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Abstract

Matching is one of the most fundamental and broadly applicable problems across
many domains. In these diverse real-world applications, there is often a degree
of uncertainty in the input which has led to the study of stochastic matching
models. Here, each edge in the graph has a known, independent probability of
existing derived from some prediction. Algorithms must probe edges to determine
existence and match them irrevocably if they exist. Further, each vertex may
have a patience constraint denoting how many of its neighboring edges can be
probed. We present new ordered contention resolution schemes yielding improved
approximation guarantees for some of the foundational problems studied in this area.
For stochastic matching with patience constraints in general graphs, we provide
a 0.382-approximate algorithm, significantly improving over the previous best
0.31-approximation of Baveja et al. (2018). When the vertices do not have patience
constraints, we describe a 0.432-approximate random order probing algorithm
with several corollaries such as an improved guarantee for the Prophet Secretary
problem under Edge Arrivals. Finally, for the special case of bipartite graphs with
unit patience constraints on one of the partitions, we show a 0.632-approximate
algorithm that improves on the recent 1/3-guarantee of Hikima et al. (2021).

1 Introduction

The offline stochastic matching problem is about finding a maximum matching on a weighted graph.
However, each edge e is active independently according to a known probability pe, and only active
edges can be matched. The set of active edges is initially unknown. An edge whose endpoints are
unmatched can be probed to determine whether it is active, and if so, it is irrevocably inserted into
the matching. The objective is to sequentially probe the edges in a way to maximize the expected
weighted matching at the end.

Matching problems arise in numerous deployed AI systems, especially those dealing with allocation
and scheduling. See, for example, the works of Ahmadi et al. (2020); Ahmed et al. (2017); Brubach
et al. (2020, 2021b); Baveja et al. (2018) for applications to advertising, e-commerce, organ exchange,
online dating, peer review, school matching, and hiring; and Hikima et al. (2021); Nanda et al.
(2020); Xu et al. (2019) for applications to ride sharing, crowdsourcing (worker-task assignment), and
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recommendation systems. The work of Esfandiari et al. (2016); Antoniadis et al. (2020) gives further
discussion on applications to e-commerce and internet advertising, and illustrates the importance of
designing algorithms with good theoretical guarantees in deployed AI systems.

Stochastic edges play a major role in properly capturing many of these applications when we account
for hidden information about whether a proposed match will be accepted. Is a kidney donor a
good match? Will a worker accept an offered task? Does a user want to click on this ad? The
uncertainty inherent in the presence or absence of various edges naturally leads to the need for
stochastic optimization. Achieving good results when the edge probabilities are known demonstrates
the value of learning distributions in AI.

We contribute improved algorithms for a range of fundamental problems, as well as useful-special-
case problems, in the realm of stochastic matching. Although our results are phrased for the offline
setting, some of our algorithms also translate to the random-order online setting in which the edges
arrive in random order. This online arrival model is well-motivated in these AI settings due to the
inability to control the order in which the agents arrive.

Below, we further describe three typical features that may be present in stochastic matching problems.

Patience constraints. The offline stochastic matching problem is typically considered with the input
including an integral patience parameter tv for each vertex v known as a patience constraint or
timeout. This adds the constraint that at most tv of the edges incident to v can be probed, which is
motivated by applications in which the vertices represent users who are only willing to view a finite
number of potential matches. A vertex v which has been probed tv times is said to have timed out. To
capture the absence of patience constraints in some models, we allow patience parameters to be∞.

Probing orders allowed. Most generally, we allow algorithms to probe the edges in any order based
on the realizations of past probes. Sometimes we impose that the algorithm must make a single pass
through the edges, according to a uniform random permutation. This can also represent an “online”
setting in which the edges arrive in a uniformly random order, and upon arrival, an edge must either
be probed (only possible if both endpoints are unmatched and have remaining patience) or irrevocably
discarded. We say that such algorithms are random-order.

Special case of graphs considered. We introduce a new class of graphs, bipartite graphs with a
unit-patience side, for which we derive further improved guarantees. Such a graph can be divided into
two sides such that: (1) all edges are between vertices on different sides; and (2) for one of the sides,
all patiences are 1. This subclass of graphs captures a problem of interest in AI with applications
such as crowdsourcing and ride-hailing, described in Hikima et al. (2021).

1.1 Summary of Results

To derive computationally-efficient probing algorithms, we address the standard approach of first
solving a fractional relaxation, which prescribes a probability ye ∈ [0, 1] with which each edge e
should be probed. These relaxed values ye only have to satisfy the matching and patience constraints
in expectation, while a probing algorithm must satisfy these constraints with probability (w.p.) 1.
However, we can still hope to probe every edge e with probability at least c · ye, for some c ≤ 1. It is
well-known that such an algorithm would then be c-approximate, i.e. its expected weight matched
would be at least c times that of an optimal probing algorithm.
Result 1. A 0.382-approximate random-order probing algorithm for general graphs.

This makes a significant improvement to the line of work on patience-constrained offline stochastic
matching for general graphs, which includes the 0.25-approximate algorithm of Bansal et al. (2012),
0.269-approximate algorithm of Adamczyk et al. (2015), and 0.31-approximate algorithm of Baveja
et al. (2018). We emphasize that although our algorithm considers the edges in a random order,
no better guarantee is known even without imposing this property. Our general guarantee can be
parametrized by the patiences in the graph and improves in certain special cases.
Corollary 1. A (1 − e−2)/2 ≈ 0.432-approximate random-order probing algorithm for general
graphs without patience constraints.

In the special case where every patience is∞, the guarantee of our random-order probing algorithm
improves to 0.432. We note that without patience constraints, the Greedy algorithm which probes
edges in decreasing order of weights (ignoring the probabilities pe) guarantees at least 1/2 the offline
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maximum weighted matching knowing the set of active edges in advance. However, our algorithm
has the benefit of providing a guarantee relative to the relaxed values ye, and moreover only needs to
consider the edges in a uniformly random order (instead of needing to choose the order). This means
that the special case of our algorithm where patiences are∞ implies new results for Random-order
Contention Resolution Schemes and Prophet Secretary under Edge Arrivals, as we discuss below.
Corollary 2. A (1− e−2)/2-selectable Random-order Contention Resolution Scheme for the match-
ing polytope of general graphs.

For c ≤ 1, the definition of a c-selectable Contention Resolution Scheme can be reduced to our goal
of probing every edge e with probability at least c · ye, as we explain in Section 2. Previous work in
this area has derived a (1− e−2)/2-selectable “offline” Contention Resolution Scheme, which needs
to know the set of active edges in advance, for the matching polytope of general graphs (Guruganesh
and Lee, 2017). The selectability has been recently improved to be strictly greater than (1− e−2)/2,
while also satisfying a monotonicity property (Bruggmann and Zenklusen, 2020). However, both of
these results require knowing the set of active edges in advance, while our algorithm observes the
activeness of edges in an ordered fashion and must immediately decide whether to insert any active
edges into the matching. In fact, our algorithm satisfies the definition of a Random-order Contention
Resolution Scheme introduced in the papers by Adamczyk and Włodarczyk (2018); Lee and Singla
(2018). To this end, our specific setting of the matching polytope is not captured1 by these papers.
Corollary 3. A 0.432-guarantee for the Prophet Secretary problem under Edge Arrivals, in general
graphs.

Contention Resolution Schemes for the matching polytope also imply Prophet Inequalities under
the Edge Arrival model introduced in Gravin and Wang (2019). The best-known result here is a
0.337-selectable adversarial-order Contention Resolution Scheme for the matching polytope of
general graphs due to Ezra et al. (2020), which implies a 0.337-guarantee for Prophet Inequalities
under Edge Arrivals in any order. When the edges arrive in a uniformly random order, this can be
called the Prophet Secretary problem (Esfandiari et al., 2017) under Edge Arrivals, for which our
Random-order Contention Resolution Scheme implies an improved 0.432-guarantee.
Corollary 4. A new class of non-adaptive (1−1/e)-selectable Random-order Contention Resolution
Schemes for rank-1 matroids.

In the further special case of a star graph with infinite patiences, the selectability of our probing
algorithm improves to 1− 1/e. The constraint that at most one edge in a star graph can be matched
corresponds to a rank-1 matroid, for which a (1− 1/e)-selectable Random-order Contention Resolu-
tion Scheme is already known (e.g. Lee and Singla, 2018). However, our analysis yields a wide range
of new such schemes, which are simpler than existing ones in that they satisfy a non-adaptiveness
property, which we we elaborate on in Subsection 1.2.
Result 2. A (1 − 1/e) ≈ 0.632-approximate probing algorithm for bipartite graphs with a unit-
patience side.

This result improves and generalizes the 1/3-guarantee of Hikima et al. (2021) which holds for a
special case of bipartite graphs with a unit-patience side. Despite the ubiquity of (1−1/e)-guarantees
in online matching, to the best of our understanding, our guarantee requires the novel technical
ingredient of a (1 − 1/e)-selectable Ordered Contention Resolution Scheme for rank-1 matroids
under negative correlation. The aforementioned (1− 1/e)-selectability results for rank-1 matroids
assume elements to be active independently and do not establish this guarantee, as we discuss in
Subsection 1.2. We note that our probing algorithm here must be able to choose the order, though.
We note that concurrent and independent work of Borodin et al. (2021) study an online problem
which implies the same (1− 1/e)-approximation for the offline problem in the particular case where
one side has unit patience and the other side has unlimited patience.

1.2 Description of Techniques

Random-order probing: finding an attenuation function which improves the worst case. As
described before, our probing algorithm for general graphs considers the edges in a uniformly random

1If the graph is bipartite, then its matching polytope can be captured by the intersection of two matroids;
however, in this case the selectability guaranteed by Adamczyk and Włodarczyk (2018) is 1/3, which is worse
than our selectability of 0.432.
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order. This can be implemented by each edge e drawing an “arrival time” xe independently and
uniformly from [0,1]. Baveja et al. (2018) have previously analyzed a similar algorithm, which
probes each incoming edge e according to the fractionally-feasible probability ye as long as e is
safe. They show that every edge e ends up being probed with probability at least 0.31 · ye, yielding a
0.31-approximate algorithm. The worst case occurs for an edge e′ whose values of ye′ , pe′ are close
to 0, with both endpoints of e′ being incident to other edges e′′ whose values of ye′′ , pe′′ are 1.

To improve this worst case, we attach an “attenuation factor” a(e) ∈ [0, 1] to each edge e such that the
probability of an incoming safe edge e being probed is scaled down by a factor of a(e). We make a(e)
decreasing in ye and pe, to dissuade the aforementioned edges e′′ with large values of ye′′ , pe′′ from
being probed and blocking edge e′. However, given an arbitrary function a defining the attenuation
factors, computing the new worst case could be difficult. Therefore, our approach is instead to derive
properties on a which cause the worst case to only involve edges e with a(e) = 1. More specifically,
we show that for functions a defined by a(e) = ã(yepe) for some univariate function ã with ã(0) = 1,
it is possible to design the derivatives of ã so that in the worst case, edge e′ is only incident to edges
e′′ with ye′′pe′′ ≈ 0 (which implies that a(e′′) ≈ ã(0) = 1). Our final bound is then derived from
the same expression as in Baveja et al. (2018), except the worst case ratio has improved to 0.382.
The specific attenuation function we compute is inconsequential to this improved ratio—the key is
showing the existence of an attenuation function which eliminates the previous worst case. However,
by deriving such necessary properties, we are able to see not only which attenuation functions work,
but also which don’t work (suggesting alternative attenuation functions can’t do better than ours).
Further, having a family of valid attenuation functions allows for a choice of different attenuation
functions for different application domains while keeping the same approximation guarantee.

Using our attenuation for Random-order Contention Resolution Schemes. As stated in Corol-
laries 2 and 3, our attenuation analysis in the special case of infinite patiences implies a previously-
unknown (1 − e−2)/2-selectable Random-order Contention Resolution Scheme for the matching
polytope of general graphs. We now discuss the further special case in Corollary 4 of star graphs, for
which we can contrast our technique with that used in the known Random-order Contention Resolu-
tion Schemes for rank-1 matroids. Here, Lee and Singla (2018) show that (1− 1/e)-selectability can
be achieved using what we would call the attenuation function a(e) = exp(−xepe), which depends
on the arrival time xe of each edge e. This function is designed (see Ehsani et al., 2018) to yield
a closed-form expression for the probability of availability at any particular time x ∈ [0, 1], which
allows them to elegantly compute that the selectability is 1− 1/e.

In this special case, our analysis also yields a (1 − 1/e)-selectable Random-order Contention
Resolution Scheme. However, instead of designing a specific function, our analysis implies a class of
functions which sufficiently2 attenuate large values of pe to prevent them from blocking smaller values
of pe. To elaborate, we show that either of the functions a(e) = exp(−αpe) or a(e) = 1−αpe, with
α ∈ [1/2, 1], ensures that in the worst case, all edges e have pe ≈ 0. And in this worst case, a(e) ≈ 1
for all e, from which we can conclude that any edge has an ≈ 1 − 1/e chance of being selected.
We note that our functions do not depend on the arrival time xe and can be seen as non-adaptive
(1− 1/e)-selectable Random-order Contention Resolution Schemes for a rank-1 matroid, which we
believe could be applied elsewhere.

Bipartite graphs with a unit-patience side. For offline stochastic matching on bipartite graphs, a
standard technique (Bansal et al., 2012) is to randomly round the fractionally-feasible values ye to
binary values Ye using the dependent rounding procedure of Gandhi et al. (2006), which ensures the
patience constraints on both sides to be satisfied w.p. 1. Under our additional assumption that one of
the sides V1 has unit-patience, the vertices in V1 must have rounded degree at most 1, resulting in the
rounded graph being a disjoint collection of stars. One could then separately handle the edges in each
star using a Random-order Contention Resolution Scheme for rank-1 matroids, since its edges e will
be disjoint from other stars and active independently w.p. pe.

2This intuition can be illustrated as follows. If there is no attenuation, then the worst case involves two edges
e′, e′′ with probabilities pe′ = 0, pe′′ = 1, which when shown in a random order implies that e′′ will block e′

w.p. 1/2, whereas e′ will not block e′′. The goal of “attenuation” is to scale down the probability of selecting e′′,
to increase the probability of selecting e′.
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However, this does not lead to (1− 1/e)-selectability. To elaborate, for any vertex v /∈ V1, let δ(v)
denote the set of edges incident to v. Fractional feasibility of the ye values ensures∑

e∈δ(v)

peye ≤ 1, (1)

but the rounded star graph formed by edges {e ∈ δ(v) : Ye = 1} could have
∑
e∈δ(v) peYe > 1

whenever3 some particular edge e′ has Ye′ = 1, making it difficult to ensure that edge e′ gets selected
with sufficient probability when Ye′ is rounded up.

Reinterpretation as contention resolution under negative correlation. To resolve this issue, we
instead imagine each edge e ∈ δ(v) as being active with probability ze := peye, which satisfies∑
e∈δ(v) ze ≤ 1, due to (1). The active edges in δ(v) are correlated in a way such that they cannot

conflict with active edges in other stars; however, due to this correlation, any of the aforementioned
Random-order Contention Resolution Schemes which are agnostic to the correlation will only be
1/2-selectable, as we will show in Section 4.

Despite this apparent lack of a correlation-agnostic (1 − 1/e)-selectable Contention Resolution
Scheme, what we do show is that the optimal online algorithm, which trivially sorts the edges
e ∈ δ(v) in decreasing order of weights we, obtains in expectation at least 1−1/e times the fractional
value

∑
e∈δ(v) weze. This is only possible due to the following negative correlation property enjoyed

by the rounding procedure of Gandhi et al. (2006), with Ze ∈ {0, 1} denoting the activeness of an
edge e:

Pr

[⋂
e∈S

(Ze = b)

]
≤
∏
e∈S

Pr[Ze = b] ∀S ⊆ δ(v), b ∈ {0, 1}. (2)

Our analysis applies this negative correlation property with b = 0 to show that the expected overall
weight obtained by the online algorithm is minimized when the Ze’s are independent, despite the
fact that for a particular edge e′, negative correlation among other edges in δ(v) could make it more
likely that e′ is blocked than in the independent case. Through the equivalence derived in Lee and
Singla (2018), our analysis also implies the existence of a (1− 1/e)-selectable Ordered Contention
Resolution Scheme for rank-1 matroids under negative correlation, assuming the order can be chosen.
We leave it as an open question whether a (1−1/e)-selectable Random-order4 Contention Resolution
Scheme is possible under property (2).

1.3 Roadmap

We begin in Section 2 with some background. Then, in Section 3, we present a random-order
algorithm for general graphs, achieving our 0.382-approximation for stochastic matching. We then
analyze the same algorithm in the case of infinite patience, where the algorithm yields a (1− e−2)/2-
approximation (and thus a (1− e−2)/2-selectable Random-order Contention Resolution Scheme for
the matching polytope); and the case of a star graph, where the algorithm achieves an approximation
guarantee of 1− 1/e (and thus gives a (1− 1/e)-selectable Random-order Contention Resolution
scheme for rank-1 matroids). Finally, in Section 4, we present an algorithm for stochastic matching
on bipartite graphs with a unit patience side, which achieves an approximation guarantee of 1− 1/e.
All omitted proofs can be found in the full version of this paper (Brubach et al., 2021a).

2 Notation and Preliminaries

The weighted stochastic graph is denoted by G = (V,E), with the weight and probability of being
active being denoted by we and pe, respectively, for each edge e ∈ E. The patience parameter is

3As a concrete example, let v have patience tv = 2, and be incident to three edges with p1 = 1, y1 = ε;
p2 = 1 − ε, y2 = 1; and p3 = 0, y3 = 1 − ε, which are fractionally feasible in that

∑
e∈δ(v) peye ≤ 1 and∑

e∈δ(v) ye ≤ 2. The rounding must be such that whenever Y1 = 1, we also have Y2 = 1, which results in∑
e∈δ(v) peYe = 2− ε.
4A 1/2-selectable Random-order Contention Resolution Scheme for star graphs under negative correlation is

implied by the “uniform black box” in Brubach et al. (2020). This black box has also been extended in some
cases by Fata et al. (2019).
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denoted by tv for each vertex v ∈ V . Given any problem instance defined by these values, finding the
optimal probing algorithm is computationally challenging (Bansal et al., 2012). For c ≤ 1, a probing
algorithm is said to be c-approximate if its expected weight matched is at least c times that of the
optimal probing algorithm, for any problem instance. The following LP relaxation is commonly used
to derive computationally efficient probing algorithms.

LP := max
∑
e∈E

weze (3)

subject to
∑
e∈δ(v)

ze ≤ 1 ∀v ∈ V (3a)

∑
e∈δ(v)

ye ≤ tv ∀v ∈ V (3b)

0 ≤ ye ≤ 1 ∀e ∈ E (3c)
ze = yepe ∀e ∈ E (3d)

Note that we have let δ(v) denote the set of edges incident to a vertex v. The variable ye ∈ [0, 1]
corresponds to the probability of probing edge e. The variable ze is then the probability that edge
e is included in the matching (that is, it is both active and probed). Constraint (3a) for a vertex
v ∈ V is the matching constraint: it is satisfied when v is matched to at most one of its neighbors in
expectation. Constraint (3b) for a vertex v ∈ V is the patience constraint: it is satisfied when at most
tv edges incident to v are probed in expectation.

Lemma 1 (Bansal et al. (2012)). For any problem instance, the optimal objective value LP is an
upper bound on the expected weight matched by any optimal probing algorithm.

Due to Lemma 1, for an algorithm to be c-approximate, it suffices to show that its expected weight
matched is at least c · LP. All of our algorithms will be based on taking an optimal LP solution given
by (ye)e∈E , and randomizing in a way to probe every edge e with probability at least c · ye, which
suffices for matching expected weight at least c · LP. We note that the gap between the LP and the
optimal probing algorithm can be large: Brubach et al. (2021b) showed that for some graphs, the
ratio between the maximum-weight matching and the LP objective value can be as large as 0.544.

Definition 1 (Ordered Contention Resolution Scheme Problem). A graph G = (V,E) and a vector
(z̃e)e∈E lying in its matching polytope (i.e. satisfying

∑
e∈δ(v) z̃e ≤ 1 for all v) is given. Each edge

e ∈ E has an “activeness” in {0, 1} whose state is initially unknown other than that it equals 1
w.p. z̃e. The activeness of edges is observed sequentially, and if an edge is both active and eligible
to be matched (i.e. not incident to any edges already matched), then it can be either immediately
matched or irrevocably discarded. A (randomized) algorithm that guarantees every edge e ∈ E of
being matched with ex ante probability at least c · z̃e is said to be a c-selectable Ordered Contention
Resolution Scheme for the matching polytope.

A probing algorithm which guarantees every edge e probability at least c · ye of being probed implies
a c-selectable Ordered Contention Resolution Scheme. To see this, given an instance to the problem
in Definition 1, we can construct an instance of offline stochastic matching with pe = z̃e for all e
and tv =∞ for all v, which means that setting ye = 1 for all e is a feasible solution to LP (3). The
probing algorithm will indicate whether to probe each edge in a way that guarantees the overall
probability of any edge e being probed to be at least c · ye = c. Therefore, if in Definition 1 we
“accept an edge when active” whenever the probing algorithm would have probed that edge, this
translates to an ex ante guarantee of c · pe = c · z̃e on the probability of any edge e being matched, as
desired.

Definition 2 (Random-order). A probing algorithm is said to be random-order if it can be applied in
the online setting where the edges arrive in a uniformly random order, and upon arrival, each edge
needs to be either immediately probed (if safe) or irrevocably discarded. Analogously, a Random-
order Contention Resolution Scheme must observe the activeness of edges in a uniformly random
order.
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3 Algorithm and Analysis for Result 1

3.1 Description of Algorithm and Attenuation Functions

Our algorithm is based on the algorithm of Baveja et al. (2018), but with an added attenuation
factor. This algorithm first solves LP (3) to get a fractional solution (ye)e∈E . Then, the algorithm
independently rounds the LP solution by setting, for each edge e, Ye = 1 with probability ye and
Ye = 0 with probability 1− ye. Then, the algorithm generates a uniformly random permutation π on
E; the algorithm then proceeds to probe each edge e ∈ E, in the order of the permutation, if Ye = 1
and both endpoints are still safe (i.e., the endpoints are both umatched with remaining patience).

Our algorithm adds an additional attenuation as follows. Let a : E → [0, 1] be our attenuation
function; then, when we get to an edge e = {u, v}, we generate a new Bernoulli random variable Ae
such that E[Ae] = a(e). Then, we probe e if

1. e is safe

2. Ye = 1, and

3. Ae = 1

Pseudocode is given in Algorithm 1. Recall that we can generate the permutation π by first generating,
for each e ∈ E, a uniformly random “arrival time” xe ∈ [0, 1], and ordering the edges in increasing
order of arrival time. Slightly abusively, we use π(e) := xe to refer to the arrival time of an edge e.

Algorithm 1: Attenuation-based algorithm for Stochastic Matching
Function AttenuateMatch(V , E, p):

Generate a random permutation π on E
for each edge e in the order of π do

Generate random bit Ye = 1 with probability ye
Generate random bit Ae = 1 with probability a(e)
if e is “safe” ∧ Ye = 1 ∧Ae = 1 then

Probe e

Our analysis allows for our 0.382-approximation to be achieved for many choices of attenuation
function. Specifically, our analysis will require a few key properties of our attenuation function,
outlined in Definition 3 below.

Definition 3. We call an attenuation function a(e) effective if all of the following conditions hold:

1. a(e) can be expressed as a function ã(ze) of ze

2. ã(0) = 1

3. ln(1− xzã(z)) is a convex function of z ∈ [0, 1] for any x ∈ (0, 1)

There are many functions which satisfy the conditions of Definition 3. Notice, for instance, that the
first two conditions are straightforward: we require only that the attenuation function be a function of
ze and result in no attenuation when ze ≈ 0. The final condition is satisfied by many nice classes of
functions, with some examples given in Definition 4.

Definition 4. Define the following attenuation functions:

• The exponential attenuation function, defined by ãexp(z) := e−αz for any α ≥ 1/2

• The linear attenuation function, defined by ãlin(z) := 1− αz for any α ≥ 1/2

It can be easily verified, by taking second derivatives, that these two functions indeed satisfy the third
property of Definition 3, and hence are effective.
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3.2 Analysis of the Attenuation Algorithm

The expected weight of the matching produced by our algorithm is E[ALG] =
∑
e∈E wepe Pr[Ye =

1]Pr[Ae = 1]Pr[e gets probed | Ye = 1 ∩ Ae = 1] =
∑
e∈E wepeyea(e) Pr[e gets probed | Ye =

1 ∩Ae = 1]. We wish to lower bound Pr[e gets probed | Ye = 1 ∩Ae = 1]. We will then establish
that for an effective attenuation function, a(e) · Pr[e gets probed | Ye = 1 ∩ Ae = 1] ≥ 0.382.
This then implies our 0.382-selectability result for the matching polytope, and establishes the 0.382-
approximation for stochastic matching on general graphs.

Fix an edge e = {u, v} and consider the endpoint u (the endpoint v can be treated symmetrically).Let
x ∈ [0, 1]; we will condition on π(e) = x. Let E(u) := δ(u) \ {e} be the set of u’s neighbors
excluding e. If probing an edge f ∈ E(u) results in either a successful match or u timing out, then
we say that edge f blocks e. We denote by Bu the event that e is not blocked by any edge f ∈ E(u).

We wish to analyze the local structure (around edge e) that produces the worst bound on Pr[Bu]. We
now present a sequence of lemmas that lead to the identification of the worst case e for any effective
attenuation function.
Lemma 2. For effective attenuation functions, all edges f ∈ E(u) in the worst case have pf ∈ {0, 1}.

As brief intuition for Lemma 2, we note that any edge f with pf ∈ (0, 1) can be replaced with two
edges f0 and f1 with probabilities of being active of 0 and 1 respectively. We can assign yf0 and yf1
in such a way that all LP constraints are still satisfied, and can show that the probability of an edge
blocking u is only increased by doing so.

Equipped with Lemma 2, let E0(u) = {f ∈ E(u) | pf = 0} and E1(u) = {f ∈ E(u) | pf = 1}.
Using the fact that all edges have integer probabilities (either 0 or 1), we can lower bound the
probability of u not being blocked by the following quantity:

Su := Pr[Tu ≤ tu − 1]
∏

f∈E1(u)

(1− xyfa(f)) (4)

where Tu =
∑
f∈E0(u)

Tf , and Tf is a Bernoulli random variable with Pr[Tf = 1] = xyfa(f). It is
easy to see that Pr[Bu] ≥ Su, because: (1) Pr[Tu ≤ tu−1] represents the probability of u not timing
out before considering edge e; (2) the product represents the probability of u not being matched.

The third property of effective attenuation functions (the convexity of ln(1− xzã(z))) allows us to
analyze the worst case behavior of edges in E1(u) and further simplify our bound. This is stated as
Lemma 3.
Lemma 3. If a(f) is an effective attenuation function, then

Su ≥ Pr[Tu ≤ tu − 1]e−x(1−ze) (5)

We can then state and prove our final results by further analyzing the worst-case behavior of edges in
E0(u).
Theorem 1 (corresponds to Result 1 from Subsection 1.1). For any graph and any feasible solution
(ye)e∈E to the LP (3), Algorithm 1 using an effective attenuation function considers the edges in a
random order and probes every edge e = {u, v} ∈ E with probability at least(

ã(ze)

∫ 1

x=0

e−2x(1−ze)gtu(x)gtv (x)dx

)
ye (6)

where gt(x) := Pr[T ≤ t − 1] for T ∼ Pois(x(t − 1)). For the effective attenuation functions of
Definition 4, the value in parentheses in (6) is minimized when ze = 0. This is then further lower
bounded by ≈ 0.382 when tu = tv = 2, so the algorithm is a 0.382-approximation.
Corollary 5 (corresponds to Corollaries 1 to 3 from Subsection 1.1). In the case where all patiences
are∞, since g∞(x) = 1 for all x ∈ (0, 1), for any feasible solution (ye)e∈E to LP (3): Algorithm 1,
using one of the attenuation functions from Definition 4, considers the edges in a random order and
probes every edge e = {u, v} with probability at least(∫ 1

x=0

e−2xdx

)
ye =

1

2

(
1− e−2

)
ye

which is ≈ 0.432ye. In this case, the algorithm is a 0.432-approximation and a 0.432-selectable
Random-order Contention Resolution Scheme for the matching polytope.
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Proposition 1 (corresponds to Corollary 4 from Section 1). For any star graph with infinite patiences
and any feasible solution (ye)e∈E to the LP (3), Algorithm 1, using one of the attenuation functions
in Definition 4, considers the edges in a random order and probes every edge e = {u, v} ∈ E with
probability at least (∫ 1

x=0

e−xdx

)
ye =

(
1− 1

e

)
ye. (7)

This yields a (1− 1/e)-selectable Random-order Contention Resolution Scheme for rank-1 matroids
which does not adapt to the time of arrival of each element.

4 Algorithm and Analysis for Result 2

Let G = (V,E) be a bipartite graph with bipartition V = V1 ∪ V2. Assume tu = 1 for all u ∈ V1.

Description of algorithm. We first solve the standard LP (3) to obtain an optimal solution (ye)e∈E
satisfying

∑
e∈δ(v) yepe ≤ 1 and

∑
e∈δ(v) ye ≤ tv for all v ∈ V . Then, we run the rounding

procedure of Gandhi et al. (2006) on ye to get an integral solution Ye ∈ {0, 1}. This guarantees that
for each vertex u ∈ V1 that

∑
e∈δ(u) Ye ≤ 1. Thus, at most one vertex e ∈ δ(u) will be rounded to

Ye = 1 for every u ∈ V1. Thus, in the rounded graph Ĝ := (V, Ê), where Ê := {e ∈ E : Ye = 1},
each vertex v ∈ V2 is the center of a star graph. For each vertex v ∈ V2, we probe the edges e ∈ δ(v)
in decreasing order of weight, for each e with Ye = 1.

Analysis of algorithm. The expected value achieved by this strategy is

E[ALG] := E

[∑
v∈V2

W (v)

]
=
∑
v∈V2

E[W (v)]

where W (v) denotes the weight of the edge matched by the algorithm (if any) for a vertex v. In our
analysis, we consider each vertex v ∈ V2 separately, since in the rounded graph, it is the center of a
star graph that is disconnected from any other vertices of V2. We first utilize the negative correlation
property of our dependent rounding technique (Gandhi et al., 2006) to establish the following lemma.
Lemma 4. Consider a fixed vertex v ∈ V2. Label the edges of δ(v) from 1 to k := |δ(v)| such that
w1 ≥ w2 ≥ · · · ≥ wk. Then:

E[W (v)] ≥
k∑
i=1

wizi

i−1∏
j=1

(1− zj)

For v ∈ V2, let OPT(v) :=
∑
e∈δ(v) weze. Using Lemma 4, we are then able to derive the following,

from which our main result immediately follows.
Lemma 5. For any vertex v ∈ V2, we have

E[W (v)] ≥
(
1− 1

e

)
OPT(v)

Theorem 2 (corresponds to Result 2 from Subsection 1.1). For any bipartite graph with a unit-
patience side, let (ye)e∈E denote an optimal solution to the LP (3). Then our algorithm above matches
expected weight at least (1− 1/e)

∑
v∈V2

∑
e∈δ(v) wepeye, yielding a (1− 1/e)-approximation.

We note that the problem of stochastic matching on bipartite graphs with a unit patience side is a
special case of particular interest, as it captures “Problem A” in Hikima et al. (2021). As shown in
Lemma A of Hikima et al. (2021), an α-approximation for Problem A implies an α-approximation
for the Integrated Stochastic Problem for Control Variables and Bipartite Matching (ISPCB). This is
discussed further at the end of this section.

Why we cannot use an existing Contention Resolution Scheme. Lemmas 4 and 5 show that the
total expected weight collected from edges in δ(v) is at least (1− 1/e) ·OPT(v). We now explain
why it is not possible to use a correlation-agnostic Contention Resolution Scheme to match every
edge e ∈ δ(v) with probability at least (1− 1/e). We consider the following example, in which every
edge e has the same value of ze = peye. Therefore, a correlation-agnostic Contention Resolution
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Scheme would treat the edges symmetrically, doing no better than a strategy which considers the
edges in a random order until an edge e is matched (which requires both Ye to be rounded to 1 and
for edge e to exist). However, due to the first-stage dependent rounding for Ye, the probabilities of
edges being matched end up being negatively correlated (as defined in (2) in the introduction). This
negative correlation among the neighbors of a particular edge “0” can increase the probability of edge
0 being blocked to 1/2 (something not possible under independence), as we now demonstrate.

Example 1. Consider a star graph with T + 1 edges, whose central vertex has patience 2. Take the
fractionally-feasible solution y0 = 1, p0 = 1/(T +1), and y1 = · · · = yT = 1/T , p1 = · · · = pT =
T/(T + 1). Any rounding procedure which satisfies the patience w.p. 1 and preserves the marginal
probabilities will set Y0 = Yi = 1, Yi′ = 0 for all other i′, with i drawn uniformly from {1, . . . , T}.
This implies that w.p. 1− 1/(T + 1), one of the edges 1, . . . , T will match upon being uncountered.
Any correlation-agnostic procedure would treat all edges symmetrically, since they all have the same
value of zi = piyi = 1/(T + 1). Consequently, edge 0 will have a (1− 1/(T + 1))/2 probability of
being blocked, whenever it is considered later than the aforementioned edge which matches upon
being encountered. Therefore, the correlation-agnostic procedure cannot be better than 1/2-selectable
as T →∞.

4.1 Improvement to Approximation Ratio of Hikima et al. (2021)

The work of Hikima et al. (2021) introduces and studies a problem they call Integrated Stochastic
Problem for Control variables and Bipartite Matching (ISPCB). This problem is a two-stage bipartite
matching problem where the algorithm is given a bipartite graph G = (V1 ∪ V2, E) and must set a
control variable xu for each u ∈ V1. Then, each vertex u ∈ V1 leaves the graph with probability
pu(xu) (where pu(xu) is some known probability which depends on xu), and then the algorithm
computes a maximum-weight matching on the resulting graph.

Hikima et al. (2021) prove an approximation guarantee for ISPCB by first studying a problem they
denote Problem A. Problem A can be seen as the problem of stochastic bipartite matching with a
unit-patience side which we study here: For each edge (u, v) ∈ E, puv = pu(xu), tu = 1 for each
u ∈ V1, and tv =∞ for each v ∈ V2. The proof of Theorem 1 in Hikima et al. (2021) shows that an
α-approximation of Problem A implies an α-approximation for ISPCB. The 1/3-approximation then
follows from the 1/3-approximation for stochastic bipartite matching in Bansal et al. (2012). Our
Result 2 captures Problem A, which thus implies a (1− 1/e)-approximation for ISPCB, improving
on the previous 1/3-approximation of Hikima et al. (2021)
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