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Abstract
Online matching has received significant attention in recent years due to its close 
connection to Internet advertising. As the seminal work of Karp, Vazirani, and Vazi-
rani has an optimal (1 − 1∕�) competitive ratio in the standard adversarial online 
model, much effort has gone into developing useful online models that incorporate 
some stochasticity in the arrival process. One such popular model is the “known 
I.I.D. model” where different customer-types arrive online from a known distri-
bution. We develop algorithms with improved competitive ratios for some basic 
variants of this model with integral arrival rates, including: (a) the case of general 
weighted edges, where we improve the best-known ratio of 0.667 due to Haeu-
pler, Mirrokni and Zadimoghaddam (WINE, 2011) to 0.705; and (b) the vertex-
weighted case, where we improve the 0.7250 ratio of Jaillet and Lu (Math Oper 
Res 39(3):624–646, 2013) to 0.7299. We also consider an extension of stochastic 
rewards, a variant where each edge has an independent probability of being present. 
For the setting of stochastic rewards with non-integral arrival rates, we present a 
simple optimal non-adaptive algorithm with a ratio of 1 − 1∕� . For the special case 
where each edge is unweighted and has a uniform constant probability of being pre-
sent, we improve upon 1 − 1∕� by proposing a strengthened LP benchmark. One 
of the key ingredients of our improvement is the following (offline) approach to 
bipartite-matching polytopes with additional constraints. We first add several valid 
constraints in order to get a good fractional solution � ; however, these give us less 
control over the structure of � . We next remove all these additional constraints and 
randomly move from � to a feasible point on the matching polytope with all coor-
dinates being from the set {0, 1∕k, 2∕k,… , 1} for a chosen integer k. The structure 
of this solution is inspired by Jaillet and Lu (2013) and is a tractable structure for 
algorithm design and analysis. The appropriate random move preserves many of 
the removed constraints (approximately with high probability and exactly in expec-
tation). This underlies some of our improvements and could be of independent 
interest.
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1 Introduction

Applications to Internet advertising have driven the study of online matching 
problems in recent years [18]. In these problems, we consider a bipartite graph 
G = (U,V ,E) in which the set of vertices U is available offline while the set of ver-
tices in V arrive online. Whenever some vertex v arrives, it must be matched imme-
diately (and irrevocably) to (at most) one vertex in U. Each offline vertex u can 
be matched to at most one v. In the context of Internet advertising, U is the set of 
advertisers and V is the set of impressions. The edges E define the impressions that 
interest a particular advertiser. When an impression v arrives, we must choose an 
available advertiser (if any) to match with it. We consider the case where v ∈ V  can 
be matched at most once upon arriving. Since advertising forms the key source of 
revenue for many large Internet companies, finding good matching algorithms and 
obtaining even small performance gains can have high impact.

In the stochastic known I.I.D. model of arrival, we are given a bipartite graph 
G = (U,V ,E) and a finite online time horizon T (in most cases, we assume 
T = |V| = n and say the online phase takes place over n rounds). In each round, a 
vertex v is sampled with replacement from a known distribution over V. The sam-
pling distributions are independent and identical over all of the T online rounds. This 
captures the fact that we often have historical data about the impressions and can 
predict the frequency with which each type of impression will arrive. Edge-weighted 
matching [9] is a general model in the context of advertising: every advertiser gains 
a given revenue for being matched to a particular type of impression. Here, a type of 
impression refers to a class of users (e.g., a demographic group) who are interested 
in the same subset of advertisements. Each arrival of a type v ∈ V  is considered a 
distinct vertex (user) that can be matched to up to one u ∈ U . For example, if the 
same v arrives three times, we consider this three separate vertices (or copies of v) 
that can potentially be matched to three different vertices in U. A special case of 
this model is vertex-weighted matching [1], where weights are associated only with 
the advertisers (the offline set U). In other words, a given advertiser has the same 
revenue generated for matching any of the user types interested in it. In some mod-
ern business models, revenue is not generated upon matching advertisements, but 
only when a user clicks on the advertisement: this is the pay-per-click model. From 
historical data, one can assign the probability of a particular advertisement being 
clicked by a type of user. Works including [20, 21] capture this notion of stochastic 
rewards by assigning a probability to each edge.

One unifying theme in most of our approaches is the use of an LP benchmark 
with additional valid constraints that hold for the respective stochastic-arrival mod-
els. We use the optimal solution to this LP to guide our online actions. In most cases, 
we use various modifications of dependent randomized rounding to convert the frac-
tional LP solution into a suitable guide for our online algorithms.
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2  Preliminaries and Technical Challenges

In the Unweighted Online Known I.I.D. Stochastic Bipartite Matching problem, 
we are given a bipartite graph G = (U,V ,E) . The set U is available offline while 
the vertex set V represent the online vertices. Each edge e ∈ E is associated with 
a weight we . Thus, this represents the input graph. The vertices v arrive online and 
are drawn with replacement from an I.I.D. distribution on V. For each v ∈ V  , we are 
given an arrival rate rv , which is the expected number of times v will arrive. With 
the exception of Sect.  5, this paper will focus on the integral arrival rates setting 
where all rv ∈ ℤ

+ . For reasons described in [12], we can further assume WLOG that 
each v has rv = 1 under the assumption of integral arrival rates. In particular, a ver-
tex type v with an integral arrival rate k > 1 , can be split into k different vertex types 
each with an arrival rate of 1. In this case, we have that |V| = n where n is the total 
number of online rounds.

In the vertex-weighted variant, every offline vertex u ∈ U has a weight wu (alter-
natively, for any vertex u ∈ U all edges incident to u have the same weight) and we 
seek a maximum weight matching. In the edge-weighted variant, every edge e ∈ E 
has a weight we and we again seek a maximum weight matching. In the stochastic 
rewards variant, each edge has a probability pe of being present once we probe edge 
e and we seek to maximize the expected size or weight of the matching. The edge 
realization process is independent for different edges. At each step, the algorithm 
“probes” an edge e. With probability pe the edge e exists and with the remaining 
probability it does not. Once realization of an edge is determined, it does not affect 
the random realizations for the rest of the edges. We consider the query-commit 
model where an edge that is probed and found to exist must be matched. For a single 
arriving vertex, each edge can only be probed once. However, we remind the reader 
that multiple arrivals of the same vertex type are considered distinct vertices. Sup-
pose the first arrival of a vertex type v ∈ V  probes an edge to some offline vertex 
u ∈ U and the edge does not exist. Then later, another copy of type v might arrive 
and also probe an edge to u because each arrival is a distinct vertex with its own hid-
den edge realizations.

Asymptotic assumption and notation We will always assume n is large and ana-
lyze algorithms as n goes to infinity: e.g., if x ≤ 1 − (1 − 2∕n)n , we will just write 
this as “ x ≤ 1 − 1∕�2 ” instead of the more-accurate “ x ≤ 1 − 1∕�2 + o(1) ”. These 
suppressed o(1) terms will subtract at most o(1) from our competitive ratios. Note 
the we use � for Euler’s constant in contrast with e which denotes an edge. Through-
out, we use “ �� ” to refer to the worst case instance for various algorithms.

Competitive ratio The competitive ratio is defined slightly differently than usual 
for this set of problems (similar to the notation used in [18]). In particular, it is 
defined as �[ALG]

�[OPT]
 . Here, �[ALG] is the expected performance of our online algorithm 

with respect to the random online vertex arrivals and any internal randomness the 
algorithm may use; and for the stochastic rewards variant the random edge realiza-
tions, arrival sequence and internal randomness of the algorithm. Similarly, �[OPT] 
is the expected performance of an optimal offline matching algorithm which knows 
the random vertex arrivals in advance. In the case of stochastic rewards, we compare 
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to an optimal offline stochastic matching algorithm which can probe edges in any 
order, but does not know the outcomes of these probes and can only probe one 
neighbor of each vertex from the “online” partition.

Adaptivity Algorithms can be adaptive or non-adaptive. When v arrives, an adap-
tive algorithm can modify its online actions based on the realization of the online 
vertices (and edges in the stochastic rewards model) thus far, but a non-adaptive 
algorithm has to specify all of its actions before the start of the online phase.

2.1  LP Benchmark for Deterministic Rewards

As in prior work (e.g, see [18]), we use the following LP to upper bound the opti-
mal offline expected performance and also use it to guide our algorithm in the cases 
where rewards are deterministic. For the case of stochastic rewards, we use slightly 
modified LPs, whose definitions we defer until Sects. 5 and 6. We first show an 
LP for the unweighted variant, then describe the changes for the vertex-weighted 
and edge-weighted settings. As usual, we have a variable fe for each edge. Let �(w) 
be the set of edges adjacent to a vertex w ∈ U ∪ V  and let fw =

∑
e∈�(w) fe . Con-

straint (4) is used in [12, 19].

Variants  The objective function is to maximize 
∑

u∈U

∑
e∈�(u) fewu in the vertex-

weighted variant and maximize 
∑

e∈E fewe in the edge-weighted variant (here we 
refers to w(u,v)).

Lemma 1 Let OPT denote the total weight obtained by the best offline algorithm. 
Let �∗ denote the optimal solution to the above LP . Then 

∑
e∈E f

∗
e
≥ �[OPT].

Proof We prove this as follows. Let Ye denote the indicator random variable for the 
event that edge e ∈ E is matched in the optimal solution for a given arrival sequence 
A . Let ye ∶= �A[Ye] for every edge e ∈ E . We will now argue that the vector 
� ∶= (ye)e∈E is a feasible solution to the LP. Consider a vertex u ∈ U . We have that ∑

e∈�(u) Ye ≤ 1 . Taking expectations on both sides and using the linearity of expecta-
tion we have 

∑
e∈�(u) Ye ≤ 1 . This shows that � is feasible to the constraint (2). Let Rv 

(1)maximize
∑
e∈E

fe

(2)subject to
∑
e∈�(u)

fe ≤ 1 ∀u ∈ U

(3)
∑
e∈�(v)

fe ≤ 1 ∀v ∈ V

(4)0 ≤ fe ≤ 1 − 1∕� ∀e ∈ E

(5)fe + fe� ≤ 1 − 1∕�2 ∀e, e� ∈ �(u),∀u ∈ U
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denote the random variable for the number of times a vertex v ∈ V  arrived in a given 
arrival sequence A . Then we have, for every v ∈ V  , 

∑
e∈�(v) Ye ≤ Rv . From the inte-

gral arrival rates assumption, �A[Rv] = 1 for every v ∈ V  . Thus, from linearity of 
expectation we obtain 

∑
e∈�(v) Ye ≤ 1 . This shows that � is feasible to the con-

straint (3). For any edge e = (u, v) , let �[Rv = 0] be an indicator for the event that a 
vertex v ∈ V  never arrives in the T rounds. Thus, for any arrival sequence A , we 
have Ye ≤ �[Rv ≠ 0] . Taking expectations on both sides we get Ye ≤ �A[�[Rv ≠ 0] . 
The probability that a vertex v never arrives in T rounds is 

(
1 −

1

T

)T

≤ 1∕� . Thus, 
�A[�[Rv ≠ 0] ≤ 1 − 1∕� . This shows that � is feasible to the constraint (4). Consider 
two edges e, e� ∈ �(u) for some u ∈ U . Let e = (u, v) and e� = (u, v�) and as before let 
�[Rv ≠ 0] and �[R(v�) ≠ 0] denote the indicator for the events that v, v′ arrives at least 
once in the T rounds, respectively. For any arrival sequence A we have that 
Ye + Y(e�) ≤ �[Rv ≠ 0] ∧ �[R(v�) ≠ 0] . Taking expectations on both sides we get 
Ye + y(e�) ≤ �A[�[Rv ≠ 0] ∧ �[R(v�) ≠ 0]] . The probability that both v and v′ never 
arrive in the T rounds is given by 

(
1 −

2

T

)T

≤
1

�
2
 . Thus, we get Ye + y(e�) ≤ 1 −

1

�
2
 

which shows that � is feasible to the constraint 5.
The expected weight of the optimal solution is �A[

∑
e∈E weYe] which from linear-

ity of expectation gives 
∑

e∈E weYe . Since � is a feasible solution we have that the 
optimal value to LP is at least as large as the expected optimal solution.   ◻

We compare the performance of our algorithm to this LP . Suppose that �∗ is the 
optimal solution to the above LP . We prove the following lemma which shows that it 
suffices to analyze the competitive ratio edge-wise.

Lemma 2 If mine∈E,f ∗
e
>0

Pr[e is included in the matching]
f ∗
e

≥ 𝛼 , then this implies that 
the competitive ratio is at least �.

Proof From linearity of expectation we have that

  ◻

In what follows, we only compute a lower-bound on the probability that any edge 
e ∈ E is included in the final matching (we call this quantity competitive ratio of 
edge e) which would imply a lower-bound on the competitive ratio.

In the vertex-weighted setting (Sect. 4) we compute a lower-bound on the prob-
ability that a vertex u ∈ U is matched in any randomized online algorithm. Analo-
gous to Lemma 2, the following lemma connects the lower-bound on this probability 
to the competitive ratio.

�[ALG] =
∑
e∈E

Pr[e is included in the matching]

≥ �
∑
e∈E

f ∗
e

≥ ��[OPT].
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Lemma 3 Define Fu ∶=
∑

e∈�(u) fe . If minu∈U,F∗
u
>0

Pr[u is matched]
F∗
u

≥ 𝛼 , then this 
implies that the competitive ratio is at least �.

Proof From linearity of expectation we have that

  ◻

Note that the work of [19] does not use an LP to upper-bound the optimal 
value of the offline instance. Instead they use Monte-Carlo simulations wherein 
they simulate the arrival sequence and compute the vector � by approximating 
(via Monte-Carlo simulation) the probability of matching an edge e in the offline 
optimal solution. We do not use a similar approach for our problems for a few 
reasons. (1) For the weighted variants, namely the edge and vertex-weighted ver-
sions, the number of samples depends on the maximum value of the weight, mak-
ing it expensive. (2) In the unweighted version, the running time of the sampling 
based algorithm is O(|E|2n4) ; on the other hand, we show in Sect. 2.5 that the LP 
based algorithm can be solved much faster, Õ(|E|2) time in the worst case and 
even faster than that in practice. (3) For the stochastic rewards setting, the offline 
problem is not known to be polynomial-time solvable, which is required for [19] 
since they rely on solving instances of the offline problem on simulated graphs. 
[4] show that under the assumption of constant p and OPT = �(1∕p) , we can 
obtain a (1 − �)-approximation to the optimal solution. However, these assump-
tions are too strong to be used in our setting.

For the stochastic-rewards setting, one might be tempted to use an LP to 
achieve the same property obtained from Monte-Carlo simulation via adding 
extra constraints. In the context of uniform stochastic rewards where each edge e 
is associated with a uniform constant probability p, what we really need is:

To guarantee this via the LP , a straightforward approach is to add this family of con-
straints to the LP . However, the number of such constraints is exponential and there 
seems to be no obvious separation oracle. We overcome this challenge by showing it 
suffices to ensure that inequality (6) above holds for all S with |S| ≤ 2∕p , which is a 
constant, thus making the resultant LP polynomial-time solvable.

�[ALG] =
∑
u∈U

Pr[u is matched]

≥ �
∑
u∈U

F∗
u

= �
∑
u∈U

∑
e∈�(u)

f ∗
e

≥ ��[OPT].

(6)∀S ⊆ 𝜕(u),
∑
e∈S

fe ≤
1 − exp(−|S|p)

p
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2.2  Overview of Edge‑Weighted Algorithm and Contributions

The previous best result due to [12] for the edge-weighted problem was 0.667. They 
used two matchings, M1 and M2 , from the offline graph to guide the online algorithm 
and leverage the power of two choices. When a vertex v arrives for the first time, it 
can be matched to its neighbor in M1 and on its second arrival it can be matched to 
its neighbor in M2 . However, these two matchings may not be edge disjoint, leaving 
some arriving vertices with only one choice. In fact, choosing two guiding match-
ings that maximize both the edge weights and the number of disjoint edges is a 
major challenge that arises in applying the power of two choices to this setting.

When the same edge (u, v) is included in both matchings M1 and M2 , the copy of 
(u, v) in M2 can offer no benefit and a second arrival of v is wasted. To use an exam-
ple from related work, Haeupler et al. [12] choose two matchings in the following 
way. M1 is attained by solving an LP with constraints (2), (3) and (4) and rounding to 
an integral solution. M2 is constructed by finding a maximum-weight matching and 
removing any edges which have already been included in M1 . A key element of their 
proof is showing that the probability of an edge being removed from M2 is at most 
1 − 1∕� ≈ 0.63.

The approach in this paper is to construct two or three matchings together in a 
correlated manner to reduce the probability that some edge is included in all match-
ings. We show a general technique to construct an ordered set of k matchings where 
k is an easily adjustable parameter. For k = 2 , we show that the probability of an 
edge appearing in both M1 and M2 is at most 1 − 2∕� ≈ 0.26.

For the algorithms presented, we first solve an LP on the input graph. We then 
round the LP solution vector to a sparse integral vector and use this vector to con-
struct a randomly ordered set of matchings which will guide our algorithm during 
the online phase. We begin Sect.  3 with a simple warm-up algorithm which uses 
a set of two matchings as a guide to achieve a 0.688 competitive ratio, improving 
the best known result for this problem. We follow it up with a slight variation that 
improves the ratio to 0.7 and a more complex 0.705-competitive algorithm which 
relies on a convex combination of a 3-matching algorithm and a separate pseudo-
matching algorithm.

2.3  Overview of Vertex‑Weighted Algorithm and Contributions

The previous best results due to [13] for the vertex-weighted and unweighted prob-
lems were 0.725 and 1 − 2�−2 ≈ 0.729 , respectively. They used a clever LP which 
guaranteed they could find a solution wherein each edge variable was assigned a 
value in {0, 1∕3, 2∕3} as opposed to an arbitrary fractional value. This property, 
which we will call a {0, 1∕3, 2∕3} solution, was required by their adaptive online 
algorithm. However, their special LP was a slightly weaker upper bound on the opti-
mal solution than the LP we describe in Sect. 2.1.

Another key challenge encountered by [13] was that solutions to their special LP 
could lead to length-four cycles of type C1 shown in Fig. 1. In fact, they used this 
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case to show that no algorithm could perform better than 1 − 2�−2 ≈ 0.7293 using 
their LP as an upper bound. They mentioned that tighter LP constraints such as (4) 
and (5) in the LP from Sect. 2.1 could avoid this bottleneck, but did not propose a 
technique to use them. Note that the {0, 1∕3, 2∕3} solution produced by their specific 
LP was an essential component of their Random List algorithm.

To address this challenge, we show a randomized rounding algorithm to construct 
a similar, simplified {0, 1∕3, 2∕3} vector from the solution of a stronger benchmark 
LP. This allows for the inclusion of additional constraints, most importantly con-
straint  (5). Using our rounding algorithm combined with tighter constraints, we 
can upper-bound the probability of a vertex appearing in the cycle C1 from Fig. 1 at 
2 − 3∕� ≈ 0.89 (See Lemma 7). By constant, cycles of type C1 occur deterministi-
cally in [13].

Additionally, we note briefly that there are other length four cycles with different 
variable weights, defined as types C2 and C3 (See Fig. 2 in Sect. 4.2). These cycles 
could be problematic, but we show how to deterministically break them in Sect. 4.2 
without creating any new cycles of type C1 (This can happen if the cycle break-
ing is not done carefully). Finally, we describe an algorithm which utilizes these 
techniques to improve previous results in both the vertex-weighted and unweighted 
settings.

For this problem, we first solve the LP in Sect. 2 on the input graph. In Sect. 4, 
we show how to use the technique in Sect. 2.6 to obtain a sparse fractional vector. 
We then present a randomized online algorithm (similar to the one in [13]) which 
uses the sparse fractional vector as a guide to achieve a competitive ratio of 0.7299.

Previously, there was a gap between the best unweighted algorithm with a ratio 
of 1 − 2�−2 due to [13] and the negative result of 1 − �

−2 due to [19]. We take a step 
toward closing this gap by showing that an algorithm can achieve 0.7299 > 1 − 2�−2 
for both the unweighted and vertex-weighted variants with integral arrival rates. In 
doing so, we make progess on Open Questions 3 and 4 from the book [18].1

Fig. 1  This cycle is the source of the negative result described by Jaillet and Lu [13]. It results from the 
edge variable assignments in their special LP. Thick edges have f

e
= 2∕3 while thin edges have f

e
= 1∕3 . 

This structure and variable assignment leads to a gap of 1 − 2�−2 between the LP solution and the best 
possible solution of any online algorithm

1 Open Questions 3 and 4 state the following: “In general, close the gap between the upper and lower 
bounds. In some sense, the ratio of 1 − 2�−2 achieved in [13] for the integral case, is a nice ‘round’ num-
ber, and one may suspect that it is the correct answer.”
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2.4  Overview of Stochastic Rewards and Contributions

Our algorithm for the more general problem allowing stochastic rewards and non-
integral arrival rates (Algorithm 9) is presented in Sects. 5 and 6. We believe the 
known I.I.D. model with stochastic rewards is an interesting new direction moti-
vated by the work of [20] and [21] in the adversarial model. We introduce a new, 
more general LP (see LP  (13)) specifically for this setting and show that a simple 
algorithm using the LP solution directly can achieve a competitive ratio of 1 − 1∕� . 
This ratio is optimal among all non-adaptive algorithms for the case of non-integral 
arrival rates even without stochastic rewards [19]. In [20], it is shown that no rand-
omized algorithm can achieve a ratio better than 0.62 < 1 − 1∕� in the adversarial 
model when comparing to a problem called Budgeted Allocation as the offline opti-
mal. While our work instead compares to offline stochastic matching as the offline 
optimal, the benchmark LP we use in Sect. 5 (LP 13) upper bounds Budgeted Allo-
cation. Hence, achieving 1 − 1∕� for the I.I.D. model shows that this lower bound 
does not extend to the I.I.D. model. Further, the paper [5] shows that using LP  (13) 
one cannot achieve a ratio better than 1 − 1∕� . We discuss some challenges relating 
to why the techniques used in prior work do not directly extend to this model.

To take a step toward addressing these challenges in Sect.  6, we consider a 
restricted version of the problem where each edge is unweighted and has a uniform 
constant probability p ∈ (0, 1] under integral arrival rates. By proposing a family of 
valid constraints, we are able to show that in this restricted setting, one can indeed 
beat 1 − 1∕� . We note that this result cannot be compared to the work of [20] since 
we use a tighter benchmark (LP 17) which does not upper bound Budgeted Alloca-
tion. We summarize our contributions in Table 1.

2.5  Running Time of the Algorithms

In this section, we discuss the implementation details of our algorithms. All of 
our algorithms solve an LP in the pre-processing step. The dimension of the LP is 
determined by the constraint matrix which consists of O(|E|2 + |U| + |V|) rows and 
O(|E|) columns. However, note that the number of non-zero entries in this matrix is 
of the order O(|E|2) because each edge is subject to O(|E|) constraints primarily due 
to LP constraint 5. Some recent work (e.g., [17]) shows that such sparse programs 

Table 1  Summary of contributions

Problem Previous work This paper

Edge-weighted (Sect. 3) 0.667 [12] 0.705
Vertex-weighted (Sect. 4) 0.725 [13] 0.7299
Unweighted 1 − 2∕�2 [13] 0.7299 (> 1 − 2∕�2)

Stochastic rewards (Sect. 5 and 6) N/A 1 − �
−1 for general version 

0.702 for the restricted 
version
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can be solved in time Õ(|E|2) using interior point methods (which are known to per-
form very well in practice). This sparsity in the LP is the reason we can solve very 
large instances of the problem. The second critical step in pre-processing is to per-
form randomized rounding. Note that we have O(|E|) variables and that in each step 
of the randomized rounding due to [11], they incur a running time of O(|E|). Hence 
the total running time to obtain a rounded solution is of the order O(|E|2) . Addition-
ally, both of these operations are part of the pre-processing step. In the online phase, 
the algorithm incurs a per-time-step running time of at most O(|U|) for the stochastic 
rewards case (in fact, a smarter implementation using binary search runs as fast as 
O(log |U|) time) and O(1) for the edge-weighted and vertex-weighted algorithms in 
Sects. 3 and 4.

2.6  LP Rounding Technique ��[� , k]

For the algorithms presented, we first solve the benchmark LP in Sect. 2.1 for the 
input instance to get a fractional solution vector � . We then round � to an integral 
solution � using a two step process we call ��[� , k] . The first step is to multiply 
� by k. The second step is to apply the dependent rounding techniques of Gandhi, 
Khuller, Parthasarathy, and Srinivasan [11] to this new vector. In this paper, it suf-
fices to consider k = 2 or k = 3.

While dependent rounding is typically applied to values between 0 and 1, the use-
ful properties extend naturally to our case in which kfe may be greater than 1 for 
some edge e. To understand this process, it is easiest to imagine splitting each kfe 
into two edges with the integer value f �

e
= ⌊kfe⌋ and fractional value f ��

e
= kfe − ⌊kfe⌋ . 

The former will remain unchanged by the dependent rounding since it is already an 
integer while the latter will be rounded to 1 with probability f ′′

e
 and 0 otherwise. Our 

final value Fe would be the sum of those two rounded values. The two properties of 
dependent rounding we use are: 

1. Marginal distribution For every edge e, let pe = kfe − ⌊kfe⌋ . Then, 
Pr[Fe = ⌈kfe⌉] = pe and Pr[Fe = ⌊kfe⌋] = 1 − pe.

2. Degree-preservation For any vertex w ∈ U ∪ V  , let its fractional degree kfw be ∑
e∈�(w) kfe and integral degree be the random variable Fw =

∑
e∈�(w) Fe . Then 

Fw ∈ {⌊kfw⌋, ⌈kfw⌉}.

2.7  Related Work

The study of online matching began with the seminal work of Karp, Vazirani, Vazi-
rani [16], where they gave an optimal online algorithm for a version of the 
unweighted bipartite matching problem in which vertices arrive in adversarial order. 
Following that, a series of works have studied various related models. The book by 
Mehta [18] gives a detailed overview. The vertex-weighted version of this problem 
was introduced by Aggarwal, Goel and Karande [1], where they give an optimal (
1 −

1

�

)
 ratio for the adversarial arrival model. The edge-weighted setting has been 
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studied in the adversarial model by Feldman, Korula, Mirrokni and Muthukrishnan 
[9], where they consider an additional relaxation of “free-disposal”.

In addition to the adversarial and known I.I.D. models, online matching is also 
studied under several other variants such as random arrival order, unknown distribu-
tions, and known adversarial distributions. In the setting of random arrival order, 
the arrival sequence is assumed to be a random permutation over all online verti-
ces, see e.g., [6, 14, 15, 22]. In the case of unknown distributions, in each round an 
item is sampled from a fixed but unknown distribution. If the sampling distributions 
are required to be the same during each round, it is called unknown I.I.D. ( [7, 8]); 
otherwise, it is called adversarial stochastic input ( [7]). As for known adversarial 
distributions, in each round an item is sampled from a known distribution, which is 
allowed to change over time ( [2, 3]). Another variant of this problem is when the 
edges have stochastic rewards. Models with stochastic rewards have been previously 
studied by [20, 21] among others, but not in the known I.I.D. model.

Related work in the vertex-weighted/unweighted settings The vertex-weighted 
and unweighted settings have many results starting with Feldman, Mehta, Mirrokni 
and Muthukrishnan [10] who were the first to beat 1 − 1∕� with a competitive ratio 
of 0.67 for the unweighted problem. This was improved by Manshadi, Gharan, and 
Saberi [19] to 0.705 with an adaptive algorithm. In addition, they showed that even 
in the unweighted variant with integral arrival rates, no algorithm can achieve a ratio 
better than 1 − �

−2 ≈ 0.86 . Finally, Jaillet and Lu [13] presented an adaptive algo-
rithm which used a clever LP to achieve 0.725 and 1 − 2�−2 ≈ 0.729 for the vertex-
weighted and unweighted problems, respectively.

Related work in the edge-weighted setting For this model, Haeupler, Mirrokni, 
Zadimoghaddam [12] were the first to beat 1 − 1∕� by achieving a competitive ratio 
of 0.667. They use a discounted LP with tighter constraints than the basic matching 
LP (a similar LP can be seen in 2.1) and they employ the power of two choices by 
constructing two matchings offline to guide their online algorithm.

Other related work Devanur et al. [8] gave an algorithm which achieves a ratio 
of 1 − k!∕(kkek) for the Adwords problem2 in the Unknown I.I.D. arrival model with 
knowledge of the optimal budget utilization and when the bid-to-budget ratios are at 
most 1/k, where k is some positive integer. Alaei et al. [2] considered the Prophet-
Inequality Matching problem, in which v arrives from a distinct (known) distribu-
tion Dt , in each round t. They gave a 1 − 1∕

√
k + 3 competitive algorithm, where k 

is the minimum capacity of u.

2 In the Adwords problem, every u ∈ U has a total budget B
u
 . Each edge e has a bid b

e
 which represents 

the weight. The goal is to maximize the total weight of the edges matched subject to the constraint that 
for any vertex u ∈ U the sum of the total weight of the edges matched to u is at most B

u
.
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3  Edge‑Weighted Matching with Integral Arrival Rates

3.1  Warm‑up: 0.688‑Competitive Algorithm

As a warm-up, we describe a simple algorithm which achieves a competitive 
ratio of 0.688 and introduces the key ideas in our approach. We begin by solving 
the LP in Sect. 2.1 to get a fractional solution vector � and applying ��[� , 2] as 
described in Sect. 2.6 to get an integral vector � . We construct a bipartite graph 
G

�
 with Fe copies of each edge e. Note that G

�
 will have max degree 2 since for 

all w ∈ U ∪ V  , Fw ≤ ⌈2fw⌉ ≤ 2 and thus we can decompose it into two match-
ings using a greedy algorithm and Hall’s Theorem. The exact choice of the two 
matchings is not critical to the algorithm as long as the union contains all edges 
in G

�
 . Finally, we randomly permute the two matchings into an ordered pair of 

matchings, [M1,M2] . These matchings serve as a guide for the online phase of the 
algorithm, similar to [12]. The entire warm-up algorithm for the edge-weighted 
model, denoted by ��0 , is summarized in Algorithm 1.

3.1.1  Analysis of Algorithm ��
0

We will show that ��0 (Algorithm 1) achieves a competitive ratio of 0.688. Let 
[M1,M2] be our randomly ordered pair of matchings. Note that there might exist 
some edge e which appears in both matchings due to having fe > 1∕2 , which 
could be rounded up to Fe = 1 . Therefore, we consider three types of edges. We 
say an edge e is of type �1 , denoted by e ∈ �1 , if and only if e appears only in M1 . 
Similarly e ∈ �2 , if and only if e appears only in M2 . Finally, e ∈ �b , if and only 
if e appears in both M1 and M2 . Let P1 , P2 , and Pb be the probabilities of getting 
matched for e ∈ �1 , e ∈ �2 , and e ∈ �b , respectively. According to the result in 
Haeupler et al. [12], Lemma 4 bounds these probabilities.



1 3

Algorithmica 

Lemma 4 (Proof details in section  3 of [12]) For any two matchings M1 and 
M2 steps (5) and (6) in Algorithm  1 implies that we have (1) P1 > 0.5808 ; (2) 
P2 > 0.14849 and (3) Pb > 0.6321.

We can use Lemma 4 to prove that the warm-up algorithm ��0 achieves a ratio 
of 0.688 by examining the probability that a given edge becomes type �1 , �2 , or �b.

Analysis of ��0 . Consider the following two cases.

• Case 1  0 ≤ fe ≤ 1∕2 : By the marginal distribution property of dependent round-
ing, there can be at most one copy of e in G

�
 and the probability of including 

e in G
�
 is 2fe . Since an edge in G

�
 can appear in either M1 or M2 with equal 

probability 1/2, we have Pr[e ∈ �1] = Pr[e ∈ �2] = fe . Thus, the ratio is 
(feP1 + feP2)∕fe = P1 + P2 = 0.729.

• Case 2  1∕2 ≤ fe ≤ 1 −
1

�

 : Similarly, by marginal distribution, 
Pr[e ∈ �b] = Pr[Fe = ⌈2fe⌉] = 2fe − ⌊2fe⌋ = 2fe − 1 . It follows that 
Pr[e ∈ �1] = Pr[e ∈ �2] = (1∕2)(1 − (2fe − 1)) = 1 − fe . Thus, the ratio is 
(noting that the first term is from case 1 while the second term is from case 2) 
((1 − fe)(P1 + P2) + (2fe − 1)Pb)∕fe ≥ 0.688 , where the �� is for an edge e with 
fe = 1 −

1

�

 .   ◻

3.2  Improved Algorithm: 0.7‑Competitive Algorithm

In this section, we describe an improvement upon the previous warm-up algorithm 
to get a competitive ratio of 0.7. We start by making an observation about the per-
formance of the warm-up algorithm. After solving the LP, let edges with fe > 1∕2 
be called large and edges with fe ≤ 1∕2 be called small. Let L and S, be the sets of 
large and small edges, respectively. Notice that in the previous analysis, small edges 
achieved a much higher competitive ratio of 0.729 versus 0.688 for large edges. This 
is primarily due to the fact that we may get two copies of a large edge in G

�
 . In this 

case, the copy in M1 has a better chance of being matched, since there is no edge 
which can “block” it (i.e. an edge with the same offline neighbor that gets matched 
first), but the copy that is in M2 has no chance of being matched.

To correct this imbalance, we make an additional modification to the fe values 
before applying ��[� , k] . The rest of the algorithm is exactly the same. Let � be a 
parameter to be optimized in the analysis. For all large edges � ∈ L such that 
f ∗
�
> 1∕2 , we set f̃ ∗

�
(�) = f ∗

�
+ 𝜂 . For all small edges s ∈ S which are adjacent to 

some large edge, let � ∈ L be the largest edge adjacent to s such that f ∗
�
> 1∕2 . Note 

that it is possible for s to have two large neighbors, but we only care about the larger 
of the two. We set f̃ ∗

s
= f ∗

s

(
1−f̃ ∗

�

1−f ∗
�

)
.

In other words, we increase the values of large edges while ensuring that for all 
w ∈ U ∪ V  , fw ≤ 1 by reducing the values of neighboring small edges proportional 
to their original values. Note that it is not possible for two large edges to be adjacent 
since they must both have fe > 1∕2 . For all other small edges which are not adjacent 
to any large edges, we leave their values unchanged. We then apply ��[� , 2] to this 
new vector, multiplying by 2 and applying dependent rounding as before.
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3.2.1  Analysis

Theorem  1 For edge-weighted online stochastic matching with integral arrival 
rates, ��(0.0142) achieves a competitive ratio of at least 0.7.

Proof As in the warm-up analysis, we’ll consider large and small edges separately

• Scenario 1: 0 ≤ f ∗
s
≤

1

2
 

 Here we have two cases

• Case 1 s is not adjacent to any large edges.
  In this case, the analysis is the same as Case 1 in the warm-up analysis. 

Thus, the probability that edge s is added to the matching is 0.729f ∗
e
.

• Case 2 s is adjacent to some large edge �.
  For this case, let f ∗

�
 be the value of the largest neighboring edge in the 

original LP solution. Then the probability that edge s is added to the matching 
is 

 This follows from Lemma 4; in particular, the first two terms are the result 
of how we set f̃s in the algorithm, while the two numbers, 0.1484 and 0.5803, 
are the probabilities that s is matched when it is in M2 and M1 , respectively. 
Note that for f ∗

�
∈ [0, 1) this is a decreasing function in f ∗

�
 . So the worst case 

is when f ∗
�
= 1 −

1

�

 (due to third constraint in the LP (4)) Thus, the probability 
that edge s is added to the matching is 

 Since � = 0.0142 , this evaluates to, 

• Scenario 2: 1
2
< f ∗

�
≤ 1 −

1

�

  
 Here, the probability that � is added to the matching is, 

[1 − (f ∗
�
(�) + �)][P1 + P2] + [2(f ∗

�
+ �) − 1]Pb . This can re-arranged to obtain 

 Since � = 0.0142 using Lemma  4 we have 
(P1 + P2)(1 − �) + (2� − 1)Pb = 0.1048 . Similarly, using Lemma  4 we have 
2Pb − P1 − P2 = 0.535 . Thus, Eq. (8) simplifies to, 

f ∗
s

(
1 − (f ∗

�
+ �)

1 − f ∗
�

)
(0.1484 + 0.5803).

f ∗
s

(
1 − (1 −

1

�

+ �)

1 − (1 −
1

�

)

)
(0.1484 + 0.5803).

(7)0.701f ∗
s
.

(8)(P1 + P2)(1 − �) + (2� − 1)Pb + f ∗
�
[2Pb − P1 − P2].

(9)0.1048 + f ∗
�
0.535
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 We can write Eq. (9) as f ∗
�
[0.1048∕f ∗

�
+ 0.535] . Note that 1

2
< f ∗

�
≤ 1 −

1

�

 . Thus, 
Eq. (9) can be lower-bounded by 

Thus combining Eqs. (7) and (10) with Lemma 2 we get a competitive ratio of 0.7.
We now show that the chosen value of � = 0.0142 ensures that both f̃ ∗

�
 and f̃ ∗

s
 are 

less than 1 after modification. Since f ∗
�
≤ 1 −

1

�

 we have that 
f ∗
�
+ � ≤ 1 −

1

�

+ 0.0142 ≤ 1 . Note that f ∗
�
≥ 1∕2 . Hence, the modified value f̃ ∗

s
 is 

always less than or equal to the original value, since 
(

1−(f ∗
�
+�)

1−f ∗
�

)
 is decreasing in the 

range f ∗
�
∈ [1∕2, 1 −

1

�

] and has a value less than 0.98 at f ∗
�
= 1∕2 .   ◻

3.3  Final Algorithm: Roadmap

In the next few subsections, we describe our final edge-weighted algorithm with 
all of the attenuation factors. To keep it modular, we give the following guide to 
the reader. We note that the definition of large and small edges given below in 
Sect. 3.3.1 is different from the definition in the previous subsection.

• Section 3.3.1 describes the main algorithm which internally invokes two algo-
rithms, ��1 and ��2 , which are described in Sects. 3.3.2 and 3.3.3, respectively.

• Theorem 2 proves the final competitive ratio. This proof depends on the perfor-
mance guarantees of ��1 and ��2 , which are given by Lemmas 5 and 6, respec-
tively.

• The proof of Lemma 5 depends on Claims 9, 10, and 11 (Found in the “Appen-
dix”). Each of those claims is a careful case-by-case analysis. Intuitively, 9 refers 
to the case where the offline vertex u is incident to one large edge and one small 
edge (here the analysis is for the large edge), 10 refers to the case where u is inci-
dent to three small edges and 11 refers to the case where u is incident to a small 
edge and large edge (here the analysis is for the small edge).

• The proof of Lemma 6 depends on Claims 12 and 13 (Found in the “Appendix”). 
Again, both of those claims are proven by a careful case-by-case analysis. Since 
there are many cases, we have given a diagram of the cases when we prove them.

3.3.1  Algorithm �� : 0.705‑Competitive Algorithm

In this section, we describe an algorithm �� (Algorithm 2), that achieves a com-
petitive ratio of 0.705. The algorithm first solves the benchmark LP in Sect. 2.1 and 
obtains a fractional optimal solution � . By invoking ��[� , 3] , it obtains a random 
integral solution � . Notice that from LP Constraint  (4) we see fe ≤ 1 −

1

�

≤ 2∕3 . 
Therefore after ��[� , 3] , each Fe ∈ {0, 1, 2} . We say an edge e is large if Fe = 2 
and small if Fe = 1 (note that this differs from the definition of large and small in 
Sect. 3.2).

(10)0.701f ∗
�
.
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We design two non-adaptive algorithms, denoted by ��1 and ��2 , which take 
the sparse graph G

�
 as input. The difference between the two algorithms ��1 and 

��2 is that ��1 favors the small edges while ��2 favors the large edges. The final 
algorithm is to take a convex combination of ��1 and ��2 , i.e., run ��1 with prob-
ability q and ��2 with probability 1 − q.

Theorem  2 For edge-weighted online stochastic matching with integral arrival 
rates, the algorithm ��[q] with q = 0.149251 achieves a competitive ratio of at least 
0.70546.

The details of algorithm ��1 and ��2 and the proof of Theorem 2 are presented 
in the following sections.

3.3.2  Sub‑routine 1: Algorithm ��
1

In this section, we describe the randomized algorithm ��1 (Algorithm  3). Let 
��[�, 3] refer to the process of constructing the graph G

�
 with Fe copies of each 

edge e, decomposing it into three matchings,3 and randomly permuting the match-
ings. ��1 first invokes ��[�, 3] to obtain a random ordered triple of matchings, say 
[M1,M2,M3] . Notice that from LP Constraint (4) and the properties of ��[� , 3] and 
��[�, 3] , an edge will appear in at most two of the three matchings. For a small edge 
e = (u, v) with Fe = 1 , we say e is of type �1 if u has two other neighbors v1 and v2 
with F(u,v1)

= F(u,v2)
= 1 . We say e is of type �2 if u has exactly one other neighbor v1 

with F(u,v1)
= 2 . WLOG we can assume that for every u, Fu =

∑
e∈�(u) Fe = 3 ; other-

wise, we can add a dummy node v′ to the neighborhood of u. Similarly, we assume 
Fv =

∑
e∈�(v) Fe = 3 by adding dummy nodes u′ . Note that when we assign v to a 

dummy node u′ , it essentially means rejection of v when it arrives. Since all v has 
Fv = 3 , we can safely assume that each v has exactly one edge in each of the three 
matchings output by ��[�, 3] . We use the terminology, *assign v to u*, to denote 
that we assign v to u if u is not matched and reject v otherwise.

3 The natural way of repeatedly computing the maximum matching can be used to find this decomposi-
tion.
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Let �[��1, 1∕3] and �[��1, 2∕3] be the competitive ratio for a small edge and 
large edge respectively.

Lemma 5 For h = 0.537815 , ��1[h] achieves a competitive ratio 
�[��1, 2∕3] = 0.679417 , �[��1, 1∕3] = 0.751066 for a large and small edge 
respectively.

Proof In case of the large edge e, we divide the analysis into three cases where each 
case corresponds to e being in one of the three matchings. And we combine these 
conditional probabilities using Bayes’ theorem to get the final competitive ratio for 
e. For each of the two types of small edges, we similarly condition them based on 
the matching they can appear in, and combine them using Bayes’ theorem. A com-
plete version of proof can be found in Section A.1.1 of “Appendix”.   ◻

3.3.3  Sub‑routine 2: Algorithm ��
2

Algorithm ��2 (Algorithm 5) is a non-adaptive algorithm which takes G
�
 as input 

and performs well on the large edges with Fe = 2 . Recall that � is an integral vector 
output by ��[� , 3] with Fe ∈ {0, 1, 2} for each e. WLOG, we can assume that Fv = 3 
for every v in G

�
 ; otherwise we can add dummy vertices to ensure the case. Unlike 

��1 , ��2 will invoke a routine, denoted by ��∗[�, 2] (Algorithm 4), to generate a 
pair of pseudo matchings from �.

Note that the pair of matchings generated by ��∗[�, 2] can be pseudo-match-
ings. Consider the following case: (1) v has a large edge e = (u, v) ; (2) u has a 
small edge e� = (u, v�) other than e; and (3) v′ has two other small edges excluding 
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e′ . From ��∗[�, 2][y1, y2] , we see that with probability 1, e = (u, v) ∈ M1 and with 
probability y1∕3 ( e′ appears first in the random permutation and get selected in 
M1 ), e� = (u, v�) ∈ M1 . In that case, u will have two neighbors in M1.

Algorithm 5 describes ��2 which uses Algorithm 4 as a sub-routine.

Let �[��2, 1∕3] and �[��2, 2∕3] be the competitive ratios for small edges and 
large edges, respectively.

Lemma 6 For y1 = 0.687 and y2 = 1 , ��2[y1, y2] achieves a competitive ratio 
of �[��2, 2∕3] = 0.8539 and �[��2, 1∕3] = 0.4455 for a large and small edge 
respectively.

Proof We analyze this on a case-by-case basis by considering the local neighbor-
hood of the edge. A large edge can have two possible cases in its neighborhood, 
while a small edge can have eight possible cases. This is because of the fact that 
a large edge can have only small edges in its neighborhood while a small edge 
can have both large and small edges in its neighborhood. Choosing the worst case 
among the two for large edge and the worst case among the eight for the small edge, 
we prove the claim. Complete details of the proof can be found in section A.1.2 of 
“Appendix”.   ◻

3.3.4  Convex Combination of ��
1
 and ��

2

In this section, we prove Theorem 2.

Proof Let (a1, b1) be the competitive ratios achieved by ��1 for large and small 
edges, respectively. From Lemma 5 we have that a1 = 0.751 and b1 = 0.679 . Simi-
larly, let (a2, b2) denote the same for ��2 . From Lemma 6 we have a2 = 0.854 and 
b2 = 0.445.

We have the following two cases.

• 0 ≤ fe ≤
1

3
 : By marginal distribution property of ��[� , 3] , we know that 

Pr[Fe = 1] = 3fe . Thus, the final ratio is 

• 1∕3 ≤ fe ≤ 1 −
1

�

 : By the same properties of ��[� , 3] , we know that 
Pr[Fe = 2] = 3fe − 1 and Pr[Fe = 1] = 2 − 3fe . Thus, the final ratio is 

3fe(qb1∕3 + (1 − q)b2∕3)∕fe = qb1 + (1 − q)b2
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The competitive ratio of the convex combination is maximized at q = 0.149251 with 
a value of 0.70546.   ◻

3.4  A Note on the Integral Arrival Rates Assumption

As mentioned in the introduction, we make the simplifying assumption that the 
arrival rates rv = 1 for every online vertex v ∈ V  . Our algorithms and analysis cru-
cially rely on this assumption. Specifically, our algorithm finds two matchings in 
the offline graph and uses them to guide the online matching process. In doing so, 
the algorithm assumes that each edge in those matchings is incident to an online 
vertex with an arrival rate of 1. Without this assumption, two key problems arise. 
First, Lemma 4, which bounds the probability that each edge gets matched, is no 
longer true as all of the analysis in the proof relies critically on the integral arrival 
rates assumption. Putting it simply, when arrival rates are arbitrary, Lemma 4 does 
not hold. Consider an edge e = (u, v) either in M1 or M2 with rv = 1∕n for example, 
where n is the total number of online rounds. We observe that e will be matched 
with a probability no larger than the probability that v arrives at least once, which is 
1 − (1 − 1∕n2)n ∼ 1∕n.

Second, the algorithm described above can have arbitrarily bad performance 
when the arrival rates are less than 1. This algorithm will find two matchings in the 
offline graph and only attempt to match edges in those matchings. However, note 
that when a vertex has a small arrival rate (e.g. 1

n
 ), it is unlikely to arrive at all dur-

ing the online process. It is possible to construct examples where the edges added to 
our two matchings after our rounding procedure will be incident on online vertices 
that are unlikely to arrive. Thus, our online algorithm would match almost no edges 
while the optimal offline algorithm could find a large value matching among the ver-
tices that actually arrived.

4  Vertex‑Weighted Stochastic I.I.D. Matching with Integral Arrival 
Rates

In this section, we consider vertex-weighted online stochastic matching on a bipar-
tite graph G under the known I.I.D. model with integral arrival rates. We pre-
sent an algorithm in which each offline vertex u has a competitive ratio of at least 
0.72998 > 1 − 2�−2.

Recall from Sect.  2.6 that after invoking ��[� , 3] , we can obtain a (random) 
integral vector � with Fe ∈ {0, 1, 2} . Define � = �∕3 and thus He ∈ {0, 1∕3, 2∕3} . 
Notice that Fu =

∑
e∈�(u) Fe ≤ 3 due to the degree preservation property from 

��[� , 3] and Hu ≐
∑

e∈�(u) He ≤ 1 . Let G(�) and G(�) be the induced sub-graphs of 
G determined by Fe and He respectively. In particular, all edges e with Fe = 0 and 
He =0 are removed from the respective graphs.

The main idea of our algorithm is as follows. 

(
(3fe − 1)(2qa1∕3 + 2(1 − q)a2∕3) + (2 − 3fe)(qb1∕3 + (1 − q)b2∕3)

)
∕fe
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1. Solve the vertex-weighted benchmark LP in Sect. 2.1. Let � be an optimal solution 
vector.

2. Invoke ��[� , 3] to obtain an integral vector � and a fractional vector � with 
� = �∕3.

3. Apply a series of modifications to � and transform it to another solution �′ (See 
Sect. 4.2).

4. Run the Randomized List Algorithm [13] with parameter �′ , denoted by ���[��] , 
on G(�).

We first briefly describe how we overcome the vertex-weighted and unweighted bot-
tleneck cases for the algorithm in [13] and then explain the algorithm in full detail. 
Recall that [13] analyze their algorithm by considering cases for various neighbor-
hood structures at a given offline vertex.

The �� for the vertex-weighted case in [13] is shown in Fig. 2 (left), which hap-
pens at a node u with a competitive ratio of 0.725. Jaillet and Lu described and ana-
lyzed this case in Claim 5 within the proof of Lemma 7 from [13]. However, also 
from their analysis, we have that the node u1 in Fig. 2 (left) has a competitive ratio of 
at least 0.736. Hence, we can boost the performance of u at the cost of u1 by making 
u more likely to match and u1 less likely. Specifically, we increase the value of H(u,v1)

 
and decrease the value H(u1,v1)

 . Cases (10) and (11) in Fig. 4 illustrate this.
After this modification, we will later show that the new �� for vertex-weighted 

is now the C1 cycle shown in both Figs.  1 and  2 (right) and defined formally in 
Sect. 4.2.1. In fact, this is also the �� for the unweighted problem in [13] as well. 
Jaiillet and Lu give the following explaining in their “Tight example” section [13]:

It is worth mentioning that the ratio of 1 − 2�−2 is tight for this algorithm. The 
ratio can be achieved with the following example: Consider the case of the 
complete bipartite graph Kn,n , where n is an even number. One optimal solution 
to [the LP from [13]] consists of a disjoint union of n/2 cycles of length 4; 
within each cycle, two edges carry 1/3 flow, and two carry 2/3 flow. Since the 

Fig. 2  Left: The �� for Jaillet and Lu [13] for their vertex-weighted case. Right: The three possi-
ble types of cycles of length 4 after applying ��[� , 3] . Thin edges have H

e
= 1∕3 and thick edges have 

H
e
= 2∕3 . The arrows show how cycles C2 and C3 are broken
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underlying graph is Kn,n , the optimal offline solution is n. On the other hand, 
for any cycle in the offline optimal solution, the expected number of matches is 
2(1 − �

−2 ). Therefore, the competitive ratio in this instance is 1 − 2�−2 ≈ 0.729.

However, Lemma 7 implies that C1 cycles can be avoided with probability at least 
3

�

− 1 due to our LP and rounding procedure. This helps us improve the ratio even for 
the unweighted case in [13]. Lemma 7 describes this formally.

Lemma 7 For any given u ∈ U , u appears in a C1 cycle after ��[f , 3] with prob-
ability at most 2 − 3

�

.

Proof Consider the graph G(�) with � obtained from ��[� , 3] . Notice that for some 
vertex u to appear in a C1 cycle, it must have a neighboring edge with He = 2∕3 . 
Now we try to bound the probability of this event. It is easy to see that for some 
e ∈ �(u) with fe ≤ 1∕3 , Fe ≤ 1 after ��[� , 3] , and hence He = Fe∕3 ≤ 1∕3 . Thus 
only those edges e ∈ �(u) with fe > 1∕3 will possibly be rounded to He = 2∕3 . Note 
that, there can be at most two such edges in �(u) , since 

∑
e∈�(u) fe ≤ 1 . Hence, we 

have the following two cases.

• Case 1  �(u) contains only one edge e with fe > 1∕3 . Let q1 = Pr[He = 1∕3] 
and q2 = Pr[He = 2∕3] after ��[� , 3] . By ��[� , 3] , we know that 
�[He] = � [Fe]∕3 = q2(2∕3) + q1(1∕3) = fe.

  Notice that q1 + q2 = 1 and hence q2 = 3fe − 1 . Since this is an increas-
ing function of fe and fe ≤ 1 −

1

�

 from LP constraint (4), we have 
q2 ≤ 3(1 −

1

�

) − 1 = 2 −
3

�

.
• Case 2 �(u) contains two edges e1 and e2 with fe1 > 1∕3 and fe2 > 1∕3 . Let q2 be 

the probability that after ��[� , 3] , either He1
= 2∕3 or He2

= 2∕3 . Note that, these 
two events are mutually exclusive since Hu ≤ 1 . Using the analysis from case 1, 
it follows that q2 = (3fe1 − 1) + (3fe2 − 1) = 3(fe1 + fe2 ) − 2.

  From LP constraint (5), we know that fe1 + fe2 ≤ 1 −
1

�
2
 , and hence 

q2 ≤ 3(1 −
1

�
2
) − 2 < 2 −

3

�

.

  ◻

Now we present the details of ��� based on a given �′ in Sect. 4.1 and then dis-
cuss the two modifications transforming � to �′ in Sect. 4.2. We give a formal state-
ment of our algorithm in Sect. 4.3 and the related analysis.

4.1  ��� Algorithm

We describe how to apply the ��� algorithm with parameter �′ . WLOG assume that 
H�

v
≐
∑

e∈�(v) H
�
e
= 1.4 Let �

�� (v) be the set of neighbors of v in G(��) with H′
u,v

> 0 . 
Thus, |��

�
(v)| ≥ 2 since each non-zero H′

e
 satisfies H�

e
∈ {1∕3, 2∕3}.

4 We can add a dummy node u′ to v if H′
v
< 1 and assignment v to u′ simply means rejection of v.
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Each time when a vertex v comes, ��� first generates a random list Rv , which is a 
permutation over �

�� (v) , as follows.

• If |�
�� (v)| = 2 , say �

�� (v) = (u1, u2) , then sample a random list Rv such that 

• If |�
�� (v)| = 3 , say �

�� (v) = (u1, u2, u3) . Then we sample a permutation of (i, j, k) 
over {1, 2, 3} such that 

We can verify that the sampling distributions described in Eqs. (11) and (12) are 
valid since H�

v
=
∑

e∈�(v) H
�
e
= 1 and no H�

e
= 1 . (Both properties are guaranteed in 

the two modifications shown in Sect. 4.2.) The full details of the Random List Algo-
rithm, ���[��] , are shown in Algorithm 6. 

4.2  Two Kinds of Modifications to �

As stated earlier, we first modify � before running the ��� algorithm. In this sec-
tion, we describe the modifications.

4.2.1  The First Modification to � : Cycle Breaking

The first modification is to break the cycles of length 4 deterministically. There are 
three possible cycles of length 4 in the graph G

�
 , denoted C1 , C2 , and C3 in the right-

hand side of Fig. 2 and defined as follows.

Definition 1 (Cycle type C1 ) This length 4 cycle is a complete bipartite graph on 
two offline vertices and two online vertices. It has two vertex-disjoint edges with 
He = 2∕3 and the remaining edges have He = 1∕3.

(11)Pr[Rv = (u1, u2)] = H�
(u1,v)

, Pr[Rv = (u2, u1)] = H�
(u2,v)

(12)Pr[Rv = (ui, uj, uk)] = H�
(ui,v)

H�
(uj,v)

H�
(uj,v)

+ H�
(uk ,v)
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Definition 2 (Cycle type C2 ) This length 4 cycle is a complete bipartite graph on 
two offline vertices and two online vertices. It has one edge with He = 2∕3 and the 
remaining edges have He = 1∕3.

Definition 3 (Cycle type C3 ) This length 4 cycle is a complete bipartite graph on 
two offline vertices and two online vertices. All edges have He = 1∕3.

In [13], they give an efficient way to break C2 and C3 , as shown in Fig. 2. Cycle 
C1 cannot be modified further and hence, is the bottleneck for their unweighted 
case. Notice that, while breaking the cycles of type C2 and C3 , new cycles of C1 
can be created in the graph. Since our randomized construction of solution � 
gives us control on the probability of cycles C1 occurring, we would like to break 
C2 and C3 in a controlled way, so as not to create any new C1 cycles. This proce-
dure is summarized in Algorithm 7 and its correctness is proved in Lemma 8.

The proof of Lemma 8 will follow from three claims which we state and prove 
below.

Claim 3 Breaking cycles will not change the value Hw for any w ∈ U ∪ V .

Proof As shown in Fig. 2, we increase and decrease edge values fe in such a way 
that their sums Hw at any vertex w will be preserved.   ◻

Claim 4 After breaking a cycle of type C2, the vertices u1 , u2 , v1, and v2 can never be 
part of any length four cycle.

Proof Consider the structure after breaking a cycle of type C2 . Note that the edge 
(u2, v2) has been permanently removed and hence, these four vertices together can 
never be part of a cycle of length four. The vertices u1 and v1 have Hu1

= 1 and 
Hv1

= 1 respectively. So they cannot have any other edges and therefore cannot 
appear in any length four cycle. The vertices u2 and v2 can each have one additional 
edge, but since the edge (u2, v2) has been removed, they can never be part of any 
cycle with length less than six.   ◻

Claim 5 When all length four cycles are of type C1 or C3, breaking exactly one cycle 
of type C3 cannot create a new cycle of type C1.

Proof First, we note that since no edges will be added during this process, we cannot 
create a new cycle of length four or join with a cycle of type C1 . Therefore, the only 
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cycles which could be affected are of type C3 . However, every cycle c of type C3 falls 
into one of two cases: 

Case 1 c is the cycle we are breaking. In this case, c cannot become a cycle of type 
C1 since we remove two of its edges and break the cycle.

Case 2 c is not the cycle we are breaking. In this case, c can have at most one of its 
edges converted to a 2/3 edge. Let c′ be the length four cycle we are breaking. 
Note that c and c′ will differ by at least one vertex. When we break c′ , the two 
edges which are converted to 2/3 will cover all four vertices of c′ . Therefore, at 
most one of these edges can be in c.

  Note that breaking one cycle of type C3 could create cycles of type C2 , but these 
cycles are always broken in the next iteration, before breaking another cycle of 
type C3.

  ◻

Lemma 8 After applying Algorithm 7 to G(�) , we have (1) the value Hw is pre-
served for each w ∈ U ∪ V  ; (2) no cycle of type C2 or C3 exists; (3) no new cycle of 
type C1 is added.

Proof The proof follows from Claims 3, 4, and 5. Notice that C2 cycles can be freely 
broken without creating new C1 cycles. After removing all cycles of type C2 , remov-
ing a single cycle of type C3 cannot create any cycles of type C1 . Hence, Algorithm 7 
removes all C2 and C3 cycles without creating any new C1 cycles.   ◻

4.2.2  The Second Modification to � : Balancing the Worst Case

Informally, this second modification decreases He values on u with Hu = 1∕3 or 
Hu = 2∕3 and increases He values on u with Hu = 1 . We will illustrate this intuition 
on the following example.

Consider the two graphs, denoted by GL and GR in Fig. 3, where thin and thick edges 
represent He = 1∕3 and He = 2∕3 respectively. We now compute the competitive ratio 
after applying ��� on GL . For each node w, let �(w) be the set of neighbors of w in GL . 
Let Au be the event that u is matched in ��� . Let Au,1 denote the event that among the 

Fig. 3  An example of the need for the second modification. For the left: competitive analysis shows that 
in this case, u1 and u2 can achieve a high competitive ratio at the expense of u. For the right: an example 
of balancing strategy by making v1 slightly more likely to pick u when it comes
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n random arrival lists, there exists a list starting with u. For each v ∈ �(u) = {v1, v2} , 
let Av

u,2
 denote the event that among the n online arrival lists, there exists successive 

lists such that (I) Each of those lists starts with a u′ ≠ u and u� ∈ �(v) and (II) The lists 
arrive in an order which ensures u will be matched by the algorithm. From lemma 4 
and Corollary 1 in [13], we have the following.

Lemma 9 ( [13]) Suppose u is not a part of any cycle of length 4. We have

The validity of the above lemma can be seen as follows: the probability that u is not 
matched ( ¬Au ) can be approximated up to o(1/n) by the probability that none of lists 
arrives staring with u ( ¬Au,1 ) and none of events described in (II) occurs (∧v∈�(u)¬A

v
u,2
).

For the node u in GL , we have Pr[Au,1] = 1 − �
−1 . From the definition, Av1

u,2
 is the 

event that among the n online lists, the random list Rv1
= (u1, u) comes at least twice. 

Notice that the list Rv1
= (u1, u) arrives with probability 1

3n
 each round. Thus we have 

Pr[A
v1
u,2
] = Pr[X ≥ 2] = 1 − �

−1∕3(1 + 1∕3) , where X ∼ Pois(1∕3) . Similarly, we can 
get Pr[Av2

u,2
] = 1 − �

−2∕3(1 + 2∕3) and the resultant Pr[Au] = 1 −
20

9e2
∼ 0.699 . Observe 

that for u1 and u2 , Pr[Au1
≥ Pr[Au1,1

] = 1 − �
−1∕3 and Pr[Au2

] ≥ Pr[Au2,1
] = 1 − �

−2∕3.
Let �[���, 1] , �[���, 1∕3] and �[���, 2∕3] be the competitive ratio achieved 

by ��� for u, u1 and u2 respectively. Hence, we have �[���, 1] ∼ 0.699 while 
�[���, 1∕3] ≥ 3(1 − �

−1∕3) ∼ 0.8504 and �[���, 2∕3] ≥ 0.729.
Intuitively, one can improve the worst case ratio by increasing the arrival rate for 

Rv1
= (u, u1) while reducing that for Rv1

= (u1, u) . Suppose we modify H(u1,v1)
 and 

H(u,v1)
 to H�

(u1,v1)
= 0.1 and H�

(u,v1)
= 0.9 as shown in GR , the arrival rate for 

Rv1
= (u, u1) and Rv1

= (u1, u) gets modified to 0.1/n and 0.9/n respectively. The 
updated values are Pr[Au,1] = 1 − �

−0.9−1∕3 , Pr[A
v1
u,2
] = 1 − �

−0.1(1 + 0.1) , 
�[���, 1] = 0.751 , Pr[Au1,1

] = 1 − �
−1∕3 , Pr[Av1

u1,2
] ∼ 0.227 and �[���, 1∕3] ≥ 0.8 . 

Hence, the performance on �� instance improves. Notice that after the modifica-
tions, H�

u
= H�

(u,v1)
+ H(u,v2)

= 0.9 + 1∕3.
Figure 4 describes the various modifications applied to � vector. The values on 

top of the edge, denote the new values. Cases (11) and (12) help improve upon the 
�� described in Fig. 2.

4.3  Vertex‑Weighted Algorithm ��

4.3.1  Analysis of Algorithm ��

The full details of our vertex-weighted algorithm are stated as follows. 

Pr[Au] = 1 − (1 − Pr[Au,1])
∏
v∈�(u)

(1 − Pr[Av
u,2
]) + o(1∕n)
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The algorithm �� consists of two different random processes: sub-routine 
��[� , 3] in the offline phase and ��� in the online phase. Consequently, the anal-
ysis consists of two parts. First, for a given graph G

�
 , we analyze the ratio of 

���[��] for each node u with Hu = 1∕3,Hu = 2∕3 and Hu = 1 . The analysis is 
similar to [13]. Second, we analyze the probability that ��[� , 3] transforms each 
u, with fractional fu values, into the three discrete cases seen in the first part. By 
combining the results from these two parts we get the final ratio.

Fig. 4  Illustration for second modification to � . The value assigned to each edge represents the value 
after the second modification. Here, x1 = 0.2744 and x2 = 0.15877
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Let us first analyze the competitive ratio for ���[��] . For a given � and G(�) , 
let �u be the probability that u gets matched in ���[��] . Notice that the value 
�u is determined not just by the algorithm ��� itself, but also the modifications 
applied to � . We define the competitive ratio of a vertex u achieved by ��� as 
�u∕Hu , after modifications. Lemma 10 gives the respective ratio values. The proof 
can be found in section A.2.1 in the “Appendix”.

Lemma 10 Consider a given � and a vertex u. The respective ratios achieved by 
��� after the modifications are as described below.

• If Hu = 1 , then the competitive ratio �[���, 1] = 1 − 2�−2 ∼ 0.72933 if u is in 
the first cycle C1 and �[���, 1] ≥ 0.735622 otherwise.

• If Hu = 2∕3 , then the competitive ratio �[���, 2∕3] ≥ 0.7847.
• If Hu = 1∕3 , then competitive ratio �[���, 1∕3] ≥ 0.7622.

Now we have all ingredients to state and prove Theorem 6.

Theorem  6 For vertex-weighted online stochastic matching with integral arrival 
rates, online algorithm �� achieves a competitive ratio of at least 0.7299.

Proof From Lemmas 7 and 8, we know that any u is present in cycle C1 with prob-
ability at most (2 − 3

�

).
Consider a node u with 2∕3 ≤ fu ≤ 1 and let q1, q2, q3 be the probability that after 

��[� , 3] and the first modification, Hu = 1 and u is in the first cycle C1 , Hu = 1 and 
u is not in C1 , Hu = 2∕3 respectively. From the marginal distribution of ��[� , 3] , we 
have that q1 + q2 + q3(2∕3) = � [�u]∕3 = 3fu∕3 = fu . From Lemma 10, we get that 
the final ratio for u is

Minimizing the above expression subject to (1) q1 + q2 + q3 = 1 ; (2) 
0 ≤ qi, 1 ≤ i ≤ 3 ; (3) q1 ≤ 2 −

3

�

 , we get a minimum value of 0.729982 for 
q1 = 2 −

3

�

 and q2 =
3

�

− 1.
For any node u with 0 ≤ u ≤ 2∕3 , we know that the ratio is at least the min value 

of �[���, 2∕3] and �[���, 1∕3] , which is 0.7622. This completes the proof of Theo-
rem 6.   ◻

1

fu
Pr[u is matched] =

1

fu

(
q1 Pr[ u is matched |Hu = 1, u ∈ C1]

+ q2 Pr[ u is matched |Hu = 1, u ∉ C1]

+ q3 Pr[ u is matched |Hu = 2∕3, u ∈ C1]
)

≥
0.72933q1 + 0.735622q2 + (2∕3) ∗ 0.7847q3

q1 + q2 + (2∕3)q3
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5  Non‑integral Arrival Rates with Stochastic Rewards

The setting here is strictly generalized over the previous sections in the follow-
ing ways. Firstly, it allows an arbitrary arrival rate (say rv ) which can be frac-
tional for each stochastic vertex v. Notice that, 

∑
v rv = n where n is the total num-

ber of rounds. Secondly, each e = (v, u) ∈ E is associated with a value pe , which 
captures the probability that the edge e = (u, v) is present when we probe it. We 
assume this process is independent of the stochastic arrival of each v. We will 
show that the simple non-adaptive algorithm introduced in [12] can be extended 
to this general case. This achieves a competitive ratio of (1 − 1

�

) . Note that Man-
shadi et al. [19] show that no non-adaptive algorithm can possibly achieve a ratio 
better than (1 − 1∕�) for the non-integral arrival rates, even for the case of all 
pe = 1 . Thus, our algorithm is an optimal non-adaptive algorithm for this model.

We use an LP similar to [13] for the case of non-integral arrival rates. For each 
e = (u, v) ∈ E , let fe be the expected number of probes on edge e. When there 
are multiple copies of v, we count the sum of probes among all copies of e in the 
offline optimal matching and thus some realizations of fe can be greater than 1. 
Consider the below LP:

Similar to Lemma 1, we have the below lemma.

Lemma 11 Let OPT denote the expected weight obtained by an offline opti-
mal algorithm. Let �∗ denote the optimal solution to the above LP . Then ∑

e∈E wef
∗
e
pe ≥ �[OPT].

Proof For each edge e, let Ye indicate if e is probed (not necessarily matched) in 
an offline optimal algorithm after observing the full arrival sequence A . Let 
ye ≐ �A[Ye] for every edge e ∈ E . Note that � [OPT] =

∑
e∈E weyepe . Now we show 

that � ≐ (ye)e∈E is feasible solution to LP  (13).
Consider a given u. Let Ze indicate if e is present when probed with mean pe . 

Observe that 
∑

e∈�(u) YeZe indicate if u is matched in OPT . For any given realiza-
tion of A , we have 

∑
e∈�(u) YeZe ≤ 1 since u can be matched at most once. Thus, 

by linearity of expectation, we have � [
∑

e∈�(u) YeZe ≤ 1] ≤ 1 , which implies that ∑
e∈�(u) yepe ≤ 1 . Thus, Constraint (14) is valid.

(13)max
∑
e∈E

wefepe

(14)s.t.
∑
e∈�(u)

fepe ≤ 1 ∀u ∈ U

(15)
∑
e∈�(v)

fe ≤ rv ∀v ∈ V

(16)0 ≤ fe ∀e ∈ E
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Consider a given v. Let Rv be the (random) number of copies in A . Observe that ∑
e∈�(v) Ye ≤ Rv . By taking expectation over randomness of A on both sides, we get 

� [
∑

e∈�(v) Ye] ≤ � [Rv] = rv . Thus, Constraint (15) is valid.
Hence, we have that the expected performance of an offline optimal is upper 

bounded by the optimal value to LP  (13).   ◻

Our algorithm is summarized in Algorithm  9. Notice that Constraint  (15) 
ensures that Step 2 is valid. For a given v, recall that �(v) is the set of edges inci-
dent to v in E.

Theorem  7 For edge-weighted online stochastic matching with arbitrary arrival 
rates and stochastic rewards, online algorithm �� (9) achieves a competitive ratio 
of 1 − 1∕� , which is optimal all among all non-adaptive algorithms.

Proof Let B(u, t) be the event that u is safe (i.e., u is not matched) at beginning of 
round t and A(u, t) be the event that vertex u is matched during the round t condi-
tioned on B(u,  t). From the algorithm, we know Pr[A(u, t)] ≤

∑
e=(u,v)∈�(u)

rv

n

fe

rv
pe ≤

1

n
 , 

which is followed by Pr[B(u, t)] = Pr
�⋀t−1

i=1
(¬A(u, i))

�
≥

�
1 −

1

n

�t−1

.
Consider a given edge e = (u, v) in the graph. Notice that the probability that e 

gets matched in �� should be

Note that Manshadi et  al. [19] show that no non-adaptive algorithm can possibly 
achieve a ratio better than (1 − 1∕�) for the non-integral arrival rates, even for the 
case of all pe = 1 . Thus, our algorithm is an optimal non-adaptive algorithm for this 
model.   ◻

Pr[e is matched] =

n∑
t=1

Pr[v arrives at t and B(u, t)] ⋅
fepe

rv

≥

n∑
t=1

(
1 −

1

n

)t−1 rv

n

fepe

rv
≥

(
1 −

1

�

)
fepe
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6  Integral Arrival Rates with Uniform Stochastic Rewards

In this section, we consider a special case of the model studied in Sect. 5 and show 
that we can indeed surpass the 1 − 1∕� barrier. We specialize the model in the fol-
lowing two ways. (1) We consider the unweighted case with uniform constant edge 
probabilities (i.e., we = 1 and pe = p for some constant p ∈ (0, 1] for all e ∈ E ). The 
constant p is arbitrary, but independent of the problem parameters. (2) Each vertex v 
that comes online has an integral arrival rate rv (as usual WLOG rv = 1 and |V| = n ). 
We refer to this special model as unweighted online stochastic matching with inte-
gral arrival rates and uniform stochastic rewards. Note that even for this special 
case, given an offline instance (i.e., the sequence of realizations for the online 
arrival), it is unclear if we can efficiently solve or approximate the exact offline opti-
mal within (1 − �) without any extra assumptions. Hence we cannot directly apply 
the Monte-Carlo simulation technique in [19] to approximate the exact expected 
offline optimal within an arbitrary desired accuracy. Here we present a strengthened 
LP as the benchmark to upper bound the offline optimal.

Lemma 12 LP  (17) is a valid upper bound for the expected offline optimal.

Proof It suffices to show that constraint (20) is valid (the correctness of the other 
constraints follows from the previous section). Let fe represent the expected number 
of probes on edge e in an offline optimal algorithm (denoted by OPT ). Consider a 
given S ⊆ 𝜕(u) and let XS ∈ {0, 1}|S| be the indicators for edges in S to be matched in 
OPT . By definition we have � [XS] =

∑
e∈S fe ⋅ p . Let YS be the (random) number of 

arrivals of all vertices incident to edges in S during the online phase. Observe that 
� [XS|YS] ≤ 1 − (1 − p)YS . Thus, we have,

(17)max p ⋅
∑
e∈E

fe

(18)s.t.
∑
e∈�(u)

fe ⋅ p ≤ 1 ∀u ∈ U

(19)
∑
e∈�(v)

fe ≤ 1 ∀v ∈ V

(20)
∑
e∈S

fep ≤ 1 − exp(−|S|p) ∀S ⊆ 𝜕(u), |S| ≤ 2∕p

(21)0 ≤ fe ∀e ∈ E

� [XS] = �Y [� [XS|YS]] ≤ � YS
[1 − (1 − p)YS ].
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Note that for any constant size |S| ≤ 2∕p , YS follows a Poisson distribution with 
mean |S| (since we assume that the total number of online rounds n is sufficiently 
large). Therefore, we have

Therefore we show that � is feasible to constraint (20).   ◻

Note that it is impossible to beat 1 − 1∕� using LP (17) as the benchmark with-
out the extra constraint (20) (see the hardness instance shown in [5]). Our main 
idea in the online phase is based on [19]. In the offline phase, we first solve LP (17) 
and get an optimal solution {f ∗

e
} . When a vertex v arrives, we generate a random 

list of two choices based on {f ∗
e
|e ∈ �(v)} , denoted by Lv = (Lv(1),Lv(2)) , where 

Lv(1),L(2) ∈ �(v) . Our online decision based on Lv is as follows: if Lv(1) = (u, v) 
is safe, i.e., u is available, then match v to u; else if the second choice Lv(2) is safe 
match v to Lv(2) . The random list Lv generated based on {f ∗

e
|e ∈ �(v)} satisfies the 

following two properties: 

(P1):  Pr[Lv(1) = e] = f ∗
e
 and Pr[Lv(2) = e] = f ∗

e
 for each e ∈ �(v).

(P2):  Pr[Lv(1) = e ∧ Lv(2) = e] = max
(
2fe − 1, 0

)
 for each e ∈ �(v).

There are several ways to generate Lv satisfying (P1) and (P2). One simple way 
is shown in Section 4 of [19]. Another simple way of obtaining Lv as required is 
by running ��[�∗, 2] and randomly permuting the two obtained matchings. We can 
verify that all of the calculations shown in [19] can be extended here if we incorpo-
rate the independent process that each e will be present with probability p after we 
assign v to u. Hence, the final ratio is as follows (this can be viewed as a counterpart 
to Equation (15) on page 11 of [19]).

� [XS] ≤ � YS

[
1 − (1 − p)YS

]
= 1 − � YS

[(1 − p)YS ]

= 1 − exp(−|S|)
∞∑
k=0

|S|k
k!

(1 − p)k = 1 − exp(−|S|)
∞∑
k=0

(
|S|(1 − p)

)k

k!

= 1 − exp
(
− |S| + |S|(1 − p)

)
= 1 − exp(−p|S|)
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where f �
u
=
∑

e∈�(u) f
∗
e
⋅ p ≤ 1 and q�

u
= p ⋅

�∑
e=(u,v)∈�(u) Pr[Lv(2) = e ∧ Lv(1) ≠ e]

�
 . 

Observe that

We can verify that for each given f ′
u
≤ 1 , the RHS expression in inequality (22) is 

an increasing function of q′
u
 during the interval [0, 1]. Thus an important step is to 

lower bound q′
u
 for a given f ′

u
 . The following key lemma can be viewed as a counter-

part to Lemma 4.7 of [19]:

Lemma 13 For each given f �
u
≥ ln 2∕2 , we have that q�

u
≥ f �

u
− (1 − ln 2).

Proof Consider a given u with f �
u
≥ ln 2∕2 . Define � = f �

u
− q�

u
 . Thus we have the 

following.

Thus to lower bound q′
u
 , we essentially need to maximize � . Let S∗ ⊆ 𝜕(u) be the set 

of edges in �(u) with f ∗
e
≥ 1∕2 , which is called a contributing edge. Thus we have

Observe that

(22)

� [ALG]

� [OPT]
≥

min
u∈U

⎛
⎜⎜⎜⎝

(1 − �
−f �

u ) + q�
u
�
−2 − (q�

u
)2�−1

�
1

2
− �

−1
�
− �

−2f �
u
(1 − f �

u
)

f �
u

⎞
⎟⎟⎟⎠
≐ F(f �

u
, q�

u
)

q�
u
≤ p ⋅

( ∑
e=(u,v)∈�(u)

Pr[Lv(2) = e]
)
= p ⋅

( ∑
e∈�(u)

f ∗
e

)
= f �

u
≤ 1

�

= p ⋅
∑

e=(u,v)∈�(u)

(
f ∗
e
− Pr[Lv(2) = e ∧ Lv(1) ≠ e]

)

= p ⋅
∑

e=(u,v)∈�(u)

(
Pr[Lv(2) = e] − Pr[Lv(2) = e ∧ Lv(1) ≠ e]

)
From ��

= p ⋅
∑

e=(u,v)∈�(u)

(
Pr[Lv(2) = e ∧ Lv(1) = e]

)

= p ⋅
∑
e∈�(u)

max
(
2f ∗

e
− 1, 0

)
From ��

(23)� = p ⋅
∑
e∈�(u)

max
(
2f ∗

e
− 1, 0

)
= p ⋅

∑
e∈S∗

(2f ∗
e
− 1) =

∑
e∈S∗

2pf ∗
e
− p|S∗|

(24)
p

2
|S∗| ≤ ∑

e∈S∗

f ∗
e
⋅ p ≤ f �

u
⇒ |S∗| ≤ 2f �

u

p
≤

2

p
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From Constraint (20), we have 
∑

e∈S∗ (pf
∗
e
) ≤ 1 − exp(−�S∗�p) . Substituting this ine-

quality back into Eq. (23), we get

It is easy to verify that when f �
u
≥ ln 2∕2 , the above expression has a maxi-

mum value of 1 − ln 2 when |S∗| ⋅ p = ln 2 . Thus we have that � ≤ 1 − ln 2 and 
q�
u
≥ f �

u
− (1 − ln 2) .   ◻

Theorem 8 For unweighted online stochastic matching with integral arrival rates 
and uniform constant stochastic rewards, there exists an adaptive algorithm which 
achieves a competitive ratio of at least 0.702.

Proof We need to prove that F(f �
u
, q�

u
) defined in (22) has a lower bound of 0.702 for 

all f �
u
∈ [0, 1].

Consider the first case when f �
u
≤ ln 2∕2 . It is easy to verify that 

F(f �
u
, q�

u
) ≥ F(f �

u
, 0) ≥ F(ln 2∕2, 0) ∼ 0.8 . Consider the second case when 

f �
u
≥ ln 2∕2 . From Lemma 13, we have q�

u
≥ f �

u
− (1 − ln 2) . Once again, simple cal-

culations show that

  ◻

7  Conclusion and Future Directions

In this paper, we gave improved algorithms for the Edge-Weighted and Vertex-
Weighted models. Previously, there was a gap between the best unweighted algo-
rithm with a ratio of 1 − 2�−2 due to [13] and the negative result of 1 − �

−2 due to 
[19]. We took a step towards closing that gap by showing that an algorithm can 
achieve 0.7299 > 1 − 2�−2 for both the unweighted and vertex-weighted variants 
with integral arrival rates. In doing so, we made progress on Open Questions 3 
and 4 in the online matching and ad allocation survey [18]. This was possible 
because our approach of rounding to a simpler fractional solution allowed us to 
employ a stricter LP. For the edge-weighted variant, we showed that one can sig-
nificantly improve the power of two choices approach by generating two match-
ings from the same LP solution. For the variant with edge weights, non-integral 
arrival rates, and stochastic rewards, we presented a (1 − 1∕�)-competitive algo-
rithm. This showed that the 0.62 < 1 − 1∕� bound given in [21] for the adver-
sarial model with stochastic rewards does not extend to the known I.I.D. model.

A natural next step in the edge-weighted setting is to use an adaptive strategy. 
For the vertex-weighted problem, one can easily see that the stricter LP we use 
still has a gap. In addition, we only utilize fractional solutions {0, 1∕3, 2∕3} . 
However, dependent rounding gives solutions in {0, 1∕k, 2∕k,… , ⌈k(1 − 1∕�)⌉∕k} ; 
allowing for random lists of length greater than three. Stricter LPs and longer 

� ≤ 2 − 2 exp
(
− |S∗| ⋅ p) − |S∗| ⋅ p

F(f �
u
, q�

u
) ≥ F

(
f �
u
, f �
u
− (1 − ln 2)

)
≥ F(1, 1 − (1 − ln 2)) ∼ 0.702
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lists could both yield improved results. In the stochastic rewards model with non-
integral arrival rates, an open question is to either improve upon the 

(
1 −

1

e

)
 ratio 

in the general case. In this work, we showed how for certain restrictions it is pos-
sible to beat 1 − 1∕� . However, the serious limitation comes from the fact that a 
polynomial sized LP is insufficient to capture the complexity of the problem.

Acknowledgements The authors would like to thank Aranyak Mehta and the anonymous reviewers for 
their valuable comments, which have significantly helped improve the presentation of this paper.

A Appendix

A.1 Supplementary Materials in Sect. 3 (Edge‑Weighted Model)

A.1.1 Proof of Lemma 5

We will prove Lemma 5 using the following three Claims. Recall that we had one 
kind of large edge, while two kinds of small edges. Hence, the following claim char-
acterizes the performance of each of them.

Claim 9 For a large edge e, ��1[h] (3) with parameter h achieves a competitive 
ratio of �[��1, 2∕3] = 0.67529 + (1 − h) ∗ 0.00446.

Claim 10 For a small edge e of type �1 , ��1[h] (3) achieves a competitive ratio of 
�[��1, 1∕3] = 0.751066, regardless of the value h.

Claim 11 For a small edge e of type �2 , ��1[h] (3) achieves a competitive ratio of 
�[��1, 1∕3] = 0.72933 + h ∗ 0.040415.

By setting h = 0.537815, the two types of small edges have the same ratio and we 
get that ��1[h] achieves (�[��1, 2∕3],�[��1, 1∕3]) = (0.679417, 0.751066). Thus, 
this proves Lemma 5.

Proof of Claim 9 Consider a large edge e = (u, v1) in the graph G
�
 . Let e� = (u, v2) be 

the other small edge incident to u. Edges e and e′ can appear in [M1,M2,M3] in the 
following three ways.

• �1 : e ∈ M1, e
� ∈ M2, e ∈ M3.

• �2 : e� ∈ M1, e ∈ M2, e ∈ M3.
• �3 : e ∈ M1, e ∈ M2, e

� ∈ M3.

Notice that the random triple of matchings [M1,M2,M3] is generated by invoking 
��[�, 3] . Since ��[�, 3] considers a uniform random permutation we have that �i 
will occur with probability 1/3 for 1 ≤ i ≤ 3 . For �1 and �2 , we can ignore the second 
copy of e in M3 and from Lemma 4 we have
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For �3 , we have

There are four terms in the summation above. The four terms denote the probabili-
ties that v1 comes for the first time at some time t ∈ [T] and v2 arrives for 0, 1, 2 and 
3 times before t respectively. Note that in the last term when v2 comes for a third 
time at some time before t, we need to ensure that v3 never matches u which occurs 
with probability 1 − h as described in ��1.

Recall that �[��1, 2∕3] denotes the competitive ratio for a large edge. By defini-
tion, we have

Proof of Claims 10 and 11 Consider a small edge e = (u, v) of type �1 . Let e1 and e2 be 
the two other small edges incident to u. For a given triple of matchings [M1,M2,M3] , 
we say e is of type �1 if e appears in M1 while the other two in the remaining two 
matchings. Similarly, we define the type �2 and �3 for the case where e appears in 
M2 and M3 respectively. Notice that the probability that e is of type �i, 1 ≤ i ≤ 3 is 
1/3.   ◻

Similar to the calculations in the proof of Claim 9, we have 
Pr[e is matched | �1] ≥ 0.571861 , Pr[e is matched | �2] ≥ 0.144776 and 
Pr[e is matched | �3] ≥ 0.0344288 . Therefore we have

where �[��1, 1∕3] = 0.751066.
Consider a small edge e = (u, v) of type �2 , we define type �i, 1 ≤ i ≤ 3 , 

if e appears in Mi while the large edge e′ incident to u appears in the 

Pr[e is matched | �1]=0.580831 and Pr[e is matched | �2]=0.148499

Pr[e is matched | �3] ≥
n∑
t=1

1

n

(
1 −

2

n

)t−1

+

n∑
t=1

1

n

(
t − 1

n

)(
1 −

2

n

)t−2

+

n∑
t=1

1

n

(
(t − 1)(t − 2)

2n2

)(
1 −

2

n

)t−3

+ (1 − h)

n∑
t=1

1

n

(
1

n3

)(
t − 1

3

)(
1 −

2

n

)t−4

≥0.621246 + (1 − h) ∗ 0.00892978

�[��1, 2∕3] =
Pr[e is matched]

2∕3

=

1

3

∑3

i=1
Pr[e is matched� �i]

2∕3

≥ 0.67529 + (1 − h) ∗ 0.00446489

Pr[e is matched] =
1

3

3∑
i=1

Pr[e is matched | �i] ≥
1

3
�[��1, 1∕3]
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remaining two matchings. Similarly, we have Pr[e is matched| �1] ≥ 0.580831 , 
Pr[e is matched| �2] ≥ 0.148499 and Pr[e is matched| �3] ≥ h ∗ 0.0404154.

Hence, the ratio for a small edge of type �2 is 
�[��1, 1∕3] = 0.72933 + h ∗ 0.0404154.

A.1.2 Proof of Lemma 6

We will prove Lemma 6 using the following two Claims.

Claim 12 For a large edge e, ��2[y1, y2] (5) achieves a competitive ratio of

Claim 13 For a small edge e, ��2[y1, y2] (5) achieves a competitive ratio of 
�[��2, 1∕3] = 0.4455, when y1 = 0.687, y2 = 1.

Therefore, by setting y1 = 0.687, y2 = 1 we get that �[��2, 2∕3] = 0.8539 and 
�[��2, 1∕3] = 0.4455 , which proves Lemma 6.

Proof of Claim 12 Figure 5 shows the two possible configurations for a large edge.

Consider a large edge e = (u, v1) with the configuration (A). From 
��

∗[�, 2][y1, y2] , we know that e will always be in M1 while e� = (u, v2) will be in 
M1 and M2 with probability y1∕3 and y2∕3 respectively.

We now have the following cases:

• �1 : e ∈ M1 and e� ∈ M1 . This happens with probability y1∕3 . In this case, e is 
matched if v1 comes for the first time at some time t ∈ [T] and v2 never comes 
before t. Thus, 

• �2 : e ∈ M1 and e� ∈ M2 . This happens with probability y2∕3 . In this case, e 
is matched if v1 comes for the first time at some time t ∈ [T] and v2 comes at 
most once before t. Note that this case is essentially the same as P1 described in 
Lemma 4. Thus, we have 

�[��2, 2∕3] = min
(
0.948183 − 0.099895y1 − 0.025646y2, 0.871245

)

Pr[e is matched | �1] =
n∑
t=1

1

n

(
1 −

2

n

)t−1

≥ 0.432332

Pr[e is matched | �2] ≥ 0.580831

Fig. 5  Diagram of configura-
tions for a large edge e = (u, v1) . 
Thin and Thick lines represent 
small and large edges respec-
tively

(A) (B)
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• �3 : e ∈ M1 and e� ∉ M1, e
� ∉ M2 . This happens with probability 

(1 − y1∕3 − y2∕3) . In this case, e is matched if v1 comes at least once. Thus, 
Pr[e is matched| �1] = 1 − 1∕� ≥ 0.632121.

Therefore we have

Consider the configuration (B). From ��∗[�, 2][y1, y2] , we know that e will always 
be in M1 and e� = (u, v2) will always be in M2 . Thus we have

Hence, this completes the proof of Claim 12.

Proof of Claim 13 Figure 6 shows all possible configurations for a small edge.

Similar to the proof of Claim 12, we will do a case-by-case analysis on the 
various configurations. Let ei = (u, vi) for 1 ≤ i ≤ 3 and E be the event that e1 gets 
matched. For a given ei , denote ei ∈ M0 if ei ∉ M1, ei ∉ M2.

• (1a). Observe that e1 ∈ M2 and e2 ∈ M1 . Thus we have Pr[ E ] =
1

3
∗ 0.44550.

• (1b). Observe that we have two cases: {�1 ∶ e2 ∈ M1, e1 ∈ M1} and 
{�2 ∶ e2 ∈ M1, e1 ∈ M2} . Case �1 happens with probability y1∕3 and the con-

Pr[e is matched] =
(y1
3
Pr[e is matched | �1] +

y2

3
Pr[e is matched | �2]

+ (1 −
y1

3
−

y2

3
)Pr[e is matched | �3]

)

≥
2

3
(0.948183 − 0.099895y1 − 0.025646y2)

Pr[e is matched] = Pr[e is matched | �2] = 2

3
∗ 0.871245

Fig. 6  Diagram of configurations for a small edge e = (u, v1) . Thin and Thick lines represent small and 
large edges respectively
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ditional probability is Pr[ E |�1] = 0.432332 . Case �2 happens with probability 
y2∕3 and the conditional is Pr[ E |�2] = 0.148499 . Thus we have 

• (2a). Observe that e1 ∈ M2, e2 ∈ M2, e3 ∈ M2 . Pr[ E ] =
1

3
∗ 0.601704

• (2b). Observe that we have two cases: {�1 ∶ e1 ∈ M1, e2 ∈ M2, e3 ∈ M2} and 
{�2 ∶ e1 ∈ M2, e2 ∈ M2, e3 ∈ M2} . Case �1 happens with probability y1∕3 and 
the conditional is Pr[ E |�1] = 0.537432 . Case �2 happens with probability y2∕3 
and conditional is Pr[ E |�2] = 0.200568 . Thus we have 

• (3a). Observe that we have three cases: {�1 ∶ e1 ∈ M2, e2 ∈ M1, e3 ∈ M2} , 
{�2 ∶ e1 ∈ M2, e2 ∈ M2, e3 ∈ M2} and {�2 ∶ e1 ∈ M2, e2 ∈ M0, e3 ∈ M2} . Case 
�1 happens with probability y1∕3 and conditional is Pr[ E |�1] = 0.13171 . Case 
�2 happens with probability y2∕3 and conditional is Pr[ E |�2] = 0.200568 . 
Case �3 happens with probability (1 − y1∕3 − y2∕3) and conditional is 
Pr[ E |�3] = 0.22933.

  Similarly, we have 

• (3b). Observe that we have six cases.

• �1 ∶ e1 ∈ M1, e2 ∈ M1, e3 ∈ M2 . Pr[�1] = y2
1
∕9 and Pr[ E |�1] = 0.4057.

• �2 ∶ e1 ∈ M1, e2 ∈ M2, e3 ∈ M2 . Pr[�2] = y1y2∕9 and Pr[ E |�2] = 0.5374.
• �3 ∶ e1 ∈ M1, e2 ∈ M0, e3 ∈ M2 . Pr[�3] = y1∕3(1 − y1∕3 − y2∕3) and 

Pr[ E |�3] = 0.58083.
• �4 ∶ e1 ∈ M2, e2 ∈ M1, e3 ∈ M2 . Pr[�4] = y1y2∕9, Pr[ E |�4] = 0.1317.
• �5 ∶ e1 ∈ M2, e2 ∈ M2, e3 ∈ M2 . Pr[�5] = y2

2
∕9, Pr[ E |�5] = 0.2006.

• �6 ∶ e1 ∈ M2, e2 ∈ M0, e3 ∈ M2 . Pr[�6] = y2∕3(1 − y1∕3 − y2∕3)∕3 and 
Pr[ E |�6] = 0.22933.

   Therefore we have 

• (4a). Observe that we have following six cases.

• �1 ∶ e1 ∈ M2, e2 ∈ M1, e3 ∈ M1 . Pr[�1] = y2
1
∕9 and Pr[ E |�1] = 0.08898.

• �2 ∶ e1 ∈ M2, e2 ∈ M2, e3 ∈ M2 . Pr[�2] = y2
2
∕9 and Pr[ E |�2] = 0.2006.

Pr[ E ] = y1∕3 ∗ Pr[ E |�1] + y2∕3 ∗ Pr[ E |�2] ≥ 1

3
(0.432332y1 + 0.148499y2)

Pr[ E ] = y1∕3 ∗ Pr[ E |�1] + y2∕3 ∗ Pr[ E |�2] ≥ 1

3
(0.537432y1 + 0.200568y2)

Pr[ E ] = y1∕3 ∗ Pr[ E |�1] + y2∕3 ∗ Pr[ E |�2] + (1 − y1∕3 − y2∕3) ∗ Pr[ E |�3]
≥

1

3
(0.13171y1 + 0.200568y2 + (3 − y1 − y2)0.22933)

Pr[ E ] ≥
1

3

(
0.135241y2

1
+ 0.223033y1y2 + 0.066856y2

2

+ y1(3 − y1 − y2)0.193610 + y2(3 − y1 − y2)0.076443
)
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• �3 ∶ e1 ∈ M2, e2 ∈ M0, e3 ∈ M0 . Pr[�3] = (1 − y1∕3 − y1∕3)
2, and 

Pr[ E |�3] = 0.2642.
• �4 : e1 ∈ M2 while either e2 ∈ M1, e3 ∈ M2 or e2 ∈ M2, e3 ∈ M1 . 

Pr[�2] = 2y1y2∕9 and Pr[ E |�4] = 0.1317.
• �5 : e1 ∈ M2 while either e2 ∈ M1, e3 ∈ M0 or e2 ∈ M0, e3 ∈ M1 . 

Pr[�5] = 2y1∕3(1 − y1∕3 − y2∕3) and Pr[ E |�5] = 0.14849.
• �6 : e1 ∈ M2 while either e2 ∈ M2, e3 ∈ M0 or e2 ∈ M0, e3 ∈ M2 . 

Pr[�5] = 2y2∕3(1 − y1∕3 − y2∕3) and Pr[ E |�6] = 0.22933.

   Therefore we have 

• (4b). Observe that in this configuration, we have additional six cases to the 
ones discussed in (4a). Let �i be the cases defined in (4a) for each 1 ≤ i ≤ 6 . 
Notice that each Pr[�i] has a multiplicative factor of y2∕3 . Now, consider the 
six new cases.

• �1 ∶ e1 ∈ M1, e2 ∈ M1, e3 ∈ M1 . Pr[�1] = y3
1
∕27 and Pr[ E |�1] = 0.3167.

• �2 ∶ e1 ∈ M1, e2 ∈ M2, e3 ∈ M2 . Pr[�2] = y1y
2
2
∕27 and Pr[ E |�2] = 0.5374.

• �3 ∶ e1 ∈ M1, e2 ∈ M0, e3 ∈ M0 . Pr[�3] = y1∕3 ∗ (1 − y1∕3 − y2∕3)
2 and 

Pr[ E |�3] = 0.632.
• �4 : e1 ∈ M1 and either e2 ∈ M1, e3 ∈ M2 or e2 ∈ M2, e3 ∈ M1 . 

Pr[�2] = 2y2
1
y2∕27 and Pr[ E |�4] = 0.4057.

• �5 : e1 ∈ M1 and either e2 ∈ M1, e3 ∈ M0 or e2 ∈ M0, e3 ∈ M1 . 
Pr[�5] = 2y2

1
∕9 ∗ (1 − y1∕3 − y2∕3) and Pr[ E |�5] = 0.4323.

• �6 : e1 ∈ M1 and either e2 ∈ M2, e3 ∈ M0 or e2 ∈ M0, e3 ∈ M2 . 
Pr[�5] = 2y1y2∕9 ∗ (1 − y1∕3 − y2∕3) and Pr[ E |�6] = 0.58083.

  Hence, we have 

Setting y1 = 0.687, y2 = 1 , we get that the competitive ratio for a small edge is 
0.44550. The bottleneck cases are configurations (1a) and (1b).

A.2 Supplemental Materials in Sect. 4

A.2.1 Proof of Lemma 10 (Vertex‑Weighted and Unweighted)

When Hu = 1 and u is in the cycle C1 , [13] show that the competitive ratio of u is 
1 − 2�−2 . Hence, for the remaining cases, we use the following Claims.

Pr[ E ] ≥
1

3

(
0.029661y2

1
+ 2 ∗ 0.043903y1y2 + 0.066856y2

2
+ 2y1(3 − y1 − y2)0.0494997

+ 2y2(3 − y1 − y2)(0.076443) + (3 − y1 − y2)
20.0880803

)

Pr[ E ] ≥
1

3

(
0.632y1 − 0.133133y2

1
+ 0.0093y3

1
+ 0.264241y2

− 0.11127y1y2 + 0.01170y2
1
y2 − 0.0232746y2

2
+ 0.00488y1y

2
2
+ 0.00068y3

2

)
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Claim 14 If Hu = 1 and u is not in C1, then we have �[���, 1] ≥ 0.735622.

Claim 15 �[���, 2∕3] ≥ 0.7870.

Claim 16 �[���, 1∕3] ≥ 0.8107.

Recall that Au,1 is the event that among the n random lists, there exists a list start-
ing with u and Av

u,2
 is the event that among the n lists, there exist successive lists 

such that (1) all start with some u′ which are different from u but are neighbors of v; 
and (2) they ensure u will be matched.

Notice that Au is the probability that u gets matched in ���[��] . For each u, we 
compute Pr[Au,1] and Pr[Av

u,2
] for all possibilities of v ∼ u and using Lemma 9 we 

get Au . We first discuss two different ways to calculate Pr[Av
u,2
] when v has different 

neighboring structures.
Two ways to compute the value Pr[Av

u,2
] . 

1. Case 1 v has two neighbors. Consider the case when v has two neighbors as shown 
in Fig. 7. In this case we choose a slightly direct approach to computing Pr[Av

u,2
].

  Assume v has two neighbors u and u′ as shown in Fig. 7. After modifications, 
assume H�

(u�,v)
= y , H�

(u,v)
= 1 − y and H�

u�
= x . Thus, the second certificate event 

Av
u,2

 corresponds to the event (1) a list starting with u′ comes at some time 
1 ≤ i < n ; (2) the list Rv = (u�, u) comes for a second time at some j with i < j ≤ n . 
Note that the arrival rate of a list starting with u′ is H�

u�
= x∕n and the rate of list 

Rv = (u�, u) is y/n. Therefore we have 

2. Case 2 v has three neighbors. Consider the case when v has three neighbors as 
shown in Fig. 8. In this case, we approximate the value Pr[Av

u,2
] using the Markov 

Chain method, similar to [13].
  Focus on the case shown in Fig. 8 where v has three neighbors u, u1 and u2 with 

Hu = 1,Hu1
= 1∕3 and Hu2

= 2∕3 . Recall that after modifications, we have 
H�

(u1,v)
= b = 0.1,H�

(u2,v)
= c = 0.15 and H�

(u,v)
= d = 0.75 . We simulate the process 

(25)Pr[Av
u,2
] =

n−1∑
i=1

(
x∕n(1 − x∕n)(i−1)(1 − (1 − y∕n)(n−i)

)

(26)∼
x − �

−yx + (−1 + �
−x)y

x − y
(if x ≠ y)

(27)∼1 − �
−x(1 + x) (if x = y)

Fig. 7  Case 1 in calculation of 
Pr[Av

u,2
]
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of u getting matched resulting from several successive random lists starting from 
either u1 or u2 by an n-step Markov Chain as follows. We have 5 states: 
s1 = (0, 0, 0), s2 = (0, 1, 0), s3 = (0, 0, 1), s4 = (0, 1, 1) and s5 = (1, ∗, ∗) and the 
three numbers in each triple correspond to u, u1 and u2 being matched(or not) 
respectively. State s5 corresponds to u being matched; the matched status of u1 
and u2 is irrelevant. The chain initially starts in s1 and the probability of being in 
state s5 after n steps gives an approximation to Pr[Av

u,2
] . The one-step transition 

probability matrix M is shown as follows. 

 Notice that M1,3 =
c+1∕3

n
 and not 2

3n
 since after modifications, the arrival rate of a 

list starting with u2 decreases correspondingly.
Let us now prove the three Claims 14, 15 and 16. Here we give the explicit analysis 
for the case when Hu = 1 . For the remaining cases, similar methods can be applied. 
Hence, we omit the analysis and only present the related computational results 
which leads to the conclusion.

Proof of Claim 14 Notice that u is not in the cycle C1 and thus Lemma 9 can be used. 
Figure 9 describes all possible cases when a node u ∈ U has Hu = 1 . (We ignore all 
those cases when Hu < 1 , since they will not appear in the ��.)

Let v1 and v2 be the two neighbors of u with H(u,v1)
= 2∕3 and H(u,v2)

= 1∕3 . In 
total, there are 4 × 10 combinations, where v1 is chosen from some �i, 1 ≤ i ≤ 4 
and v2 is chosen from some �i, 1 ≤ i ≤ 9 . For Hu = 1 , we need to find the worst 

M1,2 =
b

n
,M1,3 =

c + 1∕3

n
,M1,1 = 1 −M1,2 −M1,3

M2,4 =
c + 1∕3

n
+

bc

(c + d)n
,M2,5 =

bd

(c + d)n
,

M2,3 = 1 −M2,4 −M2,5

M3,4 =
b

n
+

cb

(b + d)n
,M3,5 =

cd

(b + d)n

M3,3 = 1 −M3,4 −M3,5

M4,5 =
b + c

n
,M4,4 = 1 −M4,5

M5,5 = 1

Mi,j = 0 for all other i, j

Fig. 8  Case 2 in calculation of 
Pr[Av

u,2
]
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combination among these such that the value Au is minimized. We can find this �� 
using the Lemma 9.

For each type of �i, �j , we compute the values it will contribute to the term 
(1 − Au,1)

∏
v∼u(1 − Pr[Av

u,2
]) . For example, assume v1 is of type �1 , denoted by v1(�1) . 

It contributes �−0.9 to the term (1 − Au,1) and (1 − Pr[A
v1
u,2
]) to 

∏
v∼u(1 − Pr[Av

u,2
]) , thus 

the total value it contributes is �(v1, �1) = �
−0.9(1 − Pr[A

v1
u,2
]) . Similarly, we can com-

pute all �(v1, �i) and �(v2, �j) . Let i∗ = argmax i�(v1, �i) and j∗ = argmax j�(v2, �j) . 
The �� is for the combination {v1(�i∗ ), v2(�j∗ )} and the resulting value of Au and 
�[���, 1] is as follows:

Here is a list of �(v1, �i) and �(v2, �j) , for each 1 ≤ i ≤ 4 and 1 ≤ j ≤ 9.

Au = 1 − �(v1, �i∗ )�(v2, �j∗ )

�[���, 1] = Au∕Hu = Au

Fig. 9  Vertex-weighted H
u
= 1 cases. The value assigned to each edge represents the value after the sec-

ond modification. No value indicates no modification. Here, x1 = 0.2744 and x2 = 0.15877
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• �1 : We have Pr[Av
u,2
] = 1 − �

−0.1 ∗ 1.1 and 
�(v, �1) = �

−0.1 ∗ 1.1 ∗ �
−0.9 = 0.404667.

• �2 : Pr[Av
u,2
] ≥ 1 − �

−0.15 ∗ 1.15 and �(v, �2) ≤ 0.423.
  Notice that after modifications, H′

u1
≥ 0.15 . Hence, we use this and Eq. (25) to 

compute the lower bound of Pr[Av
u,2
].

• �3 : Pr[Av
u,2
] ≥ 0.0916792 and �(v, �3) ≤ 0.439667.

  Notice that for any large edge e incident to a node u with Hu = 1 (before modi-
fication), we have after modification, H�

e
≥ 1 − 0.2744 = 0.7256 . Thus we have 

H�
(u1,v1)

≥ 0.7256 and H′
u1
≥ 1 . From Eq. (25), we get Pr[Av

u,2
] ≥ 0.0916792.

• �4 : Pr[Av
u,2
] ≥ 0.0307466 and �(v, �4) ≤ 0.417923.

  Notice that for any small edge e incident to a node u with Hu = 1 (before mod-
ification), we have after modification, H′

e
≥ 0.15877 . Thus, we have 

H�
u1
≥ 3 ∗ 0.15877.

• �1 : Pr[Av
u,2
] = 0.1608 and �(v, �1) = 0.601313.

• �2 : Pr[Av
u,2
] ≥ 0.208812 and �(v, �2) ≤ 0.601313.

  After modifications, we have H�
(u1,v1)

≥ 0.2744 and thus we get H′
u1
≥ 1.

• �3 : Pr[Av
u,2
] ≥ 0.251611 and �(v, �2) ≤ 0.63852.

  After modifications, we have H�
(u1,v1)

≥ 0.2744 and thus we get 
H�

u1
≥ 1 − 0.15877 + 0.2744.

• �4 : Pr[Av
u,2
] = 0.121901 and �(v, �4) = 0.588607.

• �5 : Pr[Av
u,2
] = 0.1346 and �(v, �5) = 0.551803.

• �6 : Pr[Av
u,2
] ≥ 0.1140 and �(v, �6) ≤ 0.593904.

• �7 : Pr[Av
u,2
] = 0.0084 and �(v, �7) = 0.4455.

• �8 : Pr[Av
u,2
] ≥ 0.0397 and �(v, �8) ≤ 0.582451.

• �9 : Pr[Av
u,2
] ≥ 0.0230 and �(v, �9) ≤ 0.510039.

Using the computed values above, let us compute the ratio of a node u with Hu = 1.

• If u has three neighbors, then the �� configuration is when each of the three 
neighbors of u is of type �3 . This is because, the value of �(v, �3) is the largest. 
The resultant ratio is 0.73967.

• If u has two neighbors, then the �� configuration is when one of the neighbor is 
of type �1 (or �2 ) and the other is of type �3 . The resultant ratio is 0.735622.

Proof of Claim 15 The proof is similar to that of Claim 14. The Fig. 10 shows all 
possible configurations of a node u with Hu = 2∕3 . Note that the �� cannot have 
F(v) < 1 and hence we omit them here. For a neighbor v of u, if H(u,v) = 2∕3 , then v 
is in one of �i, 1 ≤ i ≤ 3 ; if H(u,v) = 1∕3 , then v is in one of �i, 1 ≤ i ≤ 8 . We now list 
the values �(v, �i) and �(v, �j) , for each 1 ≤ i ≤ 3 and 1 ≤ j ≤ 8.

• �1 : We have Pr[Av
u,2
] = 1 − �

−0.25 ∗ 1.25 and 
�(v, �1) = �

−0.25 ∗ 1.25 ∗ �
−0.75 = 0.459849.

• �2 : We have Pr[Av
u,2
] ≥ 0.0528016 and �(v, �1) ≤ 0.470365.

• �3 . We have Pr[Av
u,2
] ≥ 0.13398 and �(v, �3) ≤ 0.475282.
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• �1 : We have Pr[Av
u,2
] = 1 − �

−0.7 ∗ 1.7 and �(v, �1) = 0.625395.
• �2 : We have Pr[Av

u,2
] ≥ 0.226356 and �(v, �2) ≤ 0.665882.

• �3 : We have Pr[Av
u,2
] ≥ 0.1819 and �(v, �3) ≤ 0.669804.

• �4 : We have Pr[Av
u,2
] ≥ 0.1130 and �(v, �4) ≤ 0.635563.

• �5 : We have Pr[Av
u,2
] ≥ 0.0587 and �(v, �5) ≤ 0.674471.

• �6 : We have Pr[Av
u,2
] ≥ 0.1688 and �(v, �6) ≤ 0.680529.

• �7 : We have Pr[Av
u,2
] ≥ 0.1318 and �(v, �7) ≤ 0.676155.

• �8 : We have Pr[Av
u,2
] ≥ 0.0587 and �(v, �8) ≤ 0.674471.

Hence, the �� structure is when u is such that Hu = 2∕3 and has one neighbor of 
type �3 . The resultant ratio is 0.7870.

Proof of Claim 16 The Fig. 11 shows the possible configurations of a node u with 
Hu = 1∕3 . Again, we omit those cases where Hv < 1.

We now list the values �(v, �i) , for each 1 ≤ i ≤ 8.

• �1 : We have Pr[Av
u,2
] = 1 − �

−0.75 ∗ 1.75 and �(v, �1) = 0.643789.
• �2 : We have Pr[Av

u,2
] ≥ 0.282256 and �(v, �2) ≤ 0.649443.

• �3 : We have Pr[Av
u,2
] ≥ 0.1935 and �(v, �3) ≤ 0.729751.

Fig. 10  Vertex-weighted H
u
= 2∕3 cases. The value assigned to each edge represents the value after the 

second modification. No value indicates no modification
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• �4 : We have Pr[Av
u,2
] ≥ 0.0587 and �(v, �4) ≤ 0.674471.

• �5 : �(v, �5) ≤ 0.674471.
• �6 : We have Pr[Av

u,2
] ≥ 0.1546 and �(v, �6) ≤ 0.727643.

• �7 : We have Pr[Av
u,2
] ≥ 0.1938 and �(v, �7) ≤ 0.72948.

• �8 : �(v, �8) ≤ 0.674471.

Hence, the �� for node u with Hu = 1∕3 is when u has one neighbor of type �3 . 
The resultant ratio is 0.8107.

References

 1. Aggarwal, G., Goel, G., Karande, C., Mehta, A.: Online vertex-weighted bipartite matching and 
single-bid budgeted allocations. In: Proceedings of the Twenty-Second Annual ACM-SIAM 
Symposium on Discrete Algorithms, pp. 1253–1264. SIAM (2011)

 2. Alaei, S., Hajiaghayi, M.T., Liaghat, V.: Online prophet-inequality matching with applications to 
ad allocation. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 18–35. 
ACM (2012)

 3. Alaei, S., Hajiaghayi, M.T., Liaghat, V.: The online stochastic generalized assignment problem. 
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pp. 11–25. Springer (2013)

 4. Assadi, S., Khanna, S., Li, Y.: The stochastic matching problem with (very) few queries. In: Pro-
ceedings of the 2016 ACM Conference on Economics and Computation, pp. 43–60. ACM (2016)

 5. Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: Attenuate locally, win globally: an 
attenuation-based framework for online stochastic matching with timeouts. In: Proceedings of 
the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’17, pp. 1223–
1231. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC 
(2017)

Fig. 11  Vertex-weighted H
u
= 1∕3 cases. The value assigned to each edge represents the value after the 

second modification. No value indicates no modification



 Algorithmica

1 3

 6. Devanur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with budgeted bid-
ders under random permutations. In: Proceedings of the 10th ACM Conference on Electronic Com-
merce, pp. 71–78. ACM (2009)

 7. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms and fast approxi-
mation algorithms for resource allocation problems. In: Proceedings of the 12th ACM Conference 
on Electronic Commerce, pp. 29–38. ACM 2011

 8. Devanur, N.R., Sivan, B., Azar, Y.: Asymptotically optimal algorithm for stochastic adwords. In: 
Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 388–404. ACM (2012)

 9. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad assignment with free 
disposal. In: Internet and Network Economics, pp. 374–385. Springer (2009)

 10. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: beating 1-1/e. 
In: Foundations of Computer Science (FOCS), pp. 117–126. IEEE (2009)

 11. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications 
to approximation algorithms. J. ACM (JACM) 53(3), 324–360 (2006)

 12. Haeupler, Bernhard, Mirrokni, Vahab S., Zadimoghaddam, Morteza: Online stochastic weighted 
matching: improved approximation algorithms. Internet and Network Economics, Volume 7090 of 
Lecture Notes in Computer Science, pp. 170–181. Springer, Berlin (2011)

 13. Jaillet, P., Lu, X.: Online stochastic matching: new algorithms with better bounds. Math. Oper. Res. 
39(3), 624–646 (2013)

 14. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs. In: Automata, 
Languages and Programming, pp. 508–520. Springer (2009)

 15. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted 
bipartite matching and extensions to combinatorial auctions. In: European Symposium on Algo-
rithms (ESA), pp. 589–600. Springer (2013)

 16. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipartite matching. In: 
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 352–
358. ACM (1990)

 17. Lee, Y.T., Sidford, A.: Efficient inverse maintenance and faster algorithms for linear programming. 
In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 230–
249. IEEE (2015)

 18. Mehta, A.: Online matching and ad allocation. Found. Trends Theor. Comput. Sci. 8(4), 265–368 
(2012)

 19. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: online actions based on 
offline statistics. Math. Oper. Res. 37(4), 559–573 (2012)

 20. Mehta, A., Panigrahi, D.: Online matching with stochastic rewards. In: Foundations of Computer 
Science (FOCS), pp. 728–737. IEEE (2012)

 21. Mehta, A., Waggoner, B., Zadimoghaddam, M.: Online stochastic matching with unequal probabili-
ties. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. 
SIAM (2015)

 22. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on 
strongly factor-revealing LPs. In: Proceedings of the Forty-Third Annual ACM Symposium on The-
ory of Computing, pp. 597–606. ACM (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.



1 3

Algorithmica 

Affiliations

Brian Brubach1 · Karthik Abinav Sankararaman1 · Aravind Srinivasan1 · Pan Xu2

 * Karthik Abinav Sankararaman 
 karthikabinavs@gmail.com

 Brian Brubach 
 bbrubach@cs.umd.edu

 Aravind Srinivasan 
 srin@cs.umd.edu

 Pan Xu 
 pxu@njit.edu

1 University of Maryland, College Park, USA
2 New Jersey Institute of Technology, Newark, USA


	Online Stochastic Matching: New Algorithms and Bounds
	Abstract
	1 Introduction
	2 Preliminaries and Technical Challenges
	2.1 LP Benchmark for Deterministic Rewards
	2.2 Overview of Edge-Weighted Algorithm and Contributions
	2.3 Overview of Vertex-Weighted Algorithm and Contributions
	2.4 Overview of Stochastic Rewards and Contributions
	2.5 Running Time of the Algorithms
	2.6 LP Rounding Technique 
	2.7 Related Work

	3 Edge-Weighted Matching with Integral Arrival Rates
	3.1 Warm-up: 0.688-Competitive Algorithm
	3.1.1 Analysis of Algorithm 

	3.2 Improved Algorithm: 0.7-Competitive Algorithm
	3.2.1 Analysis

	3.3 Final Algorithm: Roadmap
	3.3.1 Algorithm  : 0.705-Competitive Algorithm
	3.3.2 Sub-routine 1: Algorithm 
	3.3.3 Sub-routine 2: Algorithm 
	3.3.4 Convex Combination of  and 

	3.4 A Note on the Integral Arrival Rates Assumption

	4 Vertex-Weighted Stochastic I.I.D. Matching with Integral Arrival Rates
	4.1  Algorithm
	4.2 Two Kinds of Modifications to 
	4.2.1 The First Modification to  : Cycle Breaking
	4.2.2 The Second Modification to  : Balancing the Worst Case

	4.3 Vertex-Weighted Algorithm 
	4.3.1 Analysis of Algorithm 


	5 Non-integral Arrival Rates with Stochastic Rewards
	6 Integral Arrival Rates with Uniform Stochastic Rewards
	7 Conclusion and Future Directions
	Acknowledgements 
	References




