
ar
X

iv
:2

10
6.

05
42

4v
4

 [
cs

.D
S]

 1
6

Fe
b

20
22

Fair Disaster Containment via Graph-Cut Problems

Michael Dinitz∗ Aravind Srinivasan† Leonidas Tsepenekas ‡ Anil Vullikanti §

Abstract

Graph cut problems are fundamental in Combinatorial Optimization, and are a central object

of study in both theory and practice. Furthermore, the study of fairness in Algorithmic Design

and Machine Learning has recently received significant attention, with many different notions

proposed and analyzed for a variety of contexts. In this paper we initiate the study of fairness for

graph cut problems by giving the first fair definitions for them, and subsequently we demonstrate

appropriate algorithmic techniques that yield a rigorous theoretical analysis. Specifically, we

incorporate two different notions of fairness, namely demographic and probabilistic individual

fairness, in a particular cut problem that models disaster containment scenarios. Our results

include a variety of approximation algorithms with provable theoretical guarantees.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E, where n = |V | and every
e ∈ E has a cost we ∈ R≥0. In addition, we are given a designated “source” vertex s ∈ V . We
are concerned with attempting to mitigate some sort of “disaster” that begins at s and infectiously
spreads through the network via the edges. This means that vertices v ∈ V that are connected to
s (i.e., there exists an undirected s− v path in G) are at some sort of risk or disadvantage.

A natural approach to mitigate the aforementioned spread is to remove edges from G, in an
attempt to disconnect as many vertices of the graph from s as possible. Specifically, if we remove a
cut-set or simply cut F ⊆ E from the graph, we denote by prot(V,E \ F, s) the set of vertices in V
that are no longer connected to s in GF = (V,E \ F), and hence are protected from the infectious
process. At a high-level, the edge removal strategy contains the disastrous event within the set
V \ prot(V,E \ F, s). Observe now that there is a clear trade-off between the cost w(F)1 of the cut
F and |prot(V,E \ F, s)|, i.e., the more edges we remove the more vertices we may be able to save.

The aforementioned trade-off naturally leads to the following optimization problem, which we
call Size Bounded Minimum Capacity Cut or SB-MinCC for short. Given a graph G with source
vertex s and a integer target value T > 0, we want to compute a cut F ⊆ E with the mini-
mum possible cost w(F), such that at least T vertices of V are saved in GF = (V,E \ F), i.e.
|prot(V,E \ F, s)| ≥ T . This problem is NP-hard as shown in [16]. The work of [22] gave a
O(log2 n)-approximation algorithm for SB-MinCC, while [16, 14] gave constant factor bicriteria
algorithms for it, i.e., algorithms that provide solutions that come within a constant factor of the
optimal cut cost, but at the same time might not save at least T vertices.

∗Johns Hopkins University. Email: mdinitz@cs.jhu.edu
†University of Maryland, College Park. Email: srin@cs.umd.edu
‡University of Maryland, College Park. Email: ltsepene@umd.edu
§University of Virginia. Email: vsakumar@virginia.edu
1For a vector α = (α1, α2, . . . , αk) and a subset X ⊆ {1, 2, . . . , k}, we use α(X) to denote

∑
i∈X

αi

1

http://arxiv.org/abs/2106.05424v4
mailto:mdinitz@cs.jhu.edu
mailto:srin@cs.umd.edu
mailto:ltsepene@umd.edu
mailto:vsakumar@virginia.edu

Inspired by the recent interest revolving around algorithmic fairness, our goal in this paper is to
incorporate such ideas in SB-MinCC, and initiate the discussion of fairness requirements for cuts
in graphs. To the best of our knowledge, our work here is the first to combine fairness with this
family of problems.

The first notion of fairness that we consider is the widely used Demographic Fairness one. The
high-level idea behind this definition is that the set of elements that require “service” consists of
various subsets—say demographic groups—and the solution should equally and fairly treat and rep-
resent each of these groups. In our case, if the vertices of the graph belong to different groups, we
would like our solution to fairly separate vertices of each of them from the designated node s. In
this way, we will avoid outcomes that completely ignore certain groups for the sake of minimizing
the objective function. Hence, we define the following problem.

DemFairCut: In addition to a graph G = (V,E) with weights {we}e∈E and the source s ∈ V , for
some integer γ ≥ 1 we are given sets V1, V2, . . . , Vγ and values f1, f2, . . . , fγ , such that ∀h ∈ [γ]2

we have Vh ⊆ V and fh ∈ (0, 1]. Note that each v ∈ V may actually belong to multiple sets Vh.
Letting nh = |Vh|, the goal is to find a cut F ⊆ E with the minimum possible w(F), subject to the
constraint that |Vh ∩ prot(V,E \ F, s)| ≥ fh · nh for all h ∈ [γ]. In words, if each Vh is interpreted
as a demographic, we want the minimum cost cut under the condition that at least an fh fraction of
the points in Vh are disconnected from s (for all h).

Instantiating this definition with different values of fh allows us to model a variety of fairness
scenarios. For example, setting fh = 1/2 would let us guarantee a solution that protects at least
half the vertices of each Vh. Alternatively, we can set fh to be a decreasing function of nh/n, and
thus yield a solution that focuses more on protecting smaller demographics. Moreover, notice that
SB-MinCC is a special case of DemFairCut, where γ = 1 (we only have one demographic group)
and f1 =

T
n . Hence, DemFairCut is NP-hard, since SB-MinCC is already known to be NP-hard.

The second notion of fairness we consider is called Probabilistic Individual Fairness, and was first
introduced in the context of robust clustering [15, 2]. According to it, the final solution should not
simply be just one solution, but rather a distribution D over solutions. Then, considering each input
element individually, the probability that it will get “good service” in a randomly drawn solution
from this distribution, should be at most some given (fairness related) parameter. Obviously,
sampling from this constructed distribution D must be achievable in polynomial time, and we call
such distributions efficiently-sampleable. Under this notion of fairness, we avoid outcomes that
deterministically prevent satisfactory outcomes for certain individuals.

Incorporating the above concept of fairness in SB-MinCC, implies that besides the global guar-
antee of saving at least T vertices, we also need to provide a stochastic guarantee for each individual
vertex, ensuring it that in the final solution it will be disconnected from s with a certain probability.
For instance, ensure that each vertex gets disconnected with probability at least 1/2, and hence no
specific vertex enjoys preferential treatment. The formal definition follows.

IndFairCut: In addition to a graph G = (V,E) with weights {we}e∈E , a target T ∈ N≥0 and source
s ∈ V , for each v ∈ V \ {s} we are also given a value pv ∈ [0, 1]. The goal is to find an efficiently-
sampleable distribution D over the cuts F(B) = {F ⊆ E : w(F) ≤ B ∧ |prot(V,E \ F, s)| ≥ T},
such that PrF∼D[v ∈ prot(V,E \ F, s)] ≥ pv for each v ∈ V \ {s}, and B is the minimum possible.

Further, SB-MinCC is also a special case of IndFairCut, since we can always set pv = 0 for

2We use [k] to denote {1, . . . , k} for some integer k ≥ 1

2

all v ∈ V \ {s} and make the stochastic constraints void. Hence, IndFairCut is also NP-hard.

Observation 1.1. In both problems, we can assume that the disastrous event simultaneously starts
from a set of vertices S, instead of just a single designated vertex. This assumption is without loss
of generality, since S can be merged into a single vertex s (by retaining all edges between S and
V \ S), thus giving an equivalent formulation that matches ours.

1.1 Contribution and Outline

Our main contribution lies in introducing the first fair variants of graph-cut problems, together with
approximation algorithms with provable guarantees for them.

In Section 2 we present a technique that is required in our approach for solving DemFairCut

and IndFairCut. The key insight is that we can reduce these problems on general graphs to the
same problems on trees, by using a tree embedding result of [21].

In Section 3 we address demographic fairness. At first, we provide an O(log n)-approximation
algorithm for DemFairCut based on dynamic programming. The latter algorithm runs in poly-
nomial time only when the number of groups γ is a constant. When γ is not a constant and can
be any arbitrary value, we develop a different algorithm based on a linear programming relaxation

together with a dependent randomized rounding technique. This result yields an O
(

logn log γ
ǫ2·minh fh

)

-

approximation for any ǫ > 0. However, we mention that the covering guarantee it provides to
each demographic Vh is only that at least (1 − ǫ)fhnh vertices of it will be saved. Regarding the
dependence on minh fh, we believe that in realistic fairness related applications the covering frac-
tions fh should be relatively big, i.e., some constant fh = Ω(1), since we care about protecting the
vertices in the best way possible. Hence, the approximation ratio of our algorithm can be thought

of as O
(

logn log γ
ǫ2

)

. Finally, we show that even on tree instances, DemFairCut with arbitrary γ is

actually quite hard: it cannot be approximated better than Ω(log γ). We do this by demonstrating
an approximation factor preserving reduction from Set Cover.

In Section 4 we provide an O(log n)-approximation algorithm for IndFairCut. The high-level
approach of this result relies on the round-or-cut technique developed by [2], which we tailor in a
way that suits the specific needs of our problem.

Finally, notice that since SB-MinCC is a special case of DemFairCut (with γ = 1), and also
a special case of IndFairCut (when pv = 0 for all v), our dynamic programming algorithm from
Section 3 and the algorithm of Section 4, both provide a O(log n)-approximation for SB-MinCC.
This constitutes an improvement over the best previously known O(log2 n)-approximation of [22].

1.2 Motivating Examples

Regarding demographic fairness, consider the following potential application. The vertices of the
graph V would correspond to geographic areas across the globe, and an edge (u, v) ∈ E would
denote whether or not there is underlying infrastructure, e.g., highways or airplane routes, that can
transport people between areas u and v. The disastrous event in this scenario is the spread of a
disease in a global health crisis. If an area u ∈ V is “infected”, then it is natural to assume that
neighboring areas (i.e., areas v ∈ V with (u, v) ∈ E) can also get infected if we allow people to travel
between u and v. A central planner will now naturally try to break a set of connections F ⊆ E
from the infrastructure graph, such that the total cost w(F) of these actions will be as small as
possible, while some guarantee on the number of protected areas |prot(V,E \F, s)| is also satisfied.
The value w(F) can be interpreted as the economic cost of the proposed strategy F , e.g., the lost
revenue of airline companies resulting from cancelling flights.

3

In terms of fairness, we can think of the areas V as coming from γ different countries, with
Vh being the areas associated with country h ∈ [γ]. Then, a fair solution would not tolerate a
discrepancy in how many areas are protected across different countries. For example, a fair approach
would be to ensure that each country has at least half of its areas protected, since the less “infected”
areas each country has, the more easily it can keep its local crisis under control.

As far as individual fairness is concerned, consider a computer network facing the spread of a
computer virus. In this scenario, we want to minimize the cost of the connections removed, such
that the infectious process is kept under control and thus a certain number of users T does not get
infected. However, each individual user of the network would arguably prefer to be in the set of
protected vertices. Our notion of individual fairness as studied in IndFairCut, will ensure exactly
that in a stochastic sense, by using appropriate values pv.

1.3 Related Work

The unfair variant of our problems, i.e., SB-MinCC, was studied in [16, 22, 14]. These papers also
considered additional versions of SB-MinCC, where the goal was to maximize |prot(V,E \ F, s)|
(equivalently minimize |V \ prot(V,E \ F, s)|) subject to an upper bound constraint on w(F).

The study of fairness in algorithmic design and machine learning has recently received significant
attention. This is mainly due to the realization that the output of standard optimization algorithms
can very well lead to solutions that are highly unfair and hurtful for the individuals or the groups
involved. Examples of this include racial bias in Airbnb rentals [4], gender bias in Google’s Ad
Settings [11] and discrimination in housing ads in Facebook [6]. There are two reasons why such
unfortunate events occur. First, the training datasets may include implicit biases, and hence when
algorithms are trained on them, they learn to perpetuate the underlying biases. Second, in many
situations, even if the data is completely unbiased, merely optimizing an objective function does not
suffice if fairness considerations are at play. In such cases, we must explicitly incorporate fairness
constraints in our algorithm design process. Our work here tries to accomplish the latter.

Although algorithmic fairness has not yet been addressed in cut problems, there are other areas
such as classification and clustering were examples of fair algorithms are abundant. For example,
[10, 8, 7, 17, 3, 1] consider notions of demographic fairness in clustering, while [9, 2, 15] focus on
notions of individually-fair clustering. In the context of fair classification, one of the most seminal
works with significant implications in other fields as well, is the paper of [13]. This work studies
individual fairness and its interplay with a notion of demographic fairness, namely statistical parity.
Some excellent surveys on the topic of algorithmic fairness are [5, 20].

2 Reduction to Tree Instances

In this section we show how both DemFairCut and IndFairCut can be effectively reduced to
solving an appropriate problem on a tree instance. To do this, we use the following lemma.

Lemma 2.1 ([21]). For any undirected G = (V,E) with edge costs we ≥ 0, we can efficiently
construct a collection of trees T1 = (V,E1), T2 = (V,E2), . . . , Tk = (V,Ek) with tree Ti having
an edge-cost function wi : Ei 7→ R≥0, and find non-negative multipliers (λ1, . . . , λk), such that
∑k

i=1 λi = 1 and k = poly(|V |)3. Further, for any S ⊆ V let δ(S) be the set of edges in E with
exactly one endpoint in S, and δi(S) denote the set of edges in Ei with exactly one endpoint in S.
Then, for any S ⊆ V :

3Throughout, “poly" will denote an arbitrary univariate polynomial: its usage in different places could connote

different polynomials.

4

1. w(δ(S)) ≤ wi(δi(S)) for every i ∈ [k]

2.
∑k

i=1 λiw
i(δi(S)) ≤ O(log n)w(δ(S))

Definition 2.2. We call an algorithm for DemFairCut (ρ, α)-bicriteria, if for any given problem
instance I = {V,E, s, w, V1, . . . , Vγ , ~f} with optimal value OPTI , it returns a solution F such that
1) w(F) ≤ ρOPTI , and 2) |prot(V,E \ F, s) ∩ Vh| ≥ αfhnh, ∀h ∈ [γ].

Lemma 2.3. If we have a (ρ, α)-bicriteria algorithm for DemFairCut in trees, we can get a
(ρ ·O(log n), α)-bicriteria algorithm for DemFairCut in general graphs.

Proof. If I = {V,E, s, w, V1, . . . , Vγ , ~f} is the general instance, we first apply the result of Lemma 2.1
in order to get a collection of trees T1 = (V,E1), . . . , Tk = (V,Ek), where each tree Ti has an
associated edge weight function wi. We then use the given algorithm and solve DemFairCut in
each tree instance Ii = {V,Ei, s, w

i, V1, . . . , Vγ , ~f}, and get a solution Fi ⊆ Ei in return. For the
solution Fi we compute for Ii, let Xi = prot(V,Ei \ Fi, s), and note that the properties of the
algorithm ensure |Xi ∩ Vh| ≥ αfhnh, ∀h ∈ [γ].

After running the algorithm in each tree instance, we find the tree Tm with m = argmini w(δ(Xi)),
and we set our solution for the general graph to be δ(Xm). This means that in our general solution
Xm ⊆ prot(V,E \ δ(Xm), s). Combining this observation with the fact that |Xm ∩ Vh| ≥ αfhnh

for all h ∈ [γ], implies that in the solution for the general graph we again satisfy all demographic
constraints up to an α violation. We now only have to reason about the cost of δ(Xm).

Let X∗ be the set of vertices not connected to s in the optimal solution of I . If OPT is the value
of the latter, then w(δ(X∗)) ≤ OPT . Also, since X∗ satisfies all γ demographic constraints exactly,
the set δi(X

∗) is a feasible solution for Ii, and OPTIi ≤ wi(δi(X
∗)). Hence, because δi(Xi) ⊆ Fi:

wi(δi(Xi)) ≤ ρ ·OPTIi ≤ ρ · wi(δi(X
∗)) (1)

Using the definition of m and the first property of the trees from Lemma 2.1 gives

w(δ(Xm)) ≤
k

∑

i=1

λiw(δ(Xi)) ≤
k

∑

i=1

λiw
i(δi(Xi)) (2)

Combining (1), (2) and the second property of Lemma 2.1 yields

w(δ(Xm)) ≤ ρ

k
∑

i=1

λiw
i(δi(X

∗)) ≤ ρ ·O(log n) · w(δ(X∗)) ≤ ρ ·O(log n) ·OPT

Our approach for tackling IndFairCut uses as a black-box an algorithm for a new problem,
which we call AuxCut and we formally define below. In order to get an algorithm for general
instances of AuxCut, we again use a reduction to trees.

AuxCut: We are given an undirected graph G = (V,E), a designated vertex s ∈ V , a budget
B > 0, and a target value T ∈ N≥0. In addition, each e ∈ E has a weight we ≥ 0, and each vertex
v ∈ V \{s} has a value av ≥ 0. The goal is to find a cut F with w(F) ≤ B and |prot(V,E\F, s)| ≥ T ,
that maximizes a(prot(V,E \ F, s)).

Definition 2.4. We say that an algorithm is (1, 1, ρ)-bicriteria for AuxCut, if for any given instance
I = (V,E,B, T,w, s, a) of the problem with optimal value OPTI , it returns a set of edges F , such
that 1) w(F) ≤ ρB, 2) |prot(V,E \ F, s)| ≥ T and 3) a(prot(V,E \ F, s)) ≥ OPTI .

5

Lemma 2.5. If we have a (1, 1, ρ)-bicriteria algorithm for AuxCut in tree instances, we can devise
a (1, 1, ρ ·O(log n))-bicriteria algorithm for AuxCut in general graphs.

Proof. Let I = (V,E,B, T,w, s, a) be an instance of AuxCut for a general graph. We first apply
the result of Lemma 2.1 in order to get a collection of trees Ti = (V,Ei) with edge-weight functions
wi. Then, for each such tree we create an instance Ii = (V,Ei, B · O(log n), T, wi, s, a), and we use
the given bicriteria algorithm to solve AuxCut on it. Let Fi ⊆ Ei the solution we get for Ii, and
for notational convenience let again Xi = prot(V,Ei \ Fi, s). After that, we find the tree Tm with
m = argmaxi a(Xi), and we set our solution for the general graph to be δ(Xm). This means that
in our general solution we again get Xm ⊆ prot(V,E \ δ(Xm), s).

At first, because of the properties of the algorithm used on Ii, we have |Xm| ≥ T , and therefore
even in our solution for the general graph we end up saving at least T vertices.

Furthermore, because δi(Xi) ⊆ Fi, the properties of the bicriteria algorithm give wi(δi(Xi)) ≤
ρ · O(log n) ·B for every i. From the first property in Lemma 2.1 we thus get

w(δ(Xm)) ≤ wm(δm(Xm)) ≤ ρ · O(log n) ·B

To conclude we need to show that a(Xm) ≥ OPTI , where OPTI the value of the optimal
solution of I . Let also X∗ be the set of vertices not connected to s in the optimal solution of I .
Since X∗ is the optimal such set of vertices, we have |X∗| ≥ T and w(δ(X∗)) ≤ B. Moreover, let
m∗ = argminiw

i(δi(X
∗)). The definition of m∗ and the second property from Lemma 2.1 give

wm∗

(δm∗(X∗)) ≤
k

∑

i=1

λiw
i(δi(X

∗)) ≤ O(log n)w(δ(X∗)) ≤ B · O(log n)

Hence δm∗(X∗) is feasible for Im∗ (recall that |X∗| ≥ T), and since the given algorithm is a (1, 1, ρ)-
bicriteria we get a(Xm) ≥ a(Xm∗) ≥ OPTIm∗ ≥ a(X∗) = OPTI .

3 Addressing Demographic Fairness

In this section we tackle DemFairCut and present two algorithms for it. The first works when is
γ a constant, and is an O(log n)-approximation. The second addresses the case of an arbitrary γ,

and for any ǫ > 0 it is an
(

O
(

logn log γ
ǫ2·minh fh

)

, 1− ǫ)-bicriteria one.

3.1 Solving DemFairCut for γ = O(1)

Given Lemma 2.3, we can focus on only solving the problem in tree instances. Specifically, we
show that when γ = O(1) the problem in trees can be solved optimally via dynamic programming.
Without loss of generality, we can also assume that the given tree is rooted at s and it is binary.
For details on why this assumption is safe to use, we refer the reader to Lemma 15.18 from [23].
Before we describe our approach we need some additional notation. For a vertex v, let φh(v) = 1 if
v ∈ Vh and 0 otherwise.

Our dynamic programming algorithm is based on a table M , where M [v, k1, k2, . . . , kγ] represents
the minimum cost of a cut in the subtree rooted at v, so that there are exactly kh nodes from Vh

that are connected to v. Let vr be the right child of v, and let vℓ be the left child of v. Observe that
the optimal solution either cuts neither of the edges from v to its children, just the left edge, just
the right edge, or both of the edges. So, we set M [v, k1, k2, . . . , kγ] to the minimum of the following:

1. min
{

M [vℓ, k
ℓ
1, k

ℓ
2, . . . , k

ℓ
γ] +M [ur, k

r
1, k

r
2, . . . , k

r
γ] : k

ℓ
h + krh + φh(v) = kh ∀h ∈ [γ]

}

6

2. min
{

w(v,vℓ) +M [vr, k
′
1, k

′
2, . . . , k

′
γ] : k

′
h + φh(v) = kh ∀h ∈ [γ]

}

3. min
{

w(v,vr) +M [vℓ, k
′
1, k

′
2, . . . , k

′
γ] : k

′
h + φh(v) = kh ∀h ∈ [γ]

}

4. w(v,vr) + w(v,vℓ) if kh = φh(v) for all h ∈ [γ], +∞ otherwise.

The first case above corresponds to cutting neither of the edges (v, vr), (v, vℓ), the second to cutting
only (v, vℓ), the third to cutting only (v, vr), and the fourth to cutting both.

To fill in M , we begin by initializing M [v, φ1(v), φ2(v), . . . , φγ(v)] = 0 for all leaves v of the
tree, and set all other table entries to +∞. Then we proceed by filling the table bottom-up. There
are at most O(nγ+1) table entries, and to compute each one we need to access at most 2nγ other
ones. Thus, the total runtime is O(n2γ+1). Finally, in order to find the optimal cut, we look for the
minimum entry M [s, k1, . . . , kγ], such that kh ≤ (1− fh)nh for all h ∈ [γ].

Theorem 3.1. When γ is a constant, we have an optimal dynamic programming algorithm for
DemFairCut in trees, running in time O(n2γ+1).

Combining Theorem 3.1 with Lemma 2.3, we see that our approach achieves the following.

Theorem 3.2. When γ = O(1), we give a O(log n)-approximation algorithm for DemFairCut.

3.2 Solving DemFairCut for an Arbitrary γ

Given Lemma 2.3, we again focus on instances I = {V,E, s, w, V1, . . . , Vγ , ~f}, where the underlying
graph T = (V,E) is a tree. Moreover, we can assume without loss of generality that the tree is
rooted at s. Before we proceed with the description of our algorithm, we need some more notation.
For every v ∈ V let P (s, v) ⊆ E be the unique path from s to v in the tree, and ℓ(v) = |P (s, v)|. In
addition, for every e = (u, v) ∈ E let Pe = P (s, r(e)), with r(e) = argminz∈{u,v} ℓ(z). In words, Pe

contains the edges of the path that starts from s and finishes just before reaching e. The following
linear program (LP) is then a valid relaxation of our problem.

min
∑

e∈E

we · xe (3)

yv =
∑

e∈P (s,v)

xe ∀v ∈ V (4)

∑

v∈Vh

yv ≥ fh · nh ∀h ∈ [γ] (5)

0 ≤ yv, xe ≤ 1 ∀v ∈ V, e ∈ E (6)

In the integral version of LP (3)-(6), xe = 1 iff edge e is included in the cut. Now notice that
because the underlying graph is a tree and the edge weights are non-negative, for any v ∈ V the
optimal solution would not choose more than one edge from P (s, v). Therefore, by constraints (4)
and (6) we see that yv = 1 iff v is separated from s in the optimal outcome. Consequently, constraint
(5) naturally captures the demographic covering requirements.

Our approach begins by solving LP (3)-(6) in order to get a fractional solution x, y. We then
apply the following dependent randomized rounding scheme. We consider the edges of the tree in
non-decreasing order of |Pe|, and for an edge e for which no other edge in Pe is already chosen for
the cut, we remove it with probability xe/(1−x(Pe)) if x(Pe) < 1. The latter action is well-defined
because for every e′ ∈ Pe we have |Pe′ | < |Pe|, and hence e′ is considered before e in the given

7

Algorithm 1: Randomized Rounding for LP (3)-(6)

For every e ∈ E set Xe ← 0, and for all v ∈ V set Yv ← 0;
for all e ∈ E in non-decreasing order of |Pe| do

if x(Pe) < 1 and Xe′ = 0 for all e′ ∈ Pe then
Set Xe ← 1 with probability xe/(1 − x(Pe));
if Xe = 1 then

Set Yv ← 1 for all {v ∈ V : e ∈ P (s, v)};
end

end

end

ordering. Further, if an edge e is chosen to be placed in the cut, then all v ∈ V with e ∈ P (s, v) are
now disconnected from s. In addition, observe that due to the dependent nature of this process, no
path P (s, v) will have more than one edge of it in the solution.

Algorithm 1 demonstrates all necessary details of the rounding, with Xe being an indicator
random variable denoting whether or not e is included in the solution, and Yv an indicator random
variable that is 1 iff v is disconnected from s in the final outcome.

Lemma 3.3. When we randomly decide to include e ∈ E in the cut, we do so with a valid probability.

Proof. Let e = (u, v), and without loss of generality assume l(u) < l(v). This means that Pe =
P (s, u) and P (s, v) = P (s, u) ∪ {e}. In addition, to consider a randomized decision for e we should
also have x(Pe) < 1. Using constraints (4) and (6) for v we therefore get:

xe +
∑

e′∈Pe

xe′ ≤ 1 =⇒
xe

1− x(Pe)
≤ 1

Lemma 3.4. For every e ∈ E and v ∈ V , we have Pr[Xe = 1] = xe and Pr[Yv = 1] = yv.

Proof. Let us begin with an e ∈ E for which we never made a random decision because x(Pe) ≥ 1,
and hence Xe = 0. If e = (u, v) with l(u) < l(v), then Pe = P (s, u) and P (s, v) = P (s, u) ∪ {e}.
Because of constraints (4) and (6) for u we first get x(Pe) = 1. Therefore, constraints (4) and (6)
applied this time for v yield xe = 0, which indeed gives Pr[Xe = 1] = xe.

Now let us consider an edge e with x(Pe) < 1. Because for each e′ ∈ Pe we have Pe′ ⊂ Pe, we
also get x(Pe′) < 1. The latter means that for all other edges in Pe a random decision potentially
takes place. Furthermore, analysis of the algorithm’s actions shows that Pr[Xe = 1] is equal to

Pr[Xe = 1 | Xe′ = 0 ∀e′ ∈ Pe] · Pr[Xe′ = 0 ∀e′ ∈ Pe]

=
xe

1−
∑

e′∈Pe
xe′

∏

e′∈Pe

(

1−
xe′

1−
∑

e′′∈Pe′
xe′′

)

(7)

Let e1, . . . , em the edges of Pe in increasing order of |Pej |. Then because Pej = {ej′ | j
′ < j},

expression (7) can be rewritten as a telescopic product of fractions:

xe
1−

∑m
j=1 xej

m
∏

j=1

(

1−
xej

1−
∑j−1

i=1 xei

)

= xe

As for a vertex v ∈ V , we have Pr[Yv = 1] = Pr[∃e ∈ P (s, v) : Xe = 1] because there is a
unique path from s to it. Moreover, since our rounding will never put more than one edges of

8

P (s, v) in the cut, for all S ⊆ P (s, v) with |S| ≥ 2 we get Pr[Xe = 1,∀e ∈ S] = 0. Hence, by the
inclusion-exclusion principle Pr[∃e ∈ P (s, v) : Xe = 1] =

∑

e∈P (s,v) Pr[Xe = 1] =
∑

e∈P (s,v) xe = yv,
where the last equality follows from constraint (4).

We will now analyze the satisfaction of the coverage constraints for the different demographics.
If Sh is the number of vertices from Vh that are not connected to s in the solution, we see that
Sh =

∑

v∈Vh
Yv. Using Lemma 3.4 and constraint (5) gives E[Sh] ≥ fhnh. We thus need to calculate

how much can Sh deviate from E[Sh]. For that we will need the following two lemmas.

Lemma 3.5. [18] Let Z1, . . . , Zm be Bernoulli random variables, where Pr[Zi = 1] = zi for all
i ∈ [m]. Let Γ be the dependency graph on the Zi. For i 6= j, Zi and Zj are dependent if there
exists an edge between them in Γ, and we denote that as i ∼ j. Let also Z =

∑m
i=1 Zi, µ = E[Z],

∆ =
∑

{i,j}:i∼j Pr[Zi = Zj = 1], δi =
∑

j∼i zj and δ = maxi δi. Then for any ǫ ∈ [0, 1]

Pr[Z ≤ (1− ǫ)µ] ≤ exp
(

−min
(ǫ2 · µ2

8∆ + 2µ
,
ǫ · µ

6δ

))

Lemma 3.6. For every m ∈ N>0 and some sequence of non-negative numbers a1, a2, . . . we have:

m−1
∑

i=1

(m− i)ai ≤ m

m
∑

i=1

ai

Proof. We prove the statement via induction on m. For m = 1 it is trivial. Suppose that the lemma
holds up to some m = k. We then prove it for m = k + 1:

k+1−1
∑

i=1

(k + 1− i)ai =
k

∑

i=1

(

(k − i)ai + ai

)

=
k

∑

i=1

(k − i)ai +
k

∑

i=1

ai

=
k−1
∑

i=1

(k − i)ai +
k

∑

i=1

ai ≤ k
k

∑

i=1

ai +
k

∑

i=1

ai

≤ (k + 1)

k
∑

i=1

ai ≤ (k + 1)

k+1
∑

i=1

ai

The first inequality uses the inductive hypothesis, while the last one the fact that ak+1 ≥ 0.

Lemma 3.7. For all h ∈ [γ] and any ǫ ∈ [0, 1], we have Pr[Sh ≤ (1− ǫ)E[Sh]] ≤ e
−ǫ2·fh

10 .

Proof. Due to Lemma 3.4, the random variables Yv for v ∈ Vh are Bernoulli with Pr[Yv = 1] = yv.
Because of the tree structure they are also to some extent dependent. Our goal here is to apply
Lemma 3.5 for Sh, and towards that end we need to upper bound the dependency factors δ,∆.
Since we do not know exactly the underlying dependency graph Γ, in what follows we assume that
all pairs Yv, Yv′ are dependent. We begin by upper-bounding the parameter ∆ of Lemma 3.5.

∆ ≤
∑

{v,v′}∈Vh

Pr[Yv = Yv′ = 1]

≤
∑

{v,v′}∈Vh

min(Pr[Yv = 1],Pr[Yv′ = 1])

=
∑

{v,v′}∈Vh

min(yv, yv′)

9

Now let a1, a2, ..., anh
be the values yv for all v ∈ Vh in non-decreasing order. Then we have:

∑

{v,v′}∈Vh

min(yv, yv′) =

nh−1
∑

i=1

(nh − i)ai ≤ nh

nh
∑

i=1

ai = nh · E[Sh]

To get the first inequality we used Lemma 3.6. Therefore, we get ∆ ≤ nh · E[Sh]. Moreover, a
straightforward upper bound for each δv is δv ≤

∑

u∈Vh
yu = E[Sh]. Thus, δ ≤ E[Sh]. Finally, we

also need bounds for the following two quantities, where µ = E[Sh]:

ǫ2 · µ2

8∆ + 2µ
≥

ǫ2 · µ2

8µ · nh + 2µ
=

ǫ2 · µ

8nh + 2
≥

ǫ2 · nh · fh
8nh + 2

≥
ǫ2 · fh
10

ǫ · µ

6δ
≥

ǫ · µ

6µ
=

ǫ

6

Since ǫ
6 ≥

ǫ2·fh
10 for any ǫ, fh ∈ [0, 1], Lemma 3.5 immediately gives the desired bound.

To conclude, for some constant β ≥ 2 we repeat Algorithm 1 independently N = 10 log γβ

ǫ2·minh fh
times,

and in each run t of it (with t ∈ [N]) we compute a set of edges Ft that are chosen to be removed.
Our final solution is set to be F =

⋃

t Ft. Then we have the following.

Theorem 3.8. For DemFairCut in trees and any ǫ ∈ (0, 1), we give an
(

O
(

log γ
ǫ2 minh fh

)

, 1− ǫ
)

-

bicriteria algorithm that runs in expected polynomial time.

Proof. Focus on a specific demographic h, and let St
h the random variable denoting the number of

nodes of Vh separated from s in (V,E \Ft). By Lemma 3.7 and the independent nature of the runs:

Pr
[

St
h ≤ (1− ǫ)E[St

h], ∀t
]

≤ e
−ǫ2·N·fh

10 ≤
1

γβ

Thus, because E[St
h] ≥ fhnh for all t, we have

Pr
[

∣

∣Vh ∩ prot(V,E \ F, s)
∣

∣ ≥ (1− ǫ)fhnh

]

≥ Pr
[

∃t : St
h > (1− ǫ)E[St

h]
]

≥ 1−
1

γβ

A union bound over all demographics would finally give

Pr
[

∣

∣Vh ∩ prot(V,E \ F, s)
∣

∣ ≥ (1− ǫ)fhnh, ∀h ∈ [γ]
]

≥ 1−
1

γβ−1

By Lemma 3.4, in each run an edge e gets removed with probability xe. Hence, with a union
bound over all runs, the probability that e gets removed is at most Nxe. Therefore, the total
expected cost of our algorithm is N

∑

e∈E wexe, and since LP (3)-(6) is a valid relaxation of the
problem, we immediately get the desired approximation ratio on expectation. By Markov’s inequal-
ity we can further prove that with probability at most 1

c , we get a final cut of cost more than
cN

∑

e∈E wexe for some constant c > 1.

Thus, with constant probability our algorithm satisfies both the ratio of O(log γ
ǫ2 minh fh

), and the
1− ǫ approximate satisfaction of the demographic constraints (specifically we fail to satisfy both of
the above with probability at most 1/γβ−1 +1/c). Hence, repeating the whole process an expected
logarithmic number of times, guarantees that we hit both targets deterministically.

By combining Theorem 3.8 and Lemma 2.3, we see that our approach achieves the following.

Theorem 3.9. For any given constant ǫ ∈ (0, 1), we provide an
(

O
(

logn log γ
ǫ2·minh fh

)

, 1− ǫ
)

-bicriteria

algorithm for DemFairCut, which also runs in expected polynomial time.

10

3.2.1 Hardness of DemFairCut with Arbitrary γ

Here we show that even in tree instances, DemFairCut with arbitrary γ is hard. Specifically, we
use a reduction from Set Cover.

Set Cover: We are given a universe of elements U and a collection of m sets {S1, S2, . . . , Sm},
where Si ⊆ U for every i ∈ [m]. The goal is to find C ⊆ [m], such that

⋃

i∈C Si = U and |C| is
minimized.

Theorem 3.10 ([12]). It is NP-hard to approximate Set Cover instances of universe size n and
m ≤ poly(n) sets within a factor better than lnn.

This allows us to prove the following theorem.

Theorem 3.11. It is NP-hard to approximate DemFairCut with arbitrary γ on tree instances
within a factor better than ln γ.

Proof. Suppose that we are given an instance of Set Cover. We create an instance of Dem-

FairCut as follows. For every set Si we create a vertex vi. For every element e ∈ U we create
a demographic group Ve = {vi | e ∈ Si}. We set the covering requirement of the group Ve to be
1/|Ve|, i.e., we want our solution to protect at least |Ve| · (1/|Ve|) = 1 vertex from each Ve. Finally,
we add the designated vertex s to the graph, and create edges (s, vi) for every vi. Note that the
resulting graph is a tree.

Now consider the optimal Set Cover solution C∗. We claim that the set of edges {(s, vi) | i ∈
C∗} is a feasible solution for the constructed instance of DemFairCut. Take any demographic Ve

for e ∈ U . Because C∗ is a feasible Set Cover solution, it contains at least one Sj with e ∈ Sj.
Therefore, we are going to include the edge (s, vj) to our graph solution, and the vertex vj from the
group Ve is going to be protected. Finally, see that |C∗| = |{(s, vi) | i ∈ C∗}|, and hence the cost of
the optimal solution for the DemFairCut instance, say F ∗, is at most |C∗|.

Now we argue that any solution F to the DemFairCut instance yields a feasible solution CF

for the Set Cover instance with |F | = |CF |. Simply take CF = {i ∈ [m] | (s, vi) ∈ F}. It is clear
that |F | = |CF |. Now consider each e ∈ U . Since F is feasible for DemFairCut, at least one vertex
vi ∈ Ve will be separated from s, and thus (s, vi) ∈ F . Hence for that vertex vi we have e ∈ Si by
construction. Therefore, e is covered by CF .

Suppose now that for some ǫ > 0 we have an (1− ǫ) ln γ-approximation algorithm for DemFair-

Cut on trees. Then given an instance of Set Cover, we first construct the instance of DemFair-

Cut given by the above reduction and then run the given algorithm on that instance to get a solution
F . Then, as discussed, we construct the corresponding Set Cover solution CF , with |F | = |CF |.
By all the previous arguments we have |CF | = |F | ≤ ((1 − ǫ) ln γ)|F ∗| ≤ ((1 − ǫ) ln |U |)|C∗|. This
contradicts Theorem 3.10.

At a high-level, the previous theorem says that the best we can achieve for DemFairCut in
trees is an approximation ratio of Ω(log γ). Trivially this implies the following corollary.

Corollary 3.12. Unless P=NP, the best approximation ratio we can achieve for general instances
of DemFairCut with arbitrary γ is Ω(log γ).

4 Addressing Individual Fairness

The purpose of this section is to provide an algorithm for IndFairCut. To do so, we begin by
giving a dynamic programming bicriteria algorithm for AuxCut on tree instances, which according

11

to Lemma 2.5 implies an algorithm for AuxCut in general graphs. Subsequently, we show how the
general graph algorithm can be incorporated in the round-or-cut framework of [2], and in this way
we get as our final result a O(log n)-approximation for IndFairCut.

At this point, we have to mention that the LP-based approach of Section 3.2 can also be applied
here (by adding the extra constraint yv ≥ pv in LP (3)-(6)), yielding the same approximation ratio
of O(log n). However, such an approach would unavoidably lead to a bicriteria algorithm, since it
will produce a solution that saves at least (1 − ǫ)T vertices. On the other hand, the algorithm we
present in what follows is a true approximation for IndFairCut.

4.1 A (1, 1, O(logn))-Bicriteria Algorithm for AuxCut

Suppose we have an instance I = (V,E,B, T, s, w, a) of AuxCut. Given Lemma 2.5, we focus on
G = (V,E) being a tree and present a dynamic programming algorithm for AuxCut in trees.

Without loss of generality, we can assume that the tree is rooted at s and is binary (see Lemma
15.18 from [23]). Our algorithm tries to find a cut F ⊆ E that minimizes a(V \ prot(V,E \ F, s))
subject to w(F) ≤ B and |prot(V,E \ F, s)| ≥ T . Note that when we can compute a solution of
optimal value to this minimization problem, minimizing a(V \ prot(V,E \ F, s)) is equivalent to
maximizing a(prot(V,E \ F, s)). Therefore, the version of the problem we solve here is equivalent
to the definition of AuxCut as given in Section 2.

Our approach relies on a table A. For every v ∈ V let Tv ⊆ V and Ev ⊆ E be the vertices and
the edges of the subtree that is rooted at v (with v included in Tv). Then, the entry A[v,W, k] would
represent the minimum possible a(Tv \ prot(Tv , Ev \ Fv , v)), for any cut Fv ⊆ Ev with w(Fv) = W
and |Tv \ prot(Tv, Ev \Fv, v)| = k (see that the vertices of Tv connected to v in this cut are those in
Tv \ prot(Tv , Ev \ Fv, v)). Let also vr be the right child of v, and let vℓ be the left child of v. The
optimal solution of I either cuts none of the edges from v to its children, just the left edge, just the
right edge, or both edges. So we just have to set A[v,W, k] to the minimum of the following:

1. min
{

A[vℓ,Wℓ, kℓ] +A[vr,Wr, kr] + av : Wℓ +Wr = W and kℓ + kr + 1 = k
}

2. A[vr,W − w(v,vℓ), k − 1] + av if W ≥ w(v,vℓ) and k > 1,+∞ otherwise

3. A[vℓ,W − w(v,vr), k − 1] + av if W ≥ w(v,vr) and k > 1,+∞ otherwise

4. av if w(v,vℓ) + w(v,vr) = W and k = 1, +∞ otherwise

The first case above corresponds to cutting neither of the edges (v, vr), (v, vℓ), the second to
cutting only (v, vℓ), the third to cutting only (v, vr), and the fourth to cutting both.

To fill in A, we begin by initializing A[v, 0, 1] = av for all leaves v of the tree, and all other
entries to +∞. Then we proceed by filling the table bottom-up. Assuming that the edge weights
are integers, we see that A has n2B entries, and in order to fill each of them, we need access to at
most 2nB other entries. Hence, in total our approach requires O(n3B2) time. Finally, in order to
find the optimal cut, we look for the minimum entry A[s,W, k], such that W ≤ B and k ≤ n− T .

Corollary 4.1. When the edge weights are integers and B = poly(n), we can efficiently find an
optimal solution of AuxCut in tree instances.

To make sure the edge weights are integers and B is polynomially bounded, we use a standard
discretization trick before running the dynamic program [22]. Specifically, for any ǫ > 0, let λ =
⌈m/ǫ⌉
B , where m = |E|. Then for each edge e ∈ E create a new weight w′

e = ⌊λwe⌋. Also, set
B′ = λB = ⌈m/ǫ⌉. Notice now that all new edge weights are integers and that B′ is polynomial in

12

n. Further, using these new values we create a new instance I ′ = (V,E,B′, T, s, w′, a) of AuxCut.
It is easy to see that if there is a solution of edge-cost B for I , then this solution has edge-cost B′

in I ′. In addition, for every solution of I ′ whose edge-cost is at most B′, its edge-cost in I is at
most (1 + ǫ)B. Combining this with Corollary 4.1 gives the following.

Corollary 4.2. Our approach provides a (1, 1, 1 + ǫ)-bicriteria algorithm for AuxCut in trees.

Finally, by Corollary 4.2, Lemma 2.5 and the fact that ǫ is a constant, we get:

Theorem 4.3. Our approach provides a (1, 1, O(log n))-bicriteria algorithm for AuxCut.

4.2 A Round-or-Cut Solution for IndFairCut

Suppose we are given an instance I = (V,E, T, s, w, ~p) of IndFairCut with optimal value OPTI .
For any value B ≥ 0, let F(B) = {F ⊆ E : w(F) ≤ B and |prot(V,E \ F, s)| ≥ T}. In the rest of
the section we demonstrate a process, which given I and a target value B ≥ 0, operates as follows.
It either returns an efficiently-sampleable distribution D over the cuts in the set F(O(log n)B) such
that PrF∼D[v ∈ prot(V,E \F, s)] ≥ pv for every v ∈ V \{s}, or returns “INFEASIBLE”. If the latter
happens, then it is guaranteed that B < OPTI .

Using the above process in a bisection search with step (1 + ǫ) over the range [0, w(E)], we can
efficiently compute a value B′ ≤ (1 + ǫ)OPTI , such that the process will not return “INFEASI-
BLE” for B′. This will actually yield an efficiently-sampleable distribution over F(O(log n)B′) that
satisfies the stochastic constraints for all vertices. Hence, we get our final result.

Theorem 4.4. For any ǫ > 0 and instance I with optimal value OPTI, we construct an efficiently
sampleable distribution D over F(O(log n)(1+ǫ)OPTI), such that PrF∼D[v ∈ prot(V,E\F, s)] ≥ pv
for every v ∈ V \ {s}. Moreover, the runtime of our approach is poly(n1/ǫ).

Therefore, since for our final result the aforementioned process is all that is required, we start
describing its details. Notice now that for a given target value B, we are basically interested in
verifying whether or not there is a feasible solution to I with edge-cost at most B. Hence, consider
the following exponential-sized linear program, which we call PLP(B).

PLP(B)

min 0
∑

F∈F(B):
v∈prot(V,E\F,s)

xF ≥ pv ∀v ∈ V \ {s}

∑

F∈F(B)

xF = 1

0 ≤ xF ≤ 1 ∀F ∈ F(B)

DLP(B)

max
∑

v∈V \{s}

pv · yv − µ

∑

v∈prot(V,E\F,s)

yv ≤ µ ∀F ∈ F(B)

0 ≤ yv ∀v ∈ V

µ ∈ R

If we interpret xF as the probability of choosing the cut F from F(B), we see that B yields
a feasible solution iff PLP(B) is feasible. This is because the first LP constraint captures the
fairness requirements, and the second LP constraint the fact that the resulting solution should be
a distribution over F(B). In addition, if PLP(B) is feasible, then there are only n values xF with
xF > 0 (see Lemma 9 in [19]), and hence the resulting distribution is efficiently-sampleable. Another
important observation is that if PLP(B) is feasible, then clearly its optimal value is 0.

However, since solving PLP(B) is not doable in polynomial time, we focus on its dual, which
we call DLP(B) and we present next to the primal LP.

13

Here note that DLP(B) is always feasible (e.g., set all variables to 0), and by LP duality DLP(B)
has an optimal value of 0 iff PLP(B) is feasible. Further, see that DLP(B) is scale-invariant. In
other words, if it has a feasible solution (y′, µ′) with strictly positive objective value, then DLP(B) is
unbounded because (ty′, tµ′) will also be feasible for any t > 0. Consider now the following polytope
that contains all feasible solutions of DLP(B) of objective value at least 1.

Q(B) =
{

(y, µ) ∈ R
n−1
≥0 × R :

∑

v∈V \{s}

pvyv ≥ µ+ 1 ∧ y(prot(V,E \ F, s)) ≤ µ, ∀F ∈ F(B)
}

Based on the previous discussion we make the following very crucial observation.

Observation 4.5. PLP(B) is feasible iff Q(B) = ∅.

Using the algorithm of Section 4.1 we prove the following vital theorem.

Theorem 4.6. There exists a poly-time algorithm that given a point (y, µ) ∈ R
n−1
≥0 × R satisfying

∑

v∈V \{s} pv · yv ≥ µ + 1, it either verifies that (y, µ) ∈ Q(B), or outputs a set F ∈ F(O(log n)B)
such that

∑

v∈prot(V,E\F,s) yv > µ.

Proof. We begin by constructing an instance Iaux = (V,E,B, T, s, w, y) of AuxCut, where the
vertex weights correspond to the y values. Then, we run the algorithm of Section 4.1 on Iaux.
Suppose now that F ⊆ E is the solution returned by the algorithm, for which by Theorem 4.3 we
have w(F) ≤ O(log n)B and |prot(V,E \ F, s)| ≥ T . If y(prot(V,E \ F, s)) > µ, then we return
F as our answer, because we are guaranteed to have F ∈ F(O(log n)B). If on the other hand
y(prot(V,E \ F, s)) ≤ µ, then all F ′ ∈ F(B) have y(prot(V,E \ F ′, s)) ≤ µ, because the properties
of the Section 4.1 algorithm ensure that y(prot(V,E \ F, s)) ≥ y(prot(V,E \ F ′, s)). The latter
immediately indicates that (y, µ) ∈ Q(B).

Given the existence of an algorithm like the one described in Theorem 4.6, [2] prove that with a
round-or-cut approach we can either show that Q(B) 6= ∅ or that Q(O(log n)B) = ∅. If Q(B) 6= ∅,
then by Observation 4.5 we can infer B < OPTI and return “INFEASIBLE”. If on the other hand
Q(O(log n)B) = ∅, then again by Observation 4.5 we know that PLP(O(log n)B) is feasible. Fur-
thermore, in the latter case the framework of [2] provides a set F ′ ⊆ F(O(log n)B) with polynomial
size, for which the following (poly-sized) LP is feasible.

min 0
∑

F∈F ′:
v∈prot(V,E\F,s)

xF ≥ pv ∀v ∈ V \ {s}

∑

F∈F ′

xF = 1

0 ≤ xF ≤ 1 ∀F ∈ F ′

Finally, since the above can be efficiently solved, we obtain an efficiently-sampleable distribution D
over F(O(log n)B), such that PrF∼D[v ∈ prot(V,E \ F, s)] ≥ pv for all v ∈ V \ {s}.

Acknowledgements

Michael Dinitz was supported by NSF award CCF-1909111. Aravind Srinivasan was supported in
part by NSF awards CCF-1422569, CCF-1749864, and CCF-1918749, as well as research awards from

14

Adobe, Amazon, and Google. Leonidas Tsepenekas was supported in part by NSF awards CCF-
1749864 and CCF-1918749, and by research awards from Amazon and Google. Anil Vullikanti’s
work was partially supported by NSF awards IIS-1931628, CCF-1918656, and IIS-1955797, and
NIH award R01GM109718.

References

[1] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. “Clustering with-
out Over-Representation”. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. KDD ’19. 2019.

[2] Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen. “A Technique for Ob-
taining True Approximations for k-Center with Covering Constraints”. In: Integer Program-
ming and Combinatorial Optimization. Ed. by Daniel Bienstock and Giacomo Zambelli. 2020.

[3] Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner.
“Scalable Fair Clustering”. In: Proceedings of the 36th International Conference on Machine
Learning. Vol. 97. Proceedings of Machine Learning Research. 2019, pp. 405–413.

[4] Emily Badger. “How Airbnb plans to fix its racial-bias problem”. In: The Washington Post
(2016). September 8, 2016.

[5] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. http://www.fairmlbook.org.
fairmlbook.org, 2019.

[6] Katie Benner, Glenn Thrush, and Mike Isaac. “Facebook Engages in Housing Discrimination
With Its Ad Practices”. In: The New York Times (2019). March 28, 2019.

[7] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. “Fair Al-
gorithms for Clustering”. In: Advances in Neural Information Processing Systems 32. 2019,
pp. 4954–4965.

[8] Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel
R. Schmidt, and Melanie Schmidt. “On the Cost of Essentially Fair Clusterings”. In: AP-
PROX/RANDOM 2019. Vol. 145. 2019, 18:1–18:22.

[9] Brian Brubach, Darshan Chakrabarti, John P. Dickerson, Samir Khuller, Aravind Srinivasan,
and Leonidas Tsepenekas. “A Pairwise Fair and Community-preserving Approach to k-Center
Clustering”. In: Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learning Research.
2020, pp. 1178–1189.

[10] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. “Fair Clustering
Through Fairlets”. In: Advances in Neural Information Processing Systems 30. 2017.

[11] Amit Datta, Michael Carl Tschantz, and Anupam Datta. “Automated Experiments on Ad
Privacy Settings”. In: Proc. Priv. Enhancing Technol. 2015.1 (2015), pp. 92–112.

[12] Irit Dinur and David Steurer. “Analytical Approach to Parallel Repetition”. In: Proceedings of
the Forty-Sixth Annual ACM Symposium on Theory of Computing. STOC ’14. 2014, pp. 624–
633.

[13] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. “Fairness
Through Awareness”. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference. ITCS ’12. 2012.

15

http://www.fairmlbook.org

[14] Stephen Eubank, Hasan Guclu, V S Anil Kumar, Madhav V Marathe, Aravind Srinivasan,
Zoltán Toroczkai, and Nan Wang. “Modelling disease outbreaks in realistic urban social net-
works”. In: Nature 429.6988 (May 2004), pp. 180–184. issn: 0028-0836. doi: 10.1038/nature02541.
url: https://doi.org/10.1038/nature02541.

[15] David G. Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. “A Lottery Model for
Center-Type Problems With Outliers”. In: ACM Trans. Algorithms 15.3 (June 2019). issn:
1549-6325. doi: 10.1145/3311953. url: https://doi.org/10.1145/3311953.

[16] Ara Hayrapetyan, David Kempe, Martin Pál, and Zoya Svitkina. “Unbalanced Graph Cuts”.
In: Proceedings of the 13th Annual European Conference on Algorithms. ESA’05. Palma de
Mallorca, Spain: Springer-Verlag, 2005, pp. 191–202. isbn: 3540291180.

[17] Lingxiao Huang, Shaofeng Jiang, and Nisheeth Vishnoi. “Coresets for Clustering with Fairness
Constraints”. In: Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019, pp. 7589–7600.

[18] Svante Janson. “New versions of Suen’s correlation inequality”. In: Random Structures and
Algorithms 13.3-4 (1998), pp. 467–483.

[19] Howard Karloff. Linear Programming. USA: Birkhauser Boston Inc., 1991. isbn: 0817635610.

[20] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.
“A Survey on Bias and Fairness in Machine Learning”. In: ACM Comput. Surv. 54.6 (July
2021).

[21] Harald Räcke. “Optimal hierarchical decompositions for congestion minimization in networks”.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008. Ed. by Cynthia Dwork. ACM, 2008, pp. 255–
264.

[22] Zoya Svitkina and Éva Tardos. “Min-Max Multiway Cut”. In: Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques. Ed. by Klaus Jansen, Sanjeev
Khanna, José D. P. Rolim, and Dana Ron. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 207–218.

[23] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. 1st.
USA: Cambridge University Press, 2011.

16

https://doi.org/10.1038/nature02541
https://doi.org/10.1038/nature02541
https://doi.org/10.1145/3311953
https://doi.org/10.1145/3311953

	1 Introduction
	1.1 Contribution and Outline
	1.2 Motivating Examples
	1.3 Related Work

	2 Reduction to Tree Instances
	3 Addressing Demographic Fairness
	3.1 Solving DemFairCut for = O(1)
	3.2 Solving DemFairCut for an Arbitrary
	3.2.1 Hardness of DemFairCut with Arbitrary

	4 Addressing Individual Fairness
	4.1 A (1,1,O(logn))-Bicriteria Algorithm for AuxCut
	4.2 A Round-or-Cut Solution for IndFairCut

