θ)d/Mi .
Multiplying the probabilities for each iteration, we expect that each cut survives with
probability about e−(1−θ)d/cSi , and so we should have

E[Z̄Gi] ≈ Z̄e−d/cE[Si]

As the neighborhood of each vertex of Gi is a distinct cut, we have

ipd ≤ Z̄e−d/c(1−θ)E[Si]

which in turn implies that

Mi ≥ −
c log

(
i/Z̄

)
2(c log p+ E[Si](1− θ))

21

As in the case of Theorem 5.2, we will use an induction argument to bound E[Si].
This induction is unintuitive, so we begin with a heuristic and non-rigorous derivation.

Suppose we are given a target cut C and the graph G with r vertices and which
has θ-cut-independence with respect to C. In order to estimate E[Si], we need to
estimate E[c/Mi] for the graph Gi obtained during the evolution of the Contraction
Process for C.

Suppose that all of the cuts of G have size d ≥ c. In this case, in any individ-
ual step of the Contraction Process, a cut C ′ survives with probability e−(1−θ)d/Mi .
Multiplying the probabilities for each iteration, we expect that each cut survives with
probability about e−(1−θ)d/cSi , and so we should have

E[Z̄Gi] ≈ Z̄e−d/cE[Si]

We hope that Jensen-type inequality holds, so that

E[c/Mi] ≈ −
2(c log p+ E[Si](1− θ))

i log
(
i/Z̄

)
So we have a recurrence relation in Sr, namely

E[Si−1] = E[Si]−
2E[Si](1− θ) + 2c log p

i log(i/Z̄)

We relax this to a differential equation

dE[Si]

di
=

2E[Si](1− θ) + 2c log p

i log(i/Z̄)

Sr = 0

which can be solved in closed form to obtain

E[Si] =
−c log p

(
1−

(
log(Z̄/i)
log(Z̄/r)

)2−2θ)
1− θ

This derivation is completely non-rigorous, as it makes a number of unwarranted
independence and monotonicity assumptions. However, as we will see, all of these
assumptions turn out to be the worst-case behavior for Sr. Hence the above bound
is essentially correct.

In order to carry out the induction proof, we will need to consider the expected
number of failed cuts with the original edge-failure probability p as well as other
probabilities p′ > p. To simplify the notation, we will slightly reparametrize Z̄. We
define the graph parameter

AGγ =
∑

cuts C′ of G

eγ|C
′|/c

Note that Ac log p = Z̄, and note that AGγ > 0 for all γ.
Theorem 6.2. Define the function

f(i, r, a, γ) =

−γ
(

1−
(

log(a/i)
log(a/r)

)2−2θ
)

1−θ if a ≤ 1

2 log(r/i) if a > 1

22

Fix a graph G with n vertices and minimum cut c. Let C be a fixed target cut
of G, and suppose G has θ-cut-independence with respect to C, for some parameter
θ ∈ (0, 1). Let L ⊆ C be an arbitrary subset of the edges of C. Let H be a subgraph
obtained from G by edge contraction. Let γ be a real number in the range 0 ≤ γ ≤
−2 log r and let a > 0.

Then for i sufficiently large, and i ≤ r we have

E[SH,Li] ≤ f(i, r, AHγ , γ)

Proof. We prove this by induction on r. We defer the proof of some technical
properties, for sake of clarity.

When r = i, we have SH,Li = f(i, r, a, γ) = 0.
Now suppose r ≥ i+ 1, and H has m edges with AHγ = a. We may assume that

a ≤ 1, as otherwise this follows immediately from (4.1).

So E[SH,Li] = c/m + EH′E[SH
′,L′

i]. We have broken the expectation into two
components: first, we select an edge e of H − E to contract, leading to the graph
H ′ = H/e and to L′ = L/e; second, we continue the Contraction Process on the
subgraph H ′. Note that the subgraph H ′ must also have θ-cut-independence with
respect to C.

Define γ′ = γ+ (1− θ)c/m. The graph H ′ has r− 1 vertices. By Proposition 4.5,
each cut C ′ of H survives to H ′ with probability at most e−|C

′|(1−θ)/m. Hence

EH′ [A
H′

γ′] ≤ a

Note that m ≥ rc/2, so we have γ′ ≤ −2 log r + 2/r ≤ −2 log(r − 1). So the
induction hypothesis applies to the graph H ′, and we obtain

E[SH
′,L′

i] ≤ f(i, r − 1, AH
′

γ′ , γ
′)

By Proposition 6.3, Jensen’s inequality applies, and hence we have

E[SH,Li] ≤ c/m+ f(i, r − 1, a, γ + (1− θ)c/m)

We will now bound the number of edges m of the graph H. Suppose the vertices
of H have degrees d1, . . . , dr. As the neighborhood of each vertex defines a distinct
cut, we must have

r∑
j=1

exp(γdj/c) ≤ AHγ = a

and the total number of edges is m =
∑
dj/2.

By concavity, the smallest value of m is obtained when all the degrees are equal

to d = c log(a/r)
γ . This gives us

m ≥ rc log(a/r)

2γ

As shown in Proposition 6.4, the quantity c/m+ f(i, r − 1, a, γ + (1− θ)c/m) is
decreasing in m. Hence we must have

E[SH,Li] ≤ 2γ

r log(a/r)
+ f(i, r − 1, a, γ + (1− θ) 2γ

r log(a/r)
)

≤ f(i, r, a, γ) by Proposition 6.5

23

This completes the induction.
We now show that f has the required concavity and monotonicity properties:
Proposition 6.3. For i sufficiently large and γ < 0, the function f(i, r, a, γ) is

concave-down in a. For a ∈ (0, 1], it is non-decreasing in a.
Proof. Let us first examine the behavior of f in the interval a ∈ [0, 1). The

derivative of f with respect to a is

fa =

2
(
log
(
a
r

)
− log

(
a
i

))
γ

(
log(ai)
log(ar)

)1−2θ

a log2
(
a
r

)
By the assumption a ≤ 1 and i ≤ r, the term log(a/i)/ log(a/r) is positive and the
term log(a/r) − log(a/i) is negative. Hence fa ≥ 0 and so the function f is non-
decreasing for a ≤ 1.

The second derivative faa is given by

2
(
log
(
a
i

)
− log

(
a
r

))
γ

(
log(ai)
log(ar)

)−2θ (
log
(
a
i

) (
log
(
a
r

)
− 2θ + 3

)
+ (2θ − 1) log

(
a
r

))
a2 log4

(
a
r

)
To show faa ≤ 0, it suffices to show that

log(a/i)(log(a/r)− 2θ + 3) + 2(θ − 1) log(a/r) ≥ 0

For i ≥ 21, the terms log(a/i), log(a/r) − 2θ + 3, log(a/r) are all negative, and thus
faa ≤ 0.

To finish showing that f is concave-down, we must show that it is decreasing at
its point of discontinuity at a = 1. That is, we need to show that

−γ(1− (log i
log r)2−2θ)

1− θ
≥ 2 log(r/i)

The left-hand side is a decreasing function of γ. As γ ≤ −2 log r, it suffices to
show that

log r(1− (log i
log r)2−2θ)

1− θ
− log(r/i) ≥ 0

The left-hand side is decreasing in i and is equal to zero when i = r. Hence this
inequality holds.

Proposition 6.4. For a ≤ 1 and r ≥ i+ 1, the expression

c/m+ f(i, r − 1, a, γ + (1− θ)c/m)

is non-increasing in m.
Proof. For a ≤ 1, the derivative of this quantity with respect to m is given by

−c log2
(
a
i

)(log(ai)
log(a

r−1)

)−2θ

m2 log2
(

a
r−1

)
24

By our assumption that a ≤ 1 and r ≥ i+ 1, this is clearly ≤ 0.
Proposition 6.5. For a ≤ 1, γ ≤ 0, and r sufficiently large, we have

2γ

r log(a/r)
+ f(i, r − 1, a, γ + (1− θ) 2γ

r log(a/r)
) ≤ f(i, r, a, γ)

Proof. The RHS minus the LHS is given by

−γ log2
(
a
i

)(log(ai)
log(ar)

)−2θ

−
log(ar)(r log(ar)−2θ+2)

(
log(ai)

log(a
r−1)

)−2θ

r log2(a
r−1)

(1− θ) log2

(
a
r

)
Removing terms with obvious signs, it suffices to show that

log(a/r)(r log(a/r)− 2θ + 2)(
log(a/(r − 1))

log(a/r)
)2θ − r log2(a/(r − 1)) ≥ 0 (6.1)

We claim that the LHS of (6.1) is a decreasing function θ for r sufficiently large.
For, differentiating with respect to θ, we wish to show

2 log
(a
r

) log
(

a
r−1

)
log
(
a
r

)
2θlog

 log
(

a
r−1

)
log
(
a
r

)
(r log

(a
r

)
− 2θ + 2

)
− 1

 ≤ 0

⇔ log

 log
(

a
r−1

)
log
(
a
r

)
(r log

(a
r

)
− 2θ + 2

)
− 1 ≥ 0

⇐ log

 log
(

a
r−1

)
log
(
a
r

)
(r log

(a
r

)
+ 2
)
− 1 ≥ 0

which is a simple exercise in calculus.
Furthermore, when θ = 1, then the LHS of (6.1) simplifies to 0 and the inequality

holds.
We next remove the condition that the graph G must have θ-cut-independence.
Theorem 6.6. Suppose pc = n−2−δ and Z̄ = n−2−δ+β, where δ ≥ δ0 > 0.
Define

h̄(β, δ, x) =
(δ + 2)(1− x)(5− 2β + 2δ + x)

(3− β + δ)2

vβ,δ = h̄(β, δ, 0) =
(δ + 2)(5− 2β + 2δ)

(3− β + δ)2

Then

E[S2α] ≤ vβ,δ log n+O(log log n)− Ω(logα)

Also, if we have α ≤ O(1) and x ∈ [0, 1], then Then

E[Si] ≤ h̄(β, δ,
log i

log n
) log n+O(log log n)

25

Proof. We will only prove the bound on E[S2α]; the other bound is essentially the
same.

Note that by Corollary 3.4, we must have 0 ≤ β ≤ 2 + o(1).
First, suppose α ≥

√
n. Then, (4.1) gives

S2α ≤ 2 log(
n

2α
) +O(1) ≤ 1.02 log n− 0.01 logα+O(1).

A simple analysis of vβ,δ shows that it attains a minimum value of 1.11 at β = δ = 0.
Hence S2α ≤ vβ,δ log n+O(1)− Ω(logα) with certainty in this case.

Next, suppose α <
√
n. Given a target cut C, set θ = 1/ log n. Let L ⊆ C be as

given by Lemma 4.4, and set H = G/L Note that |L| ≤ O(α logn
θ) = O(α log2 n).

Suppose that H has r ≤ n vertices. We must have Z̄H ≤ Z̄ < 1 and pc ≤ r−2−δ.
Hence

E[SG,C2α] ≤ E[SG,C
2α+O(α log2 n)

] + 2 log(
2α+O(α log2 n)

2α
)

≤ E[S
G/L,C/L
2α] +O(log log n) (by Lemma 4.3)

≤ f(2α, n, Z̄, c log p) +O(log log n)

≤ f(1, n, Z̄, c log p) +O(log log n)− Ω(logα) (as α ≤
√
n)

≤ vβ,δ log n+O(log log n)− Ω(logα)

Corollary 6.7. Suppose pc = n−2−δ and Z̄ = n−2−δ+β, where δ ≥ δ0 > 0. The
contraction algorithm selects any given α-cut with probability Ω(n−αvβ,δ log−O(α) n).

In particular, the number of such cuts is at most O(nαvβ,δ logO(α) n).
Proof. By Lemma 4.1, the probability of selecting any given α-cut C is at least

P(select C) ≥ exp(−O(α)− αE[S2α]).

By Lemma 6.6 this is at least exp(−O(α)) exp(Ω(α logα))nvβ,δα logO(α) n. Note that

all the terms in α alone are bounded, so this is O(nvβ,δα logO(α) n) as desired.

7. Bounds on α∗. Recall that the approach of [7] is to show that most unreli-
ability is due to small cut failure. We can use our bound on the number of cuts to
estimate this more precisely than Theorem 2.5.

To simplify the notation in the remainder of this paper, we will write v instead
of vβ,δ. Typically, the value of δ, β should be instead understood from context.

Proposition 7.1. Suppose δ ≥ δ0 > 0. Define Uα(p) to be the probability that
some cut of weight ≤ αc fails.

For all α we have

U(p)− Uα(p) = nαvβ,δ−α(2+δ) logO(α) n

Proof. This follows from Lemma 2.2 and Theorem 6.6.
As in Karger [7], we estimate U(p) by examining only the smallest cuts. We define

α∗ to be the minimal value of α such that

U(p)(1− ε) ≤ Uα∗(p) ≤ U(p)

26

The parameter α∗ plays a crucial role in the analysis. We can estimate U(p) to
the desired relative error by estimating Uα∗(p), which we can do by enumerating all
the α∗-cuts. This is a relatively small collection, which we can explicitly collect and
list. In Theorem 2.5, we showed how to bound α∗.

For the rest of the paper, we define

ρ = − log ε/ log n. (7.1)

Although in general we allow ρ to increase arbitrarily, we find that these bounds can
become confusing because of the interplay between the asymptotic growth of n and
ε. One can get most of the intuition behind these results by restricting attention to
the case ρ = O(1).

Using our improved bounds on the Contraction Algorithm, we can tighten The-
orem 2.5, the key theorem of [7]:

Lemma 7.2. Suppose δ ≥ δ0 > 0. Then we have

α∗ ≤ (3− β + δ)2(2− β + δ + ρ)

(2− β + δ)2(2 + δ)
+O((log log n)/ log n).

Proof. As shown in Proposition 7.1, the absolute error introduced by ignoring
cuts of weight ≥ αc is U(p)− Uα(p) = nα(v−2−δ) logO(α) n.

The relative error is then at most

Rel Err = O(nα(v−2−δ) logO(α) n/U(p))

= O(nα(v−2−δ) logO(α) n/Z̄) by Proposition 3.3

= nα(v−2−δ)n2+δ−β logO(α) n

For

α =
− log ε+ (2− β + δ) log n+O(log log n)

(2 + δ − v) log n
,

the relative error is at most ε. Hence,

α∗ ≤ (3− β + δ)2(2− β + δ + ρ)

(2− β + δ)2(2 + δ)
+O((log log n)/ log n).

It is tempting to simply modify Karger’s original algorithm, using this improved
estimate for α∗ in place of Karger’s estimate. We cannot do this directly, as this
estimate depends on the parameter β which we cannot simply compute. It is possible
to eliminate this parameter, obtaining a usable and tighter bound than Karger’s:

Corollary 7.3. Suppose U(p) < n−K , for some constant K > 2. Then we have

α∗ ≤ (K + 1)2(K + ρ)

K3
+ o(1)

Proof. Note that we have U(p) ≥ pc = n−2−δ, and U(p) = Θ(Z̄) = Θ(nβ−2−δ).
Hence δ + 2 ≥ K and δ + 2− β ≥ K + t, where |t| = O(1/ log n).

Suppose we have δ = K − 2 + β exactly. Then

α∗ ≤ (K + 1)2(K + ρ)

K2(β +K)
+ o(1) ≤ (K + 1)2(K + ρ)

K3
+ o(1)

27

The bound on α∗ is a differentiable function of β. When we perturb this by
adding t to β, this adds a further error of o(1).

Using that estimate, one could set K = 2.73 and, using Karger’s analysis other-
wise, immediately obtain a total running time of n3.73ε−O(1). This is good, but we
can do better.

To explain our approach intuitively, consider the following straw-man algorithm.
Suppose we run nα

∗vβ,δ+o(1)ε−o(1) independent executions of the Contraction Algo-
rithm, selecting some α∗max-cut each time, for

α∗max =
(K + 1)2(K + ρ)

K3
+ o(1) = O(1 + ρ)

This will give us a large collection A of cuts, of various sizes. Although we will not
know an exact bound for α∗, which would depend on knowing β, it is not hard to see
that, with high probability, A will contain all the α∗-cuts with high probability. We
can use the collection A to estimate U(p).

Using this approach, it will suffice to provide an upper bound on the product
α∗vβ,δ irrespective of β, without bounding either term individually. This will let us
determine how many samples of the Contraction Algorithm are needed.

Proposition 7.4. Suppose U(p) < n−K for some constant K > 2. Then

α∗vβ,δ ≤ 2 +
1

K
+

2K + 1

K2
ρ+O(log log n/ log n)

Proof. Note that we have U(p) ≥ pc = n−2−δ, and U(p) = Θ(Z̄) = Θ(nβ−2−δ).
Hence δ + 2 ≥ K and δ + 2− β ≥ K + t, where |t| = O(1/ log n).

Suppose we have δ = K − 2 + β exactly. Then

α∗v =
K + ρ+O(log log n/ log n)

K + β − vβ,K−2+β
vβ,K−2+β

= (2 + 1/K) +
2K + 1

K2
ρ+O(log log n/ log n)

The bound on α∗v is a differentiable function of β. When we perturb this by
adding t to β, this adds a further error of O(1/ log n).

If we use this strawman algorithm directly, then we must run completely separate
instances of the Contraction Algorithm for each sample. Each execution of the Con-
traction Algorithm takes time O(n2) (to process the graph), and so the total work
would be ≈ nα∗v+2.

In [10], an efficient algorithm called the Recursive Contraction Algorithm was in-
troduced for running multiple samples of the Contraction Algorithm simultaneously.
This amortizes the work of processing the graph across the multiple iterations, ef-
fectively reducing the time for a single execution of the Contraction Algorithm from
O(n2) to O(1).

In the next section, we will discuss how to combine the Recursive Contraction
Algorithm with our improved analysis of the Contraction Algorithm. Unlike in [10],
we will not be able to show that a single application of the Recursive Contraction
Algorithm is as powerful as O(n2) independent applications of the Contraction Al-
gorithm. We will still show it is powerful enough to substantially reduce the cost of
multiple applications of the Contraction Algorithm. The next section will examine
the Recursive Contraction Algorithm in detail.

28

8. The Recursive Contraction Algorithm. The basic method of finding the
α∗-cuts is to run the Contraction Algorithm for many iterations and collect all the
resulting minimal cuts that are found. Each iteration requires O(n2) work (to process
the entire graph). As described in [10], this data-processing can be amortized across
the multiple iterations. The resulting algorithm, called the Recursive Contraction
Algorithm (RCA), can enumerate all the minimal α-cuts in time O(n2α log2 n).

Note that as each cut may be of size Ω(n), merely outputting all the cuts could
take time Ω(n2α+1). The reason that the Recursive Contraction Algorithm is able to
run faster than this is that we only need to perform a few simple operations for each
cut. In practice, the RCA is quite flexible, and will easily accommodate the relatively
simple operations we will need to perform such as hashing, counting, and sampling in
time no(1)ε−o(1). See Appendix A for more details.

We will run the RCA for a large, fixed number of iterations. This will produce
a large collection of cuts, of various sizes. We will then show that the resulting
collection, regardless of β, will contain all the α∗-cuts with high probability. It may
also contain some cuts of size larger than α∗c. Note that we will still not necessarily
know the exact value of α∗ or β.

We define the RCA with parameter αmax as follows.

1. If the graph G has fewer than 2αmax vertices, output a random cut of

G.
2. Otherwise, run the following step twice:

3. Contract randomly edges of G until the resulting graph G′ has
dn/
√

2e edges. Run the Recursive Contraction Algorithm with

parameters αmax on G′.

As shown in [10], the RCA executes in time O(n2 log n). The key is show that it
succeeds with good probability.

We can view the Recursive Contraction Algorithm as a binary tree, of height
2 log2

n
2α . Each node of height i corresponds to a graph G′ with ni vertices. We say a

node if the branching tree succeeds iff the corresponding graph G′ contains C. Note
that if a leaf node succeeds, then the Recursive Contraction Algorithm will find the
cut C with probability exp(−αmax). So it suffices to calculate the probability that
some leaf node succeeds. In the ideal case (if the leaves corresponded to independent
executions of the Contraction Algorithm), then then probability of a successful leaf
node is nearly equal to the expected number of leaf nodes. In the analysis of [10],
which used weaker bounds for the Contraction Algorithm, this was indeed the case.

The following Lemma 8.1 is technically difficult in this paper, and we want to
explain the intuition behind it first. We have some lower bounds on the probability of
retaining the cut C through several rounds of the Contraction Algorithm. The best
of these bounds depend on the behavior of certain random variables, most notably
the size of Z̄, through this process. As the subgraphs produced during the RCA
are related to each other, these random variables can be dependent in potentially
complicated ways. However, we also have unconditional bounds on the variable Si
(i.e. not a bound on its expectation, but a bound on its maximum possible value).
This means that there is always a certain low-level probability that the RCA succeeds
from any intermediate state.

In addition, there is a global probability that a given branch of the RCA succeeds,
due to the expected change of the random variables. These could come in large
clusters, which leads to a lower success probability than if each branch succeeded
independently. The presence of this extra “state” is what makes our analysis much

29

more difficult than a standard percolation argument such as the original paper of [10]
introducing the RCA.

However, this clustering behavior is not necessarily harmful. Suppose we know
that half-way through the RCA (in the language of the proof of Lemma 8.1, up to
the point at which subgraphs contain nx nodes), then the successful stories came
in clusters of size G. Suppose we also knew that any successful node goes onto a
successful leaf node with probability q. Suppose further that Gq ≤ 1/2. In this case,
if the expected number of nodes at this half level is T , then the the probability of a
succesful leaf node is simply Tq. In other words, we can still use our information about
the expected number of surviving nodes to determine the probability of a successful
leaf node.

There are two types of clustering which can arise during the RCA. The first
type comes from situations in which the random variable Snx is spread away from its
mean, or its mean is smaller than our upper bounds on it would imply. This type of
clustering is more than paid for by an increased mean number of successes, so it is
actually beneficial for us.

The second type of clustering is harder to deal with. It is possible that the random
variables Snx is equal to its mean, but that Si is very large for i > nx. In this case,
there would be a “choke-point”, at which there is a very small probability that the
branching process reaches a level with ny vertices, but when it does so there is an
increased number of survivors from that point onward. This is the hardest type of
clustering to control.

There are several other complications to overcome in Lemma 8.1. We ne need to
show that the random variables S behave deterministically, in the sense that the
worst case is when they are equal to their means E[S]. The proof is based on
inclusion-exclusion; paradoxically, inclusion-exclusion estimates can get worse when
the expected number of successes becomes too large. So must also ensure that the
inclusion-exclusion estimates stay “in range.”

We make several assumptions on the size of α in this proof; when α is out of these
bounds, then much simpler algorithms can be used.

Lemma 8.1. Suppose 1.49 < α ≤ αmax = O(1), and we have a target α-cut C.
Suppose x, y are real numbers in with 0 ≤ x ≤ y ≤ 1 and satisfying

h(β, δ, y) = h̄(β, δ, x)

x = y/α+ log(2φ)/ log n

where φ is a constant (which will be specified in the proof).
Then the RCA finds the cut C with probability at least

P(RCA succeeds) ≥ n2−αh(β,δ,y)−2y−o(1)

Proof. We incur a probability hit of 21−αmax = O(1) that we select the cut C
once we have a subgraph with 2α vertices; henceforth we will just keep track of the
probability of retaining C up to this point.

When n is large, then the graph changes little between the branching steps of the
RCA (i.e. between ni and ni+1). To keep the discussion simple, we will ignore any
quantization issues due to the fact that i is restricted to be integral, and due to the
fact that ni+1 is rounded from ni

√
2. Henceforth we will simply say that ni = 2−i/2

exactly and that i is not restricted to be integral. In this vein, for instance, there are
n2−2l nodes whose subgraph contains nl vertices, for l ∈ [0, 1].

30

We will divide the probability that the RCA succeeds into two parts. First, we
count the number of surviving node with nx vertices, for some parameter x ∈ [0, 1] to
be specified. (That is, the RCA survives to level i = 2(1−x) log2 n). We refer to each
such node as a middle node. Next, each middle node survives with probability ≥ Qx,
independently of each other. Using arguments from [10], one can see easily that for
α ≥ 1 + Ω(1) we have

Qx = Ω(nx(2−2α))

To count the number of surviving middle nodes, we use the Inclusion-Exclusion
principle: this probability as at least µ − ∆, where µ is the expected number of
surviving middle nodes and ∆ is the expected number of pairs of them. One common
problem with inclusion-exclusion is that it can sometimes can give worse estimates
(or even useless estimates) when the number of survivors becomes too large. For this
reason we can attenuate the number of survivors, by independently applying some
additional probabilistic check to each pontential survivor. There are two ways we do
this. First, we will assume that each middle node goes onto a successful leaf node
with probability exactly Qx (not just lower bounded by Qx).

The second attenuation factor is more subtle. By Lemma 4.1, the probability
that a given middle node survives is e−O(α)E[e−αSx]. When S becomes to small, then
this probability becomes too large, causing Inclusion-Exclusion to go “out of range.”
Thus, if Snx ≤ s0, where s0 will be specified later, we will choose to either discard the
middle node, or to retain it with probability e−α(Snx−s0). In this way, the probability
that a given middle node survives is

P(Middle node survives) ≥ Ω(E[e−αS̃])

where we define the random variable S̃ = max(S, s0). Recall where we have α ≤ O(1),
so the constant term in this notation may depend on α. (We will not remark on this
henceforth in the proof.)

We are now ready to use inclusion-exclusion. The mean is simply

µ ≥ n2−2xQx · Ω(E[exp(−αS̃)])

Let us consider a pair of leaf nodes with common ancestor at level i = 2(1 −
z) log2 n. These leaf nodes correspond to two executions of the Contraction Algorithm,
with two sequences of graphs Gn, . . . , G1 and G′n, . . . , G

′
1. For j > ni, we have Gj =

G′j and the event that the cut survives is the same for both graphs; for j′ ≤ ni
it is independent given the number of edges in the two graphs. If the pair both
survive, then they correspond to valid executions through the contraction process.
(The number of edges in graphs G′j and Gj are themselves very much dependent.)

For z > y we estimate the probability that both middle nodes survive as

P(both leaves survive) = P(retain both nodes)

E
[n∏
j=ni+1

(1− αc

Mj
)

ni∏
j=nx

(1− αc

Mj
)

ni∏
j=nx

(1− αc

M ′j
)
]

≤ E exp(−α(S̃ + S̃′ − S′ni))]Q
2
x

≤ exp(αh(β, δ, y) log n)E[exp(−α(S̃ + S̃′))]Q2
x

by Proposition 6.1

31

≤ nh(β,δ,z)E[exp(−2αS̃)]Q2
x by Cauchy-Schwarz

For z ≤ y we use a simpler estimate, in which we ignore the second element of
the pair altogether:

P(both leaves survive) = P(retain both nodes)

E
[n∏
j=ni+1

(1− αc

Mj
)

ni∏
j=nx

(1− αc

Mj
)

ni∏
j=nx

(1− αc

M ′j
)
]

≤ P(retain both nodes)E
[n∏
j=ni+1

(1− αc

Mj
)

ni∏
j=nx

(1− αc

Mj
)
]

≤ E[exp(−αS̃)]Q2
x

There are n4−4x/2 pairs of middle nodes, of which n4−4x

4n2−2z share a common ancestor
with nz vertices. Thus:

∆ ≤ Q2
x(

2(1−y) log2 n∑
i=0

n4−4x

4n2−2z
nh(β,δ,z)E[exp(−2αS̃)]

+

2(1−x) log2 n∑
i=2(1−y) log2 n

n4−4x

4n2−2z
E[exp(−αS̃)])

≤ Q2
x(

∫ 1

z=y

n4−4x

4n2−2z
nαh(β,δ,z)E[exp(−2αS̃)] · (log2 n)−1dz

+

∫ y

z=x

n4−4x

4n2−2z
E[exp(−αS̃)] · (log2 n)−1)dz

Simple analysis shows that for n sufficiently large, and α > 1.49, we have y < 0.7.
This further implies that the derivative of the term αh(β, δ, z) + 2z with respect to

z is −Ω(1), which implies the integrand n4−4x

4n2−2z n
αh(β,δ,z) is decreasing faster than

exponentially in z. Hence this integral can be estimated:

∆ ≤ Q2
x(nαh(β,δ,y)n4−4x−2+2yE[exp(−2αS̃)] + n4−4x+2−2yE[exp(−αS̃)])

For the remainder of this proof, we write h = h(β, δ, y) = h̄(β, δ, x). By the
Inclusion-Exclusion principle, the probability the RCA succeeds is at least

Ω(E[exp(−αS̃)Qxn
2−2x − φQ2

xn
2−4x+2y(nαh exp(−2αS̃) + exp(−αS̃))] (8.1)

where φ > 0 is some constant.
At this point, we would hope that S is deterministic, rather than a random

variable. By Jensen’s inequality, this would be the worst case if (8.1) if were increasing
concave-down in S throughout its full domain. Although this is not the completely
the case, it is close enough that a modified form Jensen’s inequality will apply.

Define M = n2−2xQx and define the function

f(s) = M exp(−αs)−M2φn2y−2(nαh exp(−2αs) + exp(−αs))

So we have that P(RCA succeeds) ≥ Ω(E[f(S̃)]).

32

Now note that by our assumption on x we have Mn2yφ = n2/2. Now set

s0 = α−1 log 2 + h log n

s1 = α−1 log 4 + h log n

For s ≥ s0 the function f is positive and decreasing. It is concave-down for
s0 ≤ s ≤ s1, and concave-up for s ≥ s1. Because of this concavity, for a given value
of E[S], the expectation E[f(S̃)] is minimized with the following distribution: there
is an atom at S = 0 and an atom at S = s for some s ≥ max(s1,E[S]). This yields

P(RCA succeeds) ≥ (1− E[S]

s
)f(s0) +

E[S]

s
f(s) (8.2)

The derivative of this expression with respect to s is the product of three terms:
• e−2αsE[S]n2−αh−2y2−4φ−1s−2; and
• eαs − 2nαh; and
• eαs − 2nαh(1 + 2αs)

The first two terms are positive for all s ≥ s1. The third term has a unique root,
at s2 = h log n+ Θ(log log n).

Now, suppose first that E[S] ≥ s2. Then (8.2) is minimized at s = E[S] and so

P(RCA succeeds) ≥ f(E[S])

≥ f(h log n+O(log log n))

as f(s) is decreasing for s ≥ f(E[S])

and by Proposition 6.6 we have E[S] ≤ h log n+O(log log n)

≥ n2−αh−2y−o(1)

Similarly, if E[S] ≤ s2 we have

P(RCA succeeds) ≥ (1− E[S]

s2
)f(s0) +

E[S]

s2
f(s2)

and now note that both s0, s2 = h log n + Θ(log log n), and verify that f(h log n +
Θ(log log n)) = n2−αh−2y−o(1).

We now put all of our analysis of the RCA together, also removing some of the
side conditions on the magnitude of α:

Theorem 8.2. Suppose that U(p) ≤ n−K for some constant K ≥ 2. Then there
is an algorithm to accumulate all α∗-cuts with high probability in time n3+o(1)ε−1.99.

(Note: better exponents than 3, 1.99 can be shown for n, ε respectively; but this
requires more careful calculations.)

Proof. First, suppose that ρ is larger than some sufficiently large constant.
In this case, we do not use the RCA; rather, we use the naive strategy of in-
dependent repetitions of the Contraction Algorithm. By Proposition 7.4, this re-
quires nα

∗v+o(1) ≤ n2+1/K+o(1)ε−(2K+1)/K2

trials, with a total running time of
nα
∗v+o(1) ≤ n4+1/K+o(1)ε−(2K+1)/K2

. For K ≥ 2, this is a time of ≤ n4.5ε−1.25;
for ρ sufficiently large this is indeed less than n3ε−1.99.

Next, suppose that α∗ ≤ 3/2. In this case, we use Karger’s analysis of the RCA;
this requires time n2α+o(1) = n3+o(1).

33

Next, suppose β ≥ 1. In this case, we use Karger’s analysis of the RCA; the total
time required is n2α∗+o(1). As U(p) ≤ n−K we have δ ≥ δ0 for some δ0 > 0, and
δ ≥ β −O(1/ log n). Subject to these conditions, it is easy to see that

2α∗ ≤ 3 + 3/2ρ+ o(1)

Finally, we come to the heart of the proof: the case when ρ = O(1), α∗ ≥ 3/2, β ≤
1. As U(p) ≤ n−K we have δ ≥ δ0 for some δ0 > 0. We can use the RCA and the
analysis of Lemma 8.1, as follows.

The success probability of the RCA, according to Lemma 8.1, will be
n2−α∗h(β,δ,y)−2y−o(1). As each application of the RCA requires time n2+o(1), it will
suffice to show that there are 0 ≤ x ≤ y ≤ 1 such that

− 2 + α∗h(β, δ, y) + 2y ≤ 1 + 1.99ρ+ o(1) (8.3)

for all δ ≥ 0, δ ≥ β−O(1/ log n), x = y/α+φ log−1 n, h(β, δ, y) = h̄(β, δ, x), α = α∗ ≤
(3−β+δ)2(2−β+δ+ρ)

(2−β+δ)2(2+δ) ≤ α∗ + o(1), ρ ≥ −1/ log n.

The proof of this fact is not complicated conceptually — we first show that the
derivative of (8.3) with respect to ρ is at most 3/2, and we then show that when ρ = 0
that the LHS of (8.3) is maximized at β = δ = 0, and that the equation is satisfied
there. However, there is some quite involved and tricky numerical analysis necessary
to show these facts. For sake of clarity, these are deferred to Appendix B.

8.1. Further applications of the Recursive Contraction Algorithm. The
Recursive Contraction Algorithm provides a powerful approach to enumerate all the
approximately-minimum cuts in a given graph G. Our reliability-estimation algorithm
uses it in a very specific way based on bounds for the number of cuts of G. However,
we can slightly improve the analysis of the Recursive Contraction Algorithm in other
situations. Given a particular value of α and a given graph G (with no information
about the cut structure or reliability of G), how to enumerate the α-cuts of G. The
Recursive Contraction Algorithm was first introduced in [10] to solve this problem.
However, the original description of the RCA was not parameterized in the best way,
leading to slightly sub-optimal running time. We can improve this analysis as follows.

Theorem 8.3. There is an algorithm to enumerate, with high probability, all
α-cuts of G in time O(n2α log n).

In contrast, the algorithm of [10] requires time O(n2α log2 n).

Proof. First, suppose α < 3/2. Then [9] describes a data structure to represent
all the α-cuts in time O(n2) and to enumerate all the α-cuts in time O(n2 log n).

Finally, suppose 3/2 ≤ α ≤
√
n. In this case, let us set 2 < t < 3 to be some

arbitrary constant and we execute the following variant of the Recursive Contraction
Algorithm:
1. If the graph G has fewer than 2α vertices, output a random cut of

G.
2. Otherwise, run the following step twice:

3. Contract randomly edges of G until the resulting graph G′ has
dn2−1/te edges. Run this modified Recursive Contraction

Algorithm on G′.
A simple application of the Master Theorem for recurrences along with arguments

from [10] shows that this algorithm executes in time O(nt). Also using arguments
from [10], we can show that for any α-cut C, and any execution of this algorithm, the
cut is selected with probability nt−2α exp(Ω(α logα)).

34

Thus we can view the process of finding all α-cuts as a Coupon Collector Problem.
As there are at most n2α cuts, if we run (2α log n)×n2α−t exp(−α logα) = n2α−t log n
independent executions of the RCA, then we find all cuts with high probability. This
gives a total run time of O(n2α log n).

9. Estimating failure probability from the α∗-cuts. In the previous section,
we showed how one can find a set A of cuts which contains the α∗-cuts with high
probability, where α∗ is bounded by α∗ ≤ α∗max = O(1 + ρ). We can then use this
sample to estimate U(p) itself.

Define UA(p) to be the probability that some cut from A fails when edges are
removed independently with probability p. If A contains all the α∗-cuts, then we
have (1− ε)U(p) ≤ UA(p) ≤ U(p). So it will suffice to estimate UA(p).

Karger’s analysis uses an elegant algorithm developed by Karp, Luby, Madras
[12] for this problem. However, as a starting point for our algorithm, it is useful to
consider the simpler generic statistic to estimate UA(p);

1. Select a cut C0 from the collection A. The probability of

selecting cut C0 = C is pC∑
C′∈A p

C′ .

2. Let L be a random subset of the edges in G − C0, in which each

such edge is chosen independently with probability p.
3. Count J, the number of cuts in A which contain L ∪ C0.

4. Estimate Û(p) =
∑
C′∈A p

|C′|

J

The main cost of this algorithm is the step in which we must count the cuts in
A containing L ∪ C0. This requires, at the minimum, reading all |A| cuts, for a total
work factor of |A| per iteration. This algorithm treats the cuts as if they were clauses
in a DNF formula. As such, it ignores the graph-theoretic structure of these cuts.
By keeping track of the graph structure we can count J much more quickly than by
testing each cut individually.

The basic intuition is that, after we remove C0 ∪ L from the original graph G,
we define the graph G′ by contracting all the connnected components of G−C0 −L.
Then we can determine J by counting the cuts of the small graph G′. The number
of such cuts, and the work needed to find them, will be small compared to n.

Consider the following algorithm, which we refer to as the estimation algorithm
for A:

0. Precompute data structures corresponding to the set A.
1. Select a cut C0 from A with probability ∝ p|C|.
2. Let L be a random subset of the edges in G − C0, in which each

such edge is chosen independently with probability p. Let H =
G− C0 − L.

3. Enumerate the connected component structure of H. Let G′ be
the graph obtained from G by contracting all components of H.

4. Enumerate all cuts of G′.
5. For each such cut C ′ of G′, test if C ′ ∈ A. Let J denote the

number of such cuts.

6. Estimate Û(p) =
∑
C′∈A p

|C′|

J

We will first bound the running time of the estimation algorithm.

Proposition 9.1. Suppose δ ≥ δ0 > 0. Then the expected running time of the
estimation algorithm for A is O(n2).

35

Proof. Step (3) requires decomposing the graph G into its connected components.
This can be done via depth-first search in time O(n2).

Let us now examine step (4), which is the only step that can potentially take
ω(n2) time. We enumerate the cuts C ′ of G′ and test them against the set A. Testing
whether a given cut C ′ ∈ A, using a binary search, will cost O(n2) (see Appendix A).
Let R denote the number of connected components of the graph G − C0 − L. Then
step (4) can take time 2Rn2, as the graph G′ has R vertices and hence at most 2R

cuts.
We will show a bound on E[2R]. We first consider conditioning on selecting a

fixed α-cut C. Note that, conditioning on a fixed selection of C0 = C is equivalent to
conditioning on the event that C has failed. Hence we have

E[2R | C0 = C] ≤ 1 +
∑
r≥1

P(H has ≥ r connected components | C fails)(2r − 2r−1)

≤ 1 +
∑
r≥1

2r−1 min(1,P(H has ≥ r connected components)(pc)−α)

≤ 1 +
∑
r≥1

2r−1 min(1, (e/r)rn−rδ/2n(2+δ)α) by Lemma 3.1

The cut C is selected with probability pC∑
C′∈A p

C′ . As A contains the minimum cut,

the denominator is at least n−2−δ. Hence the total contribution of all cuts of weight
≥ x is at most

E[2R ×
[
|C| ≥ xc

]
] ≤

∞∑
α=x

n2α pαc

n−2−δ (1 +
∑
r≥1

2r−1 min(1, (e/r)rn−rδ/2n(2+δ)α))

≤
∞∑
α=x

n2αpαcn2+δO(
∑
r≥1

n−rδ/2n(2+δ)α)

≤
∞∑
α=x

n2αpαcn2+δO(αn2+δ/2)

For some x = O(1) the summand is decreasing exponentially, and thus by
Lemma 2.2 contributes a total of O(1).

Next, suppose C is an α-cut for some α = O(1), then

E[2R | C0 = C] ≤ 1 +
∑
r≥1

2r−1 min(1, (e/r)rn−rδ/2n(2+δ)α)

≤ 1 +
∑

r≤2α 2+δ
δ

2r−1 +
∑

r≥2α 2+δ
δ

n−rδ/2n(2+δ)α

≤ 1 +O(1) +
2

δ log n
= O(1).

In either case, the contribution to the expectation E[2R] is at most O(1).
The final piece of the puzzle is to prove that the estimation algorithm has good

accuracy for estimating UA(p). The key difference between the estimation algorithm
and the algorithm of [12] is that, in the latter, the number of samples may become as
large as Ω(|A|) where our estimation algorithm uses a single sample. The algorithm

36

of [12] automatically adjusts so that either few samples are needed, or samples can be
generated quickly; thus the total amount of work is guaranteed to remain low. But
we will never need to use many samples:

Proposition 9.2. Suppose δ ≥ δ0 > 0. Then the relative variance of the
estimation algorithm is O(1).

Proof. We claim that there is some t = O(1) and some constant φ < 1 such that
we have P(J ≥ t) ≤ φ. This will suffice to show that E[J−1] = Ω(1).

We first show that there is a probability Ω(1) of selecting an α-cut, for some
α = O(1). For, the total probability of selecting a cut of weight greater than α is

P(|C0| ≥ αc) =

∑
C∈A,|C|≥αc p

c∑
C∈A p

c

≤
∑
C∈A,|C|≥αc p

|C|

n−2−δ

= o(1) for α sufficiently large constant, by Lemma 2.2

Conditioned on C0 = C, the random variable J is distributed as the number of failed
cuts in G, conditioned on C failing. Suppose that C is an α-cut for α = O(1). Then
we have

P(J ≥ t | C0 = C) ≤ P [Z ≥ t | C0 = C]

≤ nα(2+δ)n−δ log2 t by Lemma 3.2

≤ o(1) for t sufficiently large constant

Hence E[J−1] ≥ φ/t ≥ Ω(1). As J ≥ 1, this immediately shows that
V[J−1]/E[J−1]2 = O(1).

Putting all this together, we have the following:
Proposition 9.3. Suppose δ ≥ δ0 > 0, and let A be a set consisting of cuts

including a minimum-weight cut. Then there is an algorithm for estimating UA(p) to
within relative error ε with high probability, and running in time O(n2ε−2).

Proof. A single iteration of the algorithm has relative error O(1) and costs O(n2)
time. We repeat λε−2 indepedent trials of this algorithm for a suifficiently-large
absolute constant λ and extract the sample mean. This reduces the relative variance
of the resulting unbiased statistic to O(1). By Chebyshev’s inequality this implies
that, with high probability, it estimates UA(p) to relative error ε.

10. Putting it all together. We may now put all the pieces of the algorithm
together. Our basic plan is to use the cut-enumeration if U(p) < n−K , and use
Monte-Carlo sampling when U(p) ≥ n−K , where K is some chosen parameter close
to 2.

How do we determine which of these two methods to apply? At first, it would
appear that this decision requires knowing U(p), which is what we are trying to
determine in the first place. A simple way to make this decision is to run a preliminary
Monte-Carlo sampling for φn−K trials, where φ > 1 is constant. If during any of these
samples we observe the graph become disconnected, we will use Monte-Carlo sampling
to estimate U(p); otherwise we use cut-enumeration.

This achieves at least a gross discrimination between the two regimes:
Proposition 10.1. Suppose U(p) ≥ n−K . Then the probability of observing the

graph become disconnected, is bounded from below by a constant which approaches 1
for φ sufficiently large.

37

Suppose U(p) ≤ φ′n−K , for φ′ a constant. Then the probability of observing the
graph become disconnected, is bounded from above by a constant which approaches 0
for φ′ sufficiently small.

Proof. As n → ∞, the number of times the graph becomes disconnected ap-
proaches a Poisson random variable. In the first case, when U(p) > n−K , the ex-
pected number of successes is at least φ, and so the probability of at least one success
approaches 1− e−φ. The proof for the second case is similar.

Now, when U(p) ≥ n−K , we will with high constant probability choose Monte-
Carlo sampling. This is good because the cut-enumeration algorithm may not be
well-behaved when U(p) ≥ n−K ; most of our theorems completely break down in
the regime U(p) ≥ n−2. When U(p) ≤ φ′n−K , we will use cut-enumeration with
high constant probability. We will show that is the appropriate algorithm in that
case. When φ′n−K < U(p) < n−K , we may use either Monte Carlo sampling or cut-
enumeration. In this regime, either of these two algorithms gives good performance.
The Monte-Carlo sampling will have relative variance O(n−K). We have already
shown that when U(p) < n−K that cut-enumeration behaves correctly.

We now obtain our main result:

Proposition 10.2. Let γ > 0 be any constant. Then we can estimate U(p) in
time O(n3+γε−2).

Proof. Let K = 2 + γ/2.

Suppose that U(p) < n−K and we elect to use the cut-enumeration procedure. As
shown in Theorem 8.2 the work to find a collection of cuts A which contains all the
α∗-cuts is O(n3+o(1)ε−1.99). Next, using the estimation algorithm for A, one can use
this collection A to estimate UA(p) in time O(n2ε−2). By definition of α∗, we have
UA(p) within relative error O(ε) of U(p). Hence this gives us an accurate estimate of
U(p) as desired.

Suppose instead that U(p) ≥ φ′n−K , where φ′ is a constant chosen in Propo-
sition 10.1, and welect to use Monte-Carlo sampling. As shown in [7] there is an

algorithm based on Monte-Carlo sampling in time O(nK+1ε−2 logO(1) n).

The total work is O(n3+γε−2) either way. By Proposition 10.1, with arbitrarily
high constant probability, one of these two cases holds. This implies that we find a
good estimate with probability > 3/4, which is the goal of our FPRAS.

Note that our estimates have been developed under the assumption that δ is
uniformly bounded away from 0. This means that we can attain a running time
n3+γ for any constant γ > 0. This does not necessarily mean that a single algorithm
can attain a running time of n3+o(1), because the hidden constant may blow up as
γ → 0, possibly faster than any computable function. Such “speed-up” phenomena
are possible, but pathological. They do not occur in our case, and we get:

Theorem 10.3. There is an algorithm to estimate U(p) in time n3+o(1)ε−2.

11. Concluding Remarks. Two natural open questions are to see if a run-
time bound such as O(n2/ε2) is possible, and to identify other possible applications
of differential-equation approximations such as ours.

It remains an outstanding open question to make progress on the approximability
of R(G, p) = R(p), the probability of G remaining connected : as pointed out by Leslie
Goldberg to us, even very weak approximations here can be turned into PTAS-type
approximations, and a proof of this from [4] is as follows. For example, suppose
for some ε > 0 that there is a polynomial-time algorithm that given as input any

38

connected graph H with nH vertices, produces a value R̂(H, p) satisfying

(1− ε)
√
nHR(H, p) ≤ R̂(H, p) ≤ (1 + ε)

√
nHR(H, p); (11.1)

note that this is a very weak approximation algorithm. However, it can be turned
into essentially an (1 ± ε)–approximation algorithm as follows. Take the connected
input graph G for which we want to well-approximate R(G, p). Choose an arbitrary
vertex v of G, and construct a graph H by taking nG copies of G, but by also
graph-theoretically “identifying” (i.e., fusing together) the copies of vertex v. Then
R(H, p) = R(G, p)(nG) and nH = n2

G − nG + 1 ∼ n2
G; in particular,

√
nH = nG −

1/2 + o(1). Thus, by (11.1),

(1− ε)
√
nHR(G, p)nG ≤ R̂(H, p) ≤ (1 + ε)

√
nHR(G, p)nG , i.e.,

(1− ε)1−o(1)R(G, p) ≤ (R̂(H, p))1/nG ≤ (1 + ε)1−o(1)R(G, p);

thus, (R̂(H, p))1/nG is an excellent approximation to R(G, p). Thus, the approxima-
bility of R(G, p) is either excellent, or very poor; determining the truth here is a very
intriguing open question.

Acknowledgments. We thank the SODA 2014 referees for their helpful comments,
and Leslie Goldberg for a valuable discussion on R(p). The discussion with Leslie
Goldberg that is included in Section 11, as well as part of Aravind Srinivasan’s writ-
ing, transpired while Srinivasan attended the ICERM Workshop on Stochastic Graph
Models in March 2014. We thank the workshop organizers for their kind invitation.

REFERENCES

[1] Bixby, R.: The minimum number of edges and vertices in a graph with edge connectivity n and
m n-bonds. Bulletin of the American Mathematical Society 80, 700-704 (1974).

[2] Chandran, L., Shankar, L.: On the number of minimum cuts in a graph. SIAM Journal of
Discrete Mathematics 18, 177-194 (2004).

[3] Dinitz, E., Karzanov, A., Lomonosov, M. On the structure of a family of minimum weighted
cuts in a graph. Studies in Discrete Optimization, 290-306 (1976).

[4] Goldberg, L. A., Jerrum, M.: Approximating the Partition Function of the Ferromagnetic Potts
Model. Journal of the ACM 59, 25:1–25:31 (2012).

[5] Karger, D.: Random Sampling in Graph Optimization Problems. Ph.D. Thesis, Department of
Computer Science, Stanford University, 1994.

[6] Karger, D.: Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 21-30 (1993).

[7] Karger, D.: A Randomized Fully Polynomial Time Approximation Scheme for the All Terminal
Network Reliability Problem. SIAM Journal on Computing 29-2, 492-514 (1999)

[8] Karger, D.: A Randomized Fully Polynomial Time Approximation Scheme for the All Terminal
Network Reliability Problem. SIAM Review 43-3, 499-522 (2001)

[9] Karger, D.: Minimum Cuts in Near-Linear Time. Journal of the ACM 47 1, 46-76 (2000).
[10] Karger, D., Stein, C.: A new approach to the minimum cut problem. Journal of the ACM 43,

601-640 (1995).
[11] Karger, D., Tai, P.: Implementing a Fully Polynomial Time Approximation Scheme for All

Terminal Network Reliability. Proceedings of the ACM-SIAM Symposium on Discrete Al-
gorithms, 334-343 (1997).

[12] Karp, R. M., Luby, M., Madras, N. Monte-Carlo approximation algorithms for enumeration
problems. Journal of Algorithms 10, 429-448 (1989).

[13] Lomonosov, M.: Bernoulli scheme with closure. Problems of Information Transmission 10, 73-81.
(1974)

[14] Lomonosov, M., Polesskii, V. P.: Lower bound of network reliability. Problems of Information
Transmission 7, 118-123. (1971)

[15] Sharafat, A., Ma’rouzi, O.: All-Terminal network reliability using recursive truncation algo-
rithm. IEEE Transactions on Reliability 58, 338 - 347. (2009)

39

[16] Wormald, N.: The differential equation method for random graph processes and greedy algo-
rithm. Annals of Applied Probability 5-4, pp. 875 - 1240 (1995).

Appendix A. Data structures for the Recursive Contraction Algorithm.
Our algorithm depends on running the Recursive Contraction Algorithm (RCA) for
a large number of iterations. At each leaf node of the RCA, a single cut will be
produced. In fact, this cut is not generated explicitly, that is, we are not listing out
all the vertices in that cut.

Our goal is to enumerate a large collection A of α∗max-cuts, for α∗max = O(1 +
ρ). With high probability, this includes all α∗-cuts. Each such cut will likely be
generated multiple times, and we will need to remove any duplicates. We will then
need to extract certain key information about each such cut for use in the enumeration
algorithm.

The most important task we will need to perform is to check, given an arbitrary
cut C, whether C ∈ A. During the RCA, this will allow us to remove duplicates
from A. During the enumeration algorithm, this is necessary to compute the desired
statistics.

A method based on hashing is discussed in [10]. We will need to generalize this
method slightly and get slightly better parameters, so we reiterate the method here.

We use the following data structure to accomplish this. To each vertex v, we
associate a random b-bit number w(v). We then define the identifier for a cut C as
the sum modulo 2b, over all vertices v which are in the same shore as vertex 1, of
w(v).

The following proposition is straightforward:

Proposition A.1. There is some choice of b = O(min(n, log n + log ε−1)) such
that, with high probability, every α∗max-cut has a distinct identifier.

Proof. Any two cuts C,C ′ have a probability of 2−b of having the same identifier.
Now take a union bound over the (min(2n, n2α∗max))2 pairs of cuts.

During the execution of the RCA, one can maintain the identifier of the current
cut fairly readily: whenever we merge two vertices v, v′, we add their corresponding
identifiers. Furthermore, using a heap data structure, one can maintain the sorted
identifiers. Each time a cut is produced, one looks up its identifier in the heap. If it is
absent, one adds the cut; otherwise, we skip the current cut as it is likely a duplicate.
The total run-time for these lookups is O((log n+ log ε−1)2) = no(1)ε−o(1).

During the enumeration algorithm, one must look up cuts as well, however in this
analysis our goal is to achieve a run-time of O(n2). Our bound accomplishes this as
well, regardless of ε.

Finally, we must select a certain number of cuts for use in the enumeration algo-
rithm. Each cut is selected with probability proportional to p|C|. During the RCA,
one can maintain the weight of each cut dynamically, so it requires no(1) time to out-
put p|C|. From this it is straightforward to determine

∑
C∈A p

|C| and to select any
number of desired cuts. Note that for those cuts actually selected by the enumeration
algorithm, we are allowed to spend the time to output the entire cut.

Appendix B. Numerical analysis for Theorem 8.2.

Throughout this section we suppose α∗ ≥ 3/2, ρ = O(1), β ≤ 1. (Other cases are
covered already in Theorem 8.2.) These assumptions will not be stated again. This
section depends heavily on the properties of the functions h, h̄, as well as our upper

40

bound for α∗; we repeat them here for clarity:

h(β, δ, x) =

2(2 + δ)(log(3− β + δ)− log(2− β + δ + x)) if x ≥ β
2(2 + δ)(log(3− β + δ)− log(2 + δ)) + 2(β − x) if x ≤ β ≤ 1

2(1− x) if β ≥ 1

h̄(β, δ, x) =
(δ + 2)(1− x)(5− 2β + 2δ + x)

(3− β + δ)2

α](β, δ, ρ) =
(3− β + δ)2(2− β + δ + ρ)

(2− β + δ)2(2 + δ)
.

Note that α∗ ≤ α] + o(1); we distinguish between the quantities α] and α∗;
the former is a smooth function of β, δ, ρ while the latter could have a much more
complicated and discontinuous behavior.

The success probability of the RCA, according to Lemma 8.1, will be
n2−α∗h(β,δ,y)−2y−o(1). As each application of the RCA requires time n2+o(1), it will
suffice to show that there are 0 ≤ x ≤ y ≤ 1 such that

− 2 + αh(β, δ, y) + 2y ≤ 1 + 1.99ρ+ o(1) (B.1)

for all δ ≥ 0, δ ≥ β − O(1/ log n), x = y/α + φ log−1 n, h(β, δ, y) = h̄(β, δ, x), α ≤
α] + o(1), ρ ≥ −1/ log n.

We first claim that we can remove many of the small perturburations from these
conditions:

Proposition B.1. Suppose there are 0 ≤ x ≤ y ≤ 1 such that

− 2 + α](β, δ, ρ)h(β, δ, y) + 2y ≤ 1 + 1.99ρ+ o(1) (B.2)

for all δ ≥ 0, β ≥ δ, x = y/α](β, δ, ρ), h(β, δ, y) = h̄(β, δ, x), ρ ≥ 0.
Then (B.1) can also be satisfied.
Proof. Note that we can take α = α] + o(1), as every α∗-cut is necessarily also a

(α] + o(1))− cut.
Let x = y/α+ d, where d = o(1).
We simply need to show that perturbing the arguments by o(1) only changes the

objective function

−2 + α∗(β, δ, ρ)h(β, δ, y) + 2y

by a factor of o(1) as well.
All of the parameters behave in essentially the same way, so we will show how the

objective function changes when d changes from o(1) to 0 — this is the simplest case.
We can use implicit differentiation. When for example d changes, then ∂x/∂d can

be computed as

−∂[h(β, δ, y)− h̄(β, δ, y/α+ d)]/∂d

∂[h(β, δ, y)− h̄(β, δ, y/α+ d)]/∂y

The numerator is easily seen to be O(1). The denominator can be seen to be
Ω(1), for d sufficiently small. Hence when d changes by o(1), then x changes by o(1)
as well. It is now routine to verify that the objective function changes by o(1).

Next, we claim that x, y are uniquely determined to satisfy Proposition B.1:

41

Proposition B.2. For any given value of β, δ, there is a unique value 0 ≤ x∗ ≤
y∗ ≤ 1 such that x∗ = y∗/α] and such that

h(β, δ, y∗) = h̄(β, δ, x∗)

Proof. Consider the expression

h(β, δ, y)− h̄(β, δ, y/α) (B.3)

When y = 0, this is positive; when y = 1, this is negative.
Next, we claim that the derivative with respect to y is negative. There are two

cases. When y ≥ β, this has derivative

∂/∂y = 2(δ + 2)

(
α(−β + δ + 2) + y

α2(−β + δ + 3)2
− 1

−β + δ + y + 2

)
which can be seen to be ≤ 0 throughout; a similar calculation reveals this for y ≤ β

We can regard x∗, y∗ now as functions of β, δ, ρ; they are easily seen to be differ-
entiable. In this vein now, we define the objective function

g(β, δ, ρ) = α](β, δ, ρ)h(β, δ, y∗) + 2y∗ = α](β, δ, ρ)(h̄(β, δ, x∗) + 2x∗)

and we want to show that g(β, δ, ρ) ≤ 3 + 1.99ρ+ o(1).
First, we examine how this scales with ρ.
Proposition B.3. We have the bound:

∂g(β, δ, ρ)

∂ρ
≤ 3/2

Proof. There are two cases, depending on whether y ≤ β. We begin by assuming
y ≤ β and we use implicit differentiation to determine ∂x∗/∂ρ:

∂x∗/∂ρ = − ∂[h(β, δ, x∗α])− h̄(β, δ, x∗)]/∂ρ

∂[h(β, δ, x∗α])− h̄(β, δ, x∗)]/∂x∗

=
x∗(3− β + δ)4

(2− β + δ)2(δ + 2)2(2− β + δ + x∗)− (3− β + δ)4(2− β + δ + ρ)

and thus we have

∂g(β, δ, ρ)

∂ρ
=
∂α](β, δ, ρ)

∂ρ
(h̄(β, δ, x∗) + 2x∗) + α](β, δ, ρ)

∂[h̄(β, δ, x∗) + 2x∗)

∂x∗
∂x∗

∂ρ

which gives us

∂g(β, δ, ρ)

∂ρ
=

(3− β + δ)2

(δ + 2)(2− β + δ)2

×
(2x∗(3− β + δ)2(2− β + δ + ρ) (5− β(4− β + δ)− (δ + 2)x∗ + 2δ)

(2− β + δ)2(δ + 2)2(2− β + δ + x∗)− (3− β + δ)4(2− β + δ + ρ)

+
(δ + 2)(1− x∗)(−2β + 2δ + x∗ + 5)

(3− β + δ)2
+ 2x∗

)
(B.4)

42

Now simple calculations show that if we take derivative of (B.4) with respect to
ρ, but ignore the dependency of x∗ on ρ, then the resulting quantity is ≥ 0. (That
is, when we take the derivative with respect to ρ, we treat x∗ formally as a constant
term even though it does indeed depend on ρ.) Thus, we can upper bound (B.4) by
taking the limit as ρ→∞ and treating x∗ as a constant in this limiting process:

∂g(β, δ, ρ)

∂ρ
≤ 5− 2β + 2δ + (x∗)2

(2− β + δ)2

≤ 3/2

A similar process works for the case y ≥ β: we differentiate with respect to ρ,
obtaining an expression which is formally a function of x∗, ρ. We then take the limit
as ρ→∞, ignoring the dependency of x∗ on ρ. The calculations are somewhat messy
and we obtain

∂g(β, δ, ρ)

∂ρ
≤ φ(x∗, β, δ)

where φ is a (quite complicated) rational function. Using a symbolic algebra package,
one can then verify that we have φ(x, β, δ) ≤ 1.99 for all x ∈ [0, 1], β ∈ [0, 1], δ ≥ β.

In light of Proposition B.3, we have essentially of reduced the problem to analyzing
the case when ρ = 0.

Proposition B.4. For all β ∈ [0, 1], δ ≥ β we have

g(β, δ, 0) ≤ 3

Proof. We claim that for any y ∈ [0, 1], if we have

h(β, δ, y) ≥ h̄(β, δ, y/α∗) (B.5)

then this implies that y∗ ≥ y and furthermore that if y∗ ≥ y we have

g(β, δ, ρ) ≤ α∗h(β, δ, y) + 2y (B.6)

These facts be seen by differentiating (B.5), (B.6) with respect to y.
Now, suppose δ ≥ 2.5. We have y∗ ≥ 0 trivially, hence

g(β, δ, 0) ≤ α∗h(β, δ, 0)

≤ 1.49383× 2 ≤ 3

as desired.
Next, suppose δ ≤ 2.5. Substitute y = 0.313 into (B.5); we claim that this is

satisfied for all β, δ. This is again a simple but tedious exercise. Then we have

g(β, δ, 0) ≤ α∗h(β, δ, 0.313) + 0.626

≤ 2.967 maximized at β = δ = 0

Putting all these cases together, we have our desired result:
Proposition B.5. Suppose α∗ ≥ 3/2, ρ = O(1), β ≤ 1. there are 0 ≤ x ≤ y ≤ 1

such that

α∗h(β, δ, y) + 2y ≤ 3 + 1.99ρ+ o(1)

43

for all δ ≥ 0, δ ≥ β − O(1/ log n), x = y/α∗ + φ log−1 n, h(β, δ, y) = h̄(β, δ, x), α ≤
α] + o(1), ρ ≥ −1/ log n.

Proof. By Propositions B.1, B.2 it suffices to show that

g(β, δ, ρ) ≤ 3 + 1.99ρ+ o(1)

where δ ≥ β, and x∗, y∗ are defined by x∗ = y∗/α], h(β, δ, y∗) = h̄(β, δ, x∗).
Now by Proposition B.3 we have

g(β, δ, ρ) ≤ g(β, δ, 0) + 1.99ρ

and by Proposition B.4 we have g(β, δ, 0) ≤ 3 + o(1).

44

