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Abstract

Clustering is a fundamental problem in unsupervised machine learning, and due to its nu-
merous societal implications fair variants of it have recently received significant attention. In
this work we introduce a novel definition of individual fairness for clustering problems. Specifi-
cally, in our model, each point j has a set of other points Sj that it perceives as similar to itself,
and it feels that it is being fairly treated if the quality of service it receives in the solution is
α-close (in a multiplicative sense, for some given α ≥ 1) to that of the points in Sj . We begin
our study by answering questions regarding the combinatorial structure of the problem, namely
for what values of α the problem is well-defined, and what the behavior of the Price of Fairness
(PoF) for it is. For the well-defined region of α, we provide efficient and easily-implementable
approximation algorithms for the k-center objective, which in certain cases also enjoy bounded-
PoF guarantees. We finally complement our analysis by an extensive suite of experiments that
validates the effectiveness of our theoretical results.

1 Introduction

In a typical clustering problem, there is a set of points C in a metric space characterized by a
distance function d : C2 7→ R≥0, where d is some non-increasing function of similarity or proximity.
The goal is to choose a set S ⊆ C of at most k representative centers, and subsequently construct an
assignment φ : C 7→ S that maps each point to one of the chosen centers, thus creating a collection
of at most k clusters. In addition, the quantity that really matters for each j ∈ C, is the distance
d(j, φ(j)) to its corresponding cluster center φ(j). This distance represents the quality of service
j receives. In classical clustering applications d(j, φ(j)) would correspond to how similar φ(j) is
to j, and in facility-location applications to the distance j needs to travel in order to reach its
service-provider. Hence, from an individual perspective, each j requires d(j, φ(j)) to be as small as
possible. The most popular objectives in the literature (k-center, k-median, k-means) “boil down”
this large collection of values d(j, φ(j)), into an increasing function they try to minimize.

In scenarios where the points correspond to selfish agents, it is natural to assume that they
will be mindful of the quality of service other points receive. Specifically, a point j may feel that
it is being handled unfairly by a solution (S, φ), if d(j, φ(j)) is much larger than the assignment
distances a group Sj of other points obtains. In this context, the points of Sj are exactly those which
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j perceives as similar to itself, hence it arguably believes that it should obtain similar treatment
as them. As a practical example, consider the following application in an e-commerce site, where
the points of C correspond to its users and d(j, j′) measures how similar the profiles of j and
j′ are. In order to provide relevant recommendations, the website needs to choose a set S of k
representative users, and then assign each point to one of those based on a mapping φ : C 7→ S.
The recommendations j gets will be based on φ(j)’s profile, and in this case the quantity d(j, φ(j))
corresponds to how representative φ(j) is for j, and hence how suitable j’s recommendations are.
In this scenario, a point j may feel unfairly treated, if points that are similar to it (points j′ with
small d(j, j′)) get better recommendations and consequently better service (see, e.g., the work of
[14] for studies on similar users receiving different types of job recommendations).

In addition, this sort of fairness considerations are applicable when seeking equity in healthcare
provision, such as in vaccine allocation: the clusters could represent groups of people who would
be given health-related resources such as treatment from a facility, and we aim for similar people
to get similar commute-times to their resource provider.

Here we formalize this abstract notion of fairness via two rigorous and related constraints, which
we incorporate into the k-center problem. We focus on k-center due to its numerous practical
applications, but mostly because of its theoretical simplicity, which allows us to explore in depth
the intricacies and the combinatorial structure of this novel notion of individually-fair clustering.

1.1 Formal problem definitions

We are given a set of points C in a metric space characterized by the distance function d : C2 7→ R≥0.
Moreover, the input includes a positive integer k and a value α ≥ 1. Finally, for every j ∈ C we
have a similarity set Sj ⊆ C, denoting the group of points that are deemed similar to j.

The goal in our problems of interest is to choose a set S ⊆ C of at most k centers, and then find
an assignment φ : C 7→ S, such that the k-center objective, i.e., maxj∈C d(j, φ(j)), is minimized.
Further, we use two different constraints to capture the notion of fairness we aim to study.

• Per-Point Fairness (PP ): When we study the problem under this constraint, we want to
make sure that for all j ∈ C with Sj 6= ∅, we have:

d(j, φ(j)) ≤ α · min
j′∈Sj

d(j′, φ(j′)) (1)

Here j is satisfied if its quality of service is at most α times the “best” quality found in Sj .
Equivalently, we should guarantee that d(j, φ(j)) ≤ α · d(j′, φ(j′)) for all j ∈ C and j′ ∈ Sj .

• Aggregate Fairness (AG): Here for each j ∈ C with Sj 6= ∅, we want to guarantee that:

d(j, φ(j)) ≤ α
∑

j′∈Sj d(j′, φ(j′))

|Sj |
(2)

Hence, here j feels fairly treated if d(j, φ(j)) is at most α times the average quality of Sj .

We call our problem α-Equitable k-Center, and denote it by EqCenter. Moreover, we consider
it either under constraint (1) or under constraint (2). When we study it under (1) we refer to it as
EqCenter-PP, and similarly when we use constraint (2) we denote it by EqCenter-AG. Further,
both variants are NP-hard, since they trivially generalize k-center, which is known to be NP-hard.

Constraint (1) provides a stronger notion of fairness, in that each point j cares explicitly about
every point j′ ∈ Sj . Constraint (2) is weaker, in the sense that the points now compromise to
comparing their quality of service to the average quality obtained by their similarity set. Due
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to this, a solution for (1) also constitutes a solution for (2), and hence for the same instance the
optimal value of EqCenter-AG must be no larger than that of EqCenter-PP. This observation
reveals an intriguing trade-off between how strict we want to be in our fairness constraints, and
how much we care about the overall objective cost. We further explore this issue in Section 5.

1.1.1 The structure of the similarity sets Sj

In our work we do not consider an arbitrary model of similarity, but we rather focus on distance
based similarity. On a high-level, this means that points which are far apart in the metric space,
cannot really be similar. Such an approach for instantiating similarity is extensively utilized for
fair clustering [9, 10, 3], with elements of it appearing in [16, 22] as well. Moreover, this concept is
highly realistic, since in many conceivable applications the function d already captures a notion of
resemblance. For instance, in the previously mentioned use-case of a recommendation system, two
users that are close under d have comparable profiles, and thus can be seen as similar.

The way we capture distance-based similarity in this paper, is by considering sets Sj that
satisfy a well-established assumption from [9], which was used to define similarity between points
in a different individually-fair clustering problem. Specifically, suppose that we have an instance
(C, k) of vanilla/“unfair” k-center, whose optimal value is R∗unf . In other words, this is merely an
instance of the standard k-center problem, where we want to choose (S, φ) with |S| ≤ k such that
maxj∈C d(j, φ(j)) is minimized, and no fairness constraints are imposed. Further, assume that this
instance is extended to an instance of either EqCenter-PP or EqCenter-AG, by choosing an
arbitrary α value and sets Sj . Then the following will hold.

Assumption 1.1. For every j ∈ C we have Sj ⊆ {j′ ∈ C : d(j, j′) ≤ ψR∗unf}, for some ψ = O(1).

Therefore, for instances of EqCenter-PP and EqCenter-AG, two points can be similar if
their distance is at most ψR∗unf , where ψ is some small constant and R∗unf is the optimal value of
the underlying unfair k-center instance.

Although Assumption 1.1 is adequately justified in [9], we also give some intuition for it. Con-
sider the optimal solution for the unfair problem on (C, k). Then, the triangle inequality implies
that a point j will never be placed in the same cluster as some other j′ with d(j, j′) > 2R∗unf .
Hence, the optimal unconstrained/unfair solution that can be thought of as an expert when it
comes to determining similarity (it constructs the most intra-similar clusters), does not deem the
two points comparable enough to place them in the same cluster. Therefore, following the “advice”
of the optimal unconstrained solution yields ψ = 2 in Assumption 1.1, and due to the previous
explanation, this value can be actually interpreted as the canonical case for ψ.

For scenarios where we are not certain of whether Assumption 1.1 holds, or the points have a
fuzzy understanding of similarity that does not allow them to meaningfully define their sets Sj , see
Appendix A for an explainable way of enforcing Sj ⊆ {j′ ∈ C : d(j, j′) ≤ ψR∗unf} for all j.

To conclude, we need to define some more notation. Given similarity sets Sj for every j ∈ C,
we define Rj = maxj′∈Sj d(j, j′) and Rm = maxj∈C Rj .

1.2 Our contributions and discussion of our results

In Section 2 we investigate the combinatorial structure of our newly introduced fairness constraints.
At first, a question that naturally arises is for what values of α are our problems well-defined. We
call a problem well-defined if it always admits a feasible solution (S, φ), i.e., |S| ≤ k and φ satisfies
the corresponding fairness constraint for all j. Ideally, we would like our problems to admit feasible
solutions for any possible value of α. However we give the next result which indicates that absolute
equity is not achievable.
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Theorem 1.2. For both EqCenter-PP and EqCenter-AG, there exist instances with α < 2
that do not admit any feasible solution.

We then proceed by showing that for α ≥ 2 there is always a feasible solution, thus settling the
crucial question about the regime of α for which our problems are well-defined.

Theorem 1.3. For both EqCenter-PP and EqCenter-AG, every instance with α ≥ 2 always
admits a feasible solution.

Given that α ≥ 2 is the range we should focus on, we proceed by studying another vital concept,
and that is the Price of Fairness (PoF) [8, 11]. This notion is just a measure of relative loss in
system efficiency, when fairness constraints are introduced. Specifically, for a given instance of
either EqCenter-PP or EqCenter-AG, PoF is defined as the value of the optimal solution to
our fair problem, over the value of the optimal solution to the underlying k-center instance, where
we drop the fairness constraints from the problem’s requirements. In other words, PoF = (optimal
fair value)/(optimal unfair value). In the vast majority of fair clustering problems it is known that
there exist instances with unbounded PoF. In line with those results, we show the following.

Theorem 1.4. There exist instances of EqCenter-PP and EqCenter-AG with unbounded PoF.

All results of Section 2 are proven for k ≥ 2. See that the k = 1 case is trivial, since one can
efficiently try each point as a center, see if any yields a feasible solution, and also find the optimal
solution among the computed feasible ones. On the other hand, even when k = 2 and we only have(|C|

2

)
+ |C| center sets to check, the number of possible assignments for each set of size 2 is 2|C|.

In Section 3 we provide an approximation algorithm that covers instances with α ≥ 2 for both
EqCenter-PP and EqCenter-AG. The main body of the algorithm remains the same for the
two problems, with minor differences to capture each unique case. Our process of choosing centers
constitutes an extension of a result by [24]. Our procedure gives useful guarantees regarding the
distances between chosen centers, a feature that is crucially exploited in the assignment phase of
the algorithm, where we carefully construct the mapping φ. Our result is:

Theorem 1.5. Suppose we are given an instance with α ≥ 2 for either EqCenter-PP or
EqCenter-AG, whose optimal value is R∗. Our algorithm provides a feasible solution (S, φ) to
either problem, for which maxj∈C d(j, φ(j)) ≤ 5 max{R∗, Rm}.

Due to Assumption 1.1, we immediately have Rm ≤ ψR∗unf with ψ = O(1). Moreover, be-
cause R∗unf is an obvious lower bound for R∗, our algorithm produces constant-factor approximate
solutions. For example, in the canonical case of ψ = 2 it gives a 10-approximate solution.

Even though Rm = O(R∗unf ), notice that because we might have R∗ ≥ Rm, the algorithm of
Theorem 1.5 does not provide bounded PoF guarantees. Nonetheless, in Section 3 we also study
the PoF behavior of our algorithms, and specifically we prove the following.

Theorem 1.6. A small modification to our main algorithm yields (S, φ), with: (i) |S| ≤ 2k, (ii)
both constraints (1) and (2) satisfied by φ, and (iii) maxj∈C d(j, φ(j)) ≤ 5 max{ψR∗unf , R∗unf}.

Theorem 1.7. When for all j ∈ C we have Rj = Rd for some Rd, our algorithm for EqCenter-
AG provides a feasible solution with cost at most 5 max{ψR∗unf , R∗unf}.

The result of Theorem 1.6 says that there is an easy way to get an algorithm with bounded
PoF guarantees, if we are willing to sacrifice the cardinality constraint on the set of chosen centers.
On the other hand, Theorem 1.7 says that when the value Rj is the same for all points, then our
main result yields a true approximation with bounded PoF for EqCenter-AG.
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Furthermore, we mention that all algorithms of Section 3 are purely combinatorial (e.g., do not
require convex programming), and hence very efficient and easily implementable.

In Section 4 we study the assignment problem for EqCenter-PP and EqCenter-AG. To be
more precise, if we are given the optimal set of centers S∗, can we find the corresponding optimal
assignment φ∗? In a vanilla clustering setting this is trivial, since assigning points to their closest
center is easily seen to yield the necessary results. However, as is the case in almost all literature
on fair clustering, in the presence of fairness constraints like (1) or (2), such an assignment is not
necessarily correct. This was actually among the first observations made in the seminal work of [13],
which initiated the research area of fair clustering. As a side note, the aforementioned observation
implies that for a c ∈ S∗, we might end up having φ∗(c) 6= c. Nonetheless, for our problems this
does not constitute a modeling issue. Recalling the motivational example of a recommendation
system for a website, we see that for a client j chosen as a representative, assigning j to a different
representative j′ is an acceptable outcome, as long as all individuals feel fairly treated.

Therefore, since from a theoretical perspective the assignment problem is fundamental in a
clustering setting and because in our case it appears highly non-trivial, we choose to address it
explicitly. In the end, we manage to show that with a slightly intricate iterative algorithm, we can
indeed compute the optimal assignment φ∗ in polynomial time.

Finally, Section 5 contains an extensive experimental evaluation, that validates the effectiveness
and the efficiency of our proposed algorithms.

1.3 Related work

The most well-studied notion of fairness in clustering is the demographic one. Herein, the points
are partitioned into demographic groups, and what is required is a fair treatment or a proportional
representation of these groups in the solution. This area was initiated by the groundbreaking work
of [13]. Further work on demographic fairness includes [7, 6, 17, 21, 4, 2, 26, 12, 1].

The concept of fairness we consider here falls under the broader umbrella of individual fairness.
The fundamentals of individual fairness were introduced in the seminal work of [16] in the context
of classification. In addition, [16] demonstrated a series of shortcomings for demographic fairness,
making the case for individual fairness stronger. The high-level idea proposed in that work was
that similar individuals should be treated similarly. Our model follows this paradigm by modeling
similarity through the sets Sj , and requiring similar treatment through constraints (2) and (1).

Previous work on individually-fair clustering that adheres to the notion of [16] includes [3, 9, 10,
23]. However, these papers interpret similar treatment in a different way. Specifically, two points
j, j′ that are similar should be placed in the same cluster (under some stochastic or lower-bounding
sense). Hence, similar treatment is defined as guaranteeing φ(j) = φ(j′). Unlike our model, these
papers provide no guarantee on the gap between d(j, φ(j)) and d(j′, φ(j′)).

There are also individually-fair clustering problems that do not follow the concept of “similar
points should be treated similarly”. [28, 22] define individual fairness as ensuring that for each j
there will be a chosen center within distance rj from it, where rj is the minimum radius such that
|{j′ ∈ C | d(j, j′) ≤ rj}| ≥ |C|/k. Finally, [25] views individual fairness as ensuring that each point
is on average closer to the points in its own cluster than to the points in any other cluster.

Another work that is closely related to our model is that of [5]. In that paper the authors study
a classification problem where there is a set of already-known labels, and the points need to be
assigned to those via some stochastic classifier. The points have preferences over the labels, given
by some utility function, and the final classification should be envy-free in the standard sense. Our
model differs from that of [5] for two reasons. First, our focus is on a clustering problem, where the
labels are not known, a metric related objective needs to be minimized, and also the assignment
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Figure 1: Here m = 8. Solid lines represent a distance of 1 between points. Dashed lines correspond
to similarity sets, eg., the dashed line between j1 and j9 shows that π(j1) = j9 and π(j9) = j1.

has to be deterministic. Secondly, although the concept of envy-freeness is related to constraint
(1), there is the crucial difference of points in our case not envying the resources allocated to other
individuals, but rather their final utility. In other words, in the language of Fair Division of Goods,
our model is closer to the notion of an equitable allocation [32] rather than an envy-free one.

Regarding the “vanila”/“unfair” (fairness-constraints-free) k-center, the best known approxi-
mation ratio for it is 2 [19, 18]; this is best-possible unless P=NP [20]. This hardness result also
trivially extends to both variants of EqCenter as well.

2 Structural properties of the problem

As mentioned in the introduction, all our results here are for k ≥ 2, since k = 1 is a trivial case. At
first, we want to investigate the range of α for which our problems always admit a feasible solution.
Ideally, an α value close to 1 would be the most fair, but as the following theorem suggests, such a
guarantee is impossible.

Theorem 2.1. For both EqCenter-PP and EqCenter-AG, there exist instances with α < 2
that do not admit any feasible solution.

Proof. Let m be a very large even integer, with m
2 also being an even integer. We consider 2m

points C = {j1, j2, . . . , j2m−1, j2m} in a cycle, where d(ji, ji+1) = 1 for all i ∈ [2m − 1], and also
d(j2m, j1) = 1. The rest of the distances are set to be the shortest path ones, based on those already
defined. This is a valid metric space, since it constitutes the shortest path metric resulting from a
simple cycle graph of 2m vertices.

To construct the similarity sets, we map each point j to another point π(j) 6= j, such that the
function π : C 7→ C is one-to-one and π(π(j)) = j. Given that, the similarity set of point j will be
set to be Sj = {π(j)}. Now let C1 = {ji | i is odd} and C2 = {ji | i is even}. For every odd i ∈ [m],
set π(ji) = ji+m and π(ji+m) = ji. In this way, because m is even, we map every point of C1 to
some other point of C1. Also, note that for every j ∈ C1 we will have d(j, π(j)) = m. For the points
ji ∈ C2, consider them in increasing order of i. If ji is not already mapped to some other point,
set π(ji) = ji+m

2
and π(ji+m

2
) = ji. This is a valid assignment because m

2 is assumed to be an
even integer. At the end of the above process, we have created a one-to-one mapping between the
points of C2, such that for every j ∈ C2 we have d(j, π(j)) = m

2 . This concludes the description of
the similarity sets. Finally, this pairing process for C1 and C2 is possible, because both sets include
an even number of points. See Figure 1 for an example.

To conclude the description of the input we also assume that k = 2. At this point observe that
the constructed instance also satisfies Assumption 1.1 for ψ ≥ 2, therefore covering the canonical
case for ψ. This is because the optimal unfair value for the instance is easily seen to be m

2 , while
the maximum distance between similar points is m.
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In addition, note that because for all j we have |Sj | = 1, constraints (1) and (2) are equivalent
and hence showing infeasibility for this instance covers both EqCenter-PP and EqCenter-AG.
Finally, to prove the statement of the theorem, it suffices to show that for all possible choices of
centers and all possible corresponding assignments φ, there will always be a point jp for which
d(jp, φ(jp)) ≥ 2d(π(jp), φ(π(jp))).

At first, notice that there exists no feasible solution that uses just one center. Supposing
otherwise, let c be the only chosen center. Then there exists only one possible assignment for
c, and that is φ(c) = c. Hence d(c, φ(c)) = 0, and the fairness constraint for π(c) will never be
satisfied.

Now we will show that even solutions that pick two centers c1, c2 cannot admit any feasible
assignment. We proceed via a case analysis on d(c1, c2).

• d(c1, c2) ≤ m
3 : Because the points of C1 and C2 alternate in the metric cycle, we know

that there exists a j ∈ C1 such that d(j, c1) ≤ 1 (in the example of Figure 1 we might have
c1 = j2, c2 = j3 and j = j1, π(j) = j9). By the triangle inequality we also get d(j, c2) ≤ m

3 +1.
As for the point π(j), we have:

d(π(j), c1) ≥ d(π(j), j)− d(j, c1) ≥ m− 1

d(π(j), c2) ≥ d(π(j), j)− d(j, c2) ≥ m− m

3
− 1 =

2m

3
− 1

From π(j)’s perspective, the best case situation regarding its fairness constraint is if π(j) gets
assigned to its closest center, and j gets assigned to its farthest one. Given all the previous
inequalities, we see that the best possible service for π(j) is 2m

3 − 1, and the worst possible
service for j is m

3 + 1. We next show that even in this ideal situation for π(j), its fairness
constraint with α < 2 will never be satisfied if m is significantly large. To see this, note that
2m/3−1
m/3+1 is an increasing function of m and also:

lim
m→∞

( 2m
3 − 1
m
3 + 1

)
=

2/3

1/3
= 2

Therefore, for every given α < 2, there exists an ma such that 2ma/3−1
ma/3+1 > α.

• m
3 < d(c1, c2) ≤ 2m

3 : In this case, because m is assumed to be significantly large and because
the points of C1, C2 alternate in the metric cycle, we can find a point j ∈ C1 in the shortest
path between c1 and c2, which will be approximately in the middle of the path. Letting
γ ∈ (1

3 ,
2
3 ] such that d(c1, c2) = γm, we have γm

2 − 1 ≤ d(j, c1), d(j, c2) ≤ γm
2 + 1 (in the

example of Figure 1 we might have c1 = j1, c2 = j5 and j = j3, π(j) = j11). Regarding the
possible assignments for π(j) we have:

d(π(j), c1) ≥ d(j, π(j))− d(j, c1) ≥ m− γm

2
− 1 = m

(2− γ
2

)
− 1

d(π(j), c2) ≥ d(j, π(j))− d(j, c2) ≥ m− γm

2
− 1 = m

(2− γ
2

)
− 1

Again we will focus on the best case situation for π(j), which according to the previous

analysis is π(j) getting assigned to a center at distance m(2−γ)
2 − 1 from it, and j getting

assigned to a center at distance γm
2 + 1. Therefore, we consider the ratio m(2−γ)/2−1

γm/2+1 , and we

are going to prove that even in this ideal case for π(j), its fairness constraint for α < 2 will
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not be satisfiable if m is suffieciently large. At first, because 2−γ
2 , γ2 > 0 the previous ratio

will be an increasing function of m. In addition,

lim
m→∞

(m(2− γ)/2− 1

γm/2 + 1

)
=

(2− γ)/2

γ/2
=

2− γ
γ
≥ 2

The last inequality follows since 2−γ
γ is a decreasing function, and for γ ∈ (1

3 ,
2
3 ] we have

2−γ
γ ∈ [2, 5). Hence, for every α < 2 there exists an mb such that mb(2−γ)/2−1

γmb/2+1 > α.

• 2m
3 < d(c1, c2) ≤ m: Because m is assumed to be significantly large and because the points of
C1, C2 alternate in the metric cycle, we can find a point j ∈ C2 in the shortest path between
c1 and c2, which will be approximately in the middle of the path. Letting γ ∈ (2

3 , 1] such
that d(c1, c2) = γm, we have γm

2 − 1 ≤ d(j, c1), d(j, c2) ≤ γm
2 + 1 (in Figure 1 we might

have c1 = j2, c2 = j10 and j = j14, π(j) = j10). Consider now π(j), and without loss of
generality assume that d(π(j), c1) ≥ d(π(j), c2) (when d(π(j), c1) ≤ d(π(j), c2) the situation
is symmetric, with the roles of c1, c2 switched.).

At first, suppose that π(j) is a point in the shortest path between c1 and c2 (in the ex-
ample of Figure 1 c1 = j2, c2 = j10 and j = j14 would result in that). Thus, because
d(j, π(j)) = m/2, d(π(j), c1) ≥ d(π(j), c2) and d(c1, c2) ≤ m, we can focus on the line seg-
ment c1, j, π(j), c2, where the triangle inequality holds with equality. Here we get,

d(π(j), c2) = d(j, c2)− d(j, π(j)) ≤ γm

2
+ 1− m

2
=

(γ − 1)m

2
+ 1 ≤ 1

In addition,

d(π(j), c1) = d(j, π(j)) + d(j, c1) ≥ m

2
+
γm

2
− 1 =

(1 + γ)m

2
− 1

The second case we consider is when π(j) is not on the shortest path between c1 and c2

(in Figure 1 take for instance c1 = j1, c2 = j11 and hence j = j14 and π(j) = j10). In
that scenario, because d(π(j), c1) ≥ d(π(j), c2), we turn our attention to the line segment
c1, j, c2, π(j), where the triangle inequality holds with equality. Here we have

d(π(j), c2) = d(j, π(j))− d(j, c2) ≤ m

2
− γm

2
+ 1 =

(1− γ)m

2
+ 1

In addition,

d(π(j), c1) = d(j, π(j)) + d(j, c1) ≥ m

2
+
γm

2
− 1 =

(1 + γ)m

2
− 1

Therefore, in every case we have the following:

d(π(j), c1) ≥ (1 + γ)m

2
− 1 and d(π(j), c2) ≤ (1− γ)m

2
+ 1 (3)

Now that we have the bounds (3) for the assignment distance of π(j) to both centers, we
proceed with the final case analysis.

Suppose that π(j) gets assigned to c1. Then from π(j)’s perspective, the best possible sit-

uation is if its own assignment distance is exactly (1+γ)m
2 − 1, and j gets an assignment
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distance of γm
2 + 1. In this case, the ratio (1+γ)m/2−1

γm/2+1 is an increasing function of m, because

(1 + γ)/2, γ/2 > 0. In addition we have:

lim
m→∞

(1 + γ)m/2− 1

γm/2 + 1
=

1 + γ

γ
≥ 2

The last inequality is because 1+γ
γ is a decreasing function and γ ≤ 1. Hence, for every α < 2,

there exists an mc such that (1+γ)mc/2−1
γmc/2+1 > α. Thus, even in the ideal situation for π(j), if

m is larger than mc its fairness constraint for α < 2 will be unsatisfiable.

On the other hand, suppose that π(j) gets assigned to c2. Then from j’s perspective, the
best possible situation is if it gets an assignment distance of γm

2 − 1, and π(j) has assignment

distance exactly (1−γ)m
2 + 1. In this case, the ratio γm/2−1

(1−γ)m/2+1 is an increasing function of m,

because (1− γ)/2, γ/2 > 0. Also:

lim
m→∞

γm/2− 1

(1− γ)m/2 + 1
=

γ

1− γ
> 2

The last inequality is because γ
1−γ is an increasing function and γ > 2/3. Hence, for every

α < 2, there exists an md such that γmd/2−1
(1−γ)md/2+1 > α. Thus, even in the ideal situation for j,

if m is larger than md, j’s fairness constraint for α < 2 will be unsatisfiable.

The analysis is exhaustive, because the maximum distance between two points in the metric is m.
Further, we see that if we set m = 4 max{ma,mb,mc,md}, then in every possible scenario there
will exist a point whose fairness constraint for α < 2 will not be satisfiable.

Moving on, we show that for α ≥ 2 there is always a feasible solution to both our problems, and
hence we settle the important question of what is the smallest value of α for which EqCenter-PP
and EqCenter-AG are well-defined.

Lemma 2.2. Consider a set of points C in a metric space with distance function d, where |C| ≥ 2.
Then there exists an efficient way of finding two distinct points c1, c2 ∈ C and an assignment
φ : C 7→ {c1, c2}, such that for every j ∈ C we have d(c1,c2)

2 ≤ d(j, φ(j)) ≤ d(c1, c2).

Proof. At first, choose c1, c2 to be the two points of C that are the furthest apart, i.e. (c1, c2) =
arg maxx,y∈C d(x, y). Then, for every j ∈ C set φ(j) = arg maxc∈{c1,c2} d(j, c). In other words,
given the chosen centers, each point is assigned to the center that is furthest from it in the metric.
Let also φ̄(j) be the center to which j is not assigned to. For any j ∈ C, combining the triangle
inequality and the fact that d(j, φ̄(j)) ≤ d(j, φ(j)), will give us:

d(c1, c2) ≤ d(j, φ(j)) + d(j, φ̄(j)) ≤ 2d(j, φ(j)) =⇒ d(c1, c2)/2 ≤ d(j, φ(j))

Finally, by the way we chose c1 and c2 we also get d(j, φ(j)) ≤ d(c1, c2).

Theorem 2.3. For both EqCenter-PP and EqCenter-AG, every instance with α ≥ 2 always
admits a feasible solution.

Proof. Suppose that as an instance to either problem we are given a set of points C together with
their associated similarity sets Sj , k ≥ 2 and α ≥ 2. W.l.o.g. we can assume that |C| ≥ 2, because
otherwise the statement of the Lemma is trivially true. Since k ≥ 2, we can use Lemma 2.2 and
get a set of two centers {c1, c2} and an assignment function φ : C 7→ {c1, c2}, such that for all j ∈ C
we have d(c1, c2)/2 ≤ d(j, φ(j)) ≤ d(c1, c2). In the case of constraint (1), for every j ∈ C and any
j′ ∈ Sj we have d(j, φ(j)) ≤ d(c1, c2) ≤ 2d(j′, φ(j′)) ≤ αd(j′, φ(j′)). Furthermore, since any feasible
solution for constraint (1) is also a feasible solution for constraint (2), the proof is concluded.

9



Another structural notion that interests us, is that of the Price of Fairness (PoF). For a given
instance of either of our problems, PoF is the ratio of the value of the optimal solution to the
problem, over the the optimal unfair value. The latter is defined as the optimal value of the given
instance, when we drop the fairness constraint and simply solve k-center. As is the case in most
fair clustering literature, we show that in general PoF can be arbitrarily large.

Theorem 2.4. There exist instances of EqCenter-PP and EqCenter-AG with unbounded PoF.

Proof. Consider an instance with four points j1, j2, j3, j4. For the distances we have d(j1, j2) =
d(j3, j4) = R and d(j1, j3) = d(j1, j4) = d(j2, j3) = d(j2, j4) = D, where R � D. Note that this
is a valid metric space, where j1, j2 form a clique that is very far away from the clique of j3, j4.
In addition, we assume k = 2 and α = 2. For the similarity sets we have Sj1 = {j2}, Sj2 = {j1},
Sj3 = {j4}, Sj4 = {j3}.

Observe that the value of the optimal unfair solution is clearly R. This is achievable by choosing
j1, j3 as centers. Given this, we see that the instance also satisfies Assumption 1.1 since R� D.

Moving forward, we are going to show that the optimal solution for the fair variants has value
D (note that the existence of such a solution is guaranteed by Theorem 2.3). This implies that
PoF is D

R , and since R� D this ratio can be arbitrarily large. Furthermore, note that because all
similarity sets have cardinality 1, constraints (1) and (2) are equivalent and hence we can solely
focus on proving the result for (1).

At first, assume that the optimal fair solution uses only one center. Then, any assignment that
uses only one center should necessarily yield a maximum assignment distance of D.

Let us now consider the case of the optimal fair solution using two centers. If both these centers
are in the same clique, i.e., the centers are either {j1, j2} or {j3, j4}, then trivially any assignment
that uses those sets will lead to a maximum assignment distance of D. Therefore, we only need to
see what happens when the optimal fair solution places one center in each clique, and without loss
of generality let us assume that the chosen centers are {j1, j3}. Focus now on j1. If the optimal
solution assigns j1 to itself, i.e., φ(j1) = j1, then d(j1, φ(j1)) = 0. The latter implies that the
fairness constraint for j2 cannot be satisfied. Thus, the optimal must set φ(j1) = j3, hence leading
to a maximum assignment distance of D.

3 Approximation algorithms for EqCenter-PP and EqCenter-AG

Suppose that we are given an instance of EqCenter with α, k ≥ 2, and we are either solving
EqCenter-PP or EqCenter-AG. In addition, recall that Rj = maxj′∈Sj d(j, j′), Rm = maxj∈C Rj
and R∗ denotes the value of the optimal solution for the corresponding problem.

In this section we demonstrate a procedure that works under an explicitly given value R, with
R ≥ Rm. This process will either return a feasible solution (SR, φR) with maxj∈C d(j, φR(j)) ≤ 5R,
or an infeasibility message. The latter message indicates with absolute certainty that R < R∗.

The aforementioned procedure suffices to yield the result of Theorem 1.5. Because R∗ is always
the distance between two points in C, the total number of possible values for it is only polynomial,
specifically at most

(|C|
2

)
. Hence, we can run the procedure for all such distances that are at least

Rm, and in the end keep (SR, φR) for the minimum guess R for which we did not receive an
infeasibility message. If Rm ≤ R∗, then our returned solution is guaranteed to have value at most
5R∗, because R∗ is one of the target values we tested. On the other hand, when Rm > R∗, the
iteration with Rm as the guess cannot return an infeasibility message, and thus it will provide a
solution of value at most 5Rm. As a side note, we mention that we can speed up the runtime of
this approach by using binary search over the guesses R, instead of a naive brute-force search.
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Algorithm 1: Choosing an initial set of centers

S ← ∅, U ← C, P0 ← ∅, t← 0;
while U 6= ∅ do

Q← {c ∈ U | ∃c′ ∈ Pt such that d(c, c′) ≤ 3R};
if Q 6= ∅ then

Choose a point c ∈ Q;
Pt ← Pt ∪ {c}, S ← S ∪ {c}, Gc ← {j ∈ U | d(j, c) ≤ 2R}, U ← U \Gc;

else
Choose an arbitrary c ∈ U ;
t← t+ 1;
Pt ← {c}, S ← S ∪ {c}, Gc ← {j ∈ U | d(j, c) ≤ 2R}, U ← U \Gc;

end

end
Return the set S, the partition P1, P2, . . . Pt of S, and the sets Gc for every c ∈ S;

Therefore, apart from the input instance, assume that we are also given a target value R with
R ≥ Rm. Our framework begins by choosing an initial set of centers S. The full details of this
step are presented in Algorithm 1. Besides choosing this set S, Algorithm 1 also creates a partition
P1, P2, . . . PT of S for some T ≤ |C|, and returns sets Gc ⊆ C for every c ∈ S.

Initially, all point of C are considered uncovered (U = C). The algorithm works by trying to
expand the current set of centers Pt as much as possible, via finding a new center that is currently
uncovered and is within distance 3R from some center already placed in Pt. If no such point exists,
then we never deal with Pt again, and we move on to create Pt+1 by choosing an arbitrary uncovered
point as the first center for it. In additional, every time a center c is chosen, it covers all uncovered
points that are within distance 2R from it, and these points constitute the set Gc. This process is
repeated until all points get covered, i.e., until the set U becomes empty.

For every c ∈ S, let t(c) be the index of the partition set c belongs to, i.e., c ∈ Pt(c). We also
define SI = {c ∈ S : |Pt(c)| = 1} and SN = S \SI . We interpret the centers of SI as being isolated,
since for each c ∈ SI its corresponding partition set contains only c, i.e., Pt(c) = {c}. On the other
hand, the centers of SN are non-isolated, in the sense of having |Pt(c)| > 1 for each c ∈ SN . In
addition, for every point j ∈ C, let ρ(j) the center of S that covered j, i.e., j ∈ Gρ(j). Note that
d(j, ρ(j)) ≤ 2R. Finally, let CI = {j ∈ C : ρ(j) ∈ SI} and CN = C \ CI , where CI are the points
that got covered by isolated centers, and CN the points that got covered by non-isolated centers.

Observation 3.1. For every distinct c, c′ ∈ S we have d(c, c′) > 2R.

Observation 3.2. For every c ∈ SN , there exists a different c′ ∈ SN such that d(c, c′) ≤ 3R.

Observation 3.3. The sets Gc for all c ∈ S, induce a partition of C.

The three previous observations follow trivially from the definition of Algorithm 1. However,
Observation 3.2 is of particular importance, since it will allow us to carefully control the assignment
distances of points later on, in a way that would satisfy the underlying fairness constraints.

Lemma 3.4. For any c ∈ SI , we have d(j, j′) > R for all j ∈ Gc and all j′ ∈ C \Gc.

Proof. Focus on such a c ∈ SI , and for the sake of contradiction assume that there exists a j ∈ Gc
and a j′ ∈ C \Gc for which d(j, j′) ≤ R. Let c′ 6= c the center of S with c′ = ρ(j′).
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Algorithm 2: Assignment for the points of CI
S′I ← ∅;
for every c ∈ SI do

Check if there exists any j ∈ Gc, such that assigning all points of Gc to j would result
in the appropriate fairness constraint being satisfied for each j′ ∈ Gc. Note that
checking this feasibility condition is well-defined, since Corollary 3.5 gives Sj′ ⊆ Gc for
all j′ ∈ Gc. If such a j exists, set S′I ← S′I ∪ {j} and φI(j

′)← j for all j′ ∈ Gc;
If you could not find such a j, use the algorithm of Lemma 2.2 on the points of Gc.
This will return two points c1, c2 ∈ Gc and an assignment φ : Gc 7→ {c1, c2}. Then set
S′I ← S′I ∪ {c1, c2} and φI(j

′)← φ(j′) for all j′ ∈ Gc;
end
Return S′I and φI ;

At first, suppose that during the execution of Algorithm 1 c entered S before c′. Having
|Pt(c)| = 1 means that when Pt(c) = {c}, the algorithm tried to find a point in U within distance
3R from c but failed. However, at that time j′ was still in U , because j′ ∈ Gc′ and c′ entered S
after c. In addition d(j′, c) ≤ d(j, j′) + d(j, c) ≤ 3R, and thus we reached a contradiction.

Now assume that c′ entered S before c. This implies that t(c′) < t(c), because |Pt(c)| = 1. When
the algorithm stopped expanding Pt(c′), there was not any point of U within distance 3R from a
center of Pt(c′). However, at that moment j was still in U , because j ∈ Gc and t(c′) < t(c). In
addition d(j, c′) ≤ d(j, j′) + d(j′, c′) ≤ 3R, and so we once again reach a contradiction.

By using Lemma 3.4 and the fact that R ≥ Rm, we immediately get the following.

Corollary 3.5. For every c ∈ SI , we have Sj ⊆ Gc ⊆ CI for all j ∈ Gc.

Corollary 3.6. For every j ∈ CN , we have Sj ∩ CI = ∅ and hence Sj ⊆ CN .

In words, Corollary 3.5 says that the similarity set of a point j ∈ CI is completely contained in
Gρ(j), where of course ρ(j) ∈ SI and Gρ(j) ⊆ CI . Similarly, Corollary 3.6 says that the similarity
set of a point j ∈ CN is completely contained in CN .

After computing the set of centers S, our approach proceeds by constructing the appropriate
assignment function. This will occur in two steps. The first step takes care of the points in CI ,
by choosing a new set of centers S′I ⊆ CI , and by constructing an assignment φI : CI 7→ S′I . The
second step handles the points of CN via a mapping φN : CN 7→ SN . This is well-defined, since
CI ∩ CN = ∅. Note now that due to Corollary 3.5, the fairness constraint of a point j ∈ CI is only
affected by φI , since Sj ⊆ Gρ(j) ⊆ CI and CI ∩ CN = ∅. Similarly, due to Corollary 3.6, the fairness
constraint of a j ∈ CN is only affected by φN , since Sj ⊆ CN and CI ∩ CN = ∅. Therefore, we can
study the satisfaction of fairness constraints separately on CI for φI , and on CN for φN .

Algorithm 2 demonstrates the details of the first assignment step. The algorithm operates by
trying to “guess” if the optimal solution uses exactly one center inside each Gc for c ∈ SI . If
it does, so will our algorithm. If not, then our approach will open exactly two centers, and will
subsequently construct an assignment that will satisfy the appropriate fairness constraint.

Lemma 3.7. After the execution of Algorithm 2, for every j ∈ CI we have that the constructed
assignment φI will 1) satisfy j’s fairness constraint, and 2) guarantee d(j, φI(j)) ≤ 4R.

Proof. At first, due to Observation 3.3, Algorithm 2 sets the value φI(j) for each j ∈ CI exactly
once. In addition, we know that for every j ∈ CI , all points of Sj will have their assignment set in
the same iteration of Algorithm 2, since ρ(j) ∈ SI and by Corollary 3.5 we have Sj ⊆ Gρ(j).
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For a point j ∈ CI , when ρ(j) is considered by Algorithm 2 there are two possible scenarios.
In the first we have |S′I ∩ Gρ(j)| = 1. If that happens, all points of Gρ(j) are assigned to the only
point of S′I ∩Gρ(j), and because of the first check of the algorithm we are also sure that the fairness
constraint of all of them is satisfied. Otherwise, we have |S′I ∩Gρ(j)| = 2, as a result of running the
algorithm of Lemma 2.2 on Gρ(j). By using the assignment guarantees of that algorithm, it is easy
to see that the fairness constraints for all j′ ∈ Gρ(j) will again be satisfied. Hence, in both cases
the corresponding fairness constraint is satisfied for j.

Finally, d(j, φI(j)) ≤ d(j, ρ(j)) + d(φI(j), ρ(j)) ≤ 4R, since φI(j) ∈ Gρ(j) in each case.

Lemma 3.8. If R ≥ R∗, then after the execution of Algorithm 2 we will have |S′I |+ |SN | ≤ k.

Proof. Let S∗ be the optimal set of centers, and φ∗ the corresponding optimal assignment. The
following two statements rely on the fact that R ≥ R∗. First, by Observation 3.1 note that for two
distinct points c, c′ ∈ SN we must have φ∗(c) 6= φ∗(c′). Second, due to Lemma 3.4 we also have
φ∗(c) /∈ CI for every c ∈ SN . The two previous statements imply |SN | ≤ |S∗ \ CI |.

Now focus on S∗ ∩ CI , and see that |S∗ ∩ CI | =
∑

c∈SI
|S∗ ∩Gc| due to Observation 3.3 and the

definition of CI . Further, due to Lemma 3.4 and the fact that R ≥ R∗, we have that |S∗ ∩Gc| ≥ 1
for every c ∈ SI . If |S∗ ∩ Gc| = 1, then Lemma 3.4 implies that the optimal solution assigns all
points of Gc to the unique point of S∗ ∩ Gc. This assignment is obviously feasible, and thus the
first part of Algorithm 2 can identify it and give |S′I ∩ Gc| = 1. Otherwise, if |S∗ ∩ Gc| ≥ 2, then
Algorithm 2 ensures that |S′I ∩Gc| ≤ 2. Therefore, we get

|S′I | =
∑
c∈SI

|S′I ∩Gc| ≤
∑
c∈SI

|S∗ ∩Gc| = |S∗ ∩ CI |

Putting everything together yields

|S′I |+ |SN | ≤ |S∗ ∩ CI |+ |S∗ \ CI | = |S∗| ≤ k

Using the contrapositive of Lemma 3.8, we see that if |S′I |+ |SN | > k then R < R∗, and hence
we can safely return as our answer an infeasibility message.

Before we proceed to the second step of our assignment process, we need some extra notation.
For each c ∈ SN define H1

c = {j ∈ CN | d(j, c) ≤ R} and H2
c = Gc \

(⋃
c′∈SN

H1
c′
)
. Combining

Observation 3.1, Observation 3.3 and the way we constructed the sets H1
c , H

2
c , it is easy to see that

for each j ∈ CN exactly one of the following two cases will hold.

• The point j belongs to exactly one H1
c for some c ∈ SN . In addition, j clearly does not belong

to any set H2
c′ for c′ ∈ SN . In this case, we call j a type-1 point, and we set π(j) = c.

• The point j belongs to H2
ρ(j). In addition, j does not belong to any H1

c for c ∈ SN , and also it

does not belong to any H2
c with c 6= ρ(j). Here we call j a type-2 point, and set π(j) = ρ(j).

Further, let C1
N = {j ∈ CN | j is a type-1 point} and C2

N = {j ∈ CN | j is a type-2 point}. There-
fore, C1

N ∩ C2
N = ∅ and C1

N ∪ C2
N = CN . Finally, the definition of a type-2 point implies:

Observation 3.9. For all j ∈ C2
N , we have d(j, π(j)) ≤ 2R and d(j, c) > R for all c ∈ SN .

The distinction between type-1 and type-2 points is necessary for satisfying the fairness con-
straints. Notice that by construction of SN type-1 points are more “privilleged”, since they have
an available center within distance at most R from them. On the other hand, type-2 points do not
have such an advantage. Therefore, the assignment process should be aware of this discrepancy, so
it can favor type-2 points in a controlled way that will satisfy everyone’s fairness constraint.
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Algorithm 3: Assignment for the points of CN
for every j ∈ CN do

if j ∈ C1
N then

φN (j)← arg minc∈(SN\{π(j)}) d(j, c) ; // Case (A)

end
if j ∈ C2

N then
if ∃c ∈ (SN \ {π(j)}) : d(j, c) ≤ 2R then

φN (j)← arg maxc′∈SN :d(j,c′)≤2R d(j, c′) ; // Case (B)

else
φN (j)← arg minc′∈(SN\{π(j)}) d(j, c′) ; // Case (C)

end

end

end
Return the assignment φN : CN 7→ SN ;

Algorithm 3 demonstrates the full details of constructing the assignment φN : CN 7→ SN . The
high-level intuition behind it follows. At first, we try to provide each point j with an assignment
distance in the range [R, 5R], something that is possible due to Observation 3.2. However, since α
might be less than 5, we are very careful in how we handle the assignment of similar points. The
latter is achieved by considering type-1 and type-2 points independently, in a manner that is aware
of where the potential similar points of each type may be.

Lemma 3.10. For any point j ∈ CN we have:

• d(j, π(j)) ≤ R < d(j, φN (j)) ≤ 4R, if j gets assigned to φN (j) according to Case (A).

• R < d(j, π(j)) ≤ d(j, φN (j)) ≤ 2R, if j gets assigned to φN (j) according to Case (B).

• d(j, π(j)) ≤ 2R < d(j, φN (j)) ≤ 5R, if j gets assigned to φN (j) according to Case (C).

Proof. In Case (A) d(j, π(j)) ≤ R since j ∈ H1
π(j). Also, from the definition of type-1 points,

there does not exist any center in SN \ {π(j)} that is within distance at most R from j, and hence
d(j, φN (j)) > R ≥ d(j, π(j)). In addition, Observation 3.2 ensures that there exists a c ∈ SN\{π(j)}
such that d(π(j), c) ≤ 3R. Therefore, d(j, φN (j)) ≤ d(j, c) ≤ d(j, π(j)) + d(π(j), c) ≤ 4R.

The assignment guarantee for Case (B) follows trivially from Observation 3.9, and the way
the algorithm operates in that situation.

In Case (C) we have d(j, c) > 2R ≥ d(j, π(j)) for all c ∈ SN \{π(j)}. In addition, Observation
3.2 ensures that there exists a c′ ∈ SN \ {π(j)} such that d(π(j), c′) ≤ 3R. Hence, d(j, φN (j)) ≤
d(j, c′) ≤ d(j, π(j)) + d(π(j), c′) ≤ 5R, where d(j, π(j)) ≤ 2R follows from Observation 3.9.

Lemma 3.10 immediately gives an upper bound of 5R for the maximum assignment distance.
However, it is the rest of the inequalities shown there that allow us to prove satisfaction of the
fairness constraints by φN . This is achieved in the following Lemma.

Lemma 3.11. For all j ∈ CN , we have d(j, φN (j)) ≤ α · d(j′, φN (j′)) for all j′ ∈ Sj.

Proof. Suppose we have some j ∈ CN and some j′ ∈ Sj . The proof of the statement will be
based on an exhaustive case analysis. Before we proceed, we mention two inequalities that we will
repeatedly use. At first, d(j, j′) ≤ d(j′, φN (j′)), because d(j, j′) ≤ Rm ≤ R and by Lemma 3.10 we
have d(j′, φN (j′)) > R. Moreover, d(j′, π(j′)) ≤ d(j′, φN (j′)), again by using Lemma 3.10.
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• Suppose that j is a type-1 point and j′ is also a type-1 point.

At first let π(j) 6= π(j′). Then j can potentially be assigned to π(j′), and therefore we have
d(j, φN (j)) ≤ d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ 2d(j′, φN (j′)) ≤ α · d(j′, φN (j′)).

Now let π(j) = π(j′). Because j′ is a type-1 point and gets assigned according to Case
(A), we know that φN (j′) 6= π(j), Hence j can potentially be assigned to φN (j′). Therefore,
d(j, φN (j)) ≤ d(j, φN (j′)) ≤ d(j, j′) + d(j′, φN (j′)) ≤ 2d(j′, φN (j′)) ≤ α · d(j′, φN (j′)).

• Suppose that j is a type-1 point and j′ is a type-2 point.

At first assume j′ received its assignment via Case (C). Then, by Lemma 3.10 we know that
d(j′, φN (j′)) > 2R. In addition, again by Lemma 3.10, we have d(j, φN (j)) ≤ 4R. Thus,
d(j, φN (j)) ≤ 2d(j′, φN (j′)) ≤ α · d(j′, φN (j′)).

Now assume that j′ received its assignment through Case (B). Therefore, there exists c ∈
S \ {π(j′)} with d(j′, c) ≤ 2R. By the way Case (B) works and Observation 3.9, we also
have d(j′, φN (j′)) ≥ max(d(j′, π(j′)), d(j′, c)). Let us now see what happens when π(j′) =
π(j). Then c 6= π(j), and thus j can potentially be assigned to c. Therefore, d(j, φN (j)) ≤
d(j, c) ≤ d(j, j′) + d(j′, c) ≤ d(j, j′) + d(j′, φN (j′)) ≤ 2d(j′, φN (j′)) ≤ α · d(j′, φN (j′)). On
the other hand, if π(j′) 6= π(j), then j can potentially get assigned to π(j′), and thus have
d(j, φN (j)) ≤ d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ α · d(j′, φN (j′)).

• Suppose that j is a type-2 point, and also gets its assignment via Case (B). By Lemma 3.10
we have d(j, φN (j)) ≤ 2R and d(j′, φN (j′)) > R. For α ≥ 2 the statement trivially follows.

• Suppose that j is a type-2 point, j′ is a type-1 point, and j gets its assignment via Case (C).

At first, assume that φN (j′) 6= π(j). In this case j can potentially get assigned to φN (j′),
and d(j, φN (j)) ≤ d(j, φN (j′)) ≤ d(j, j′) + d(j′, φN (j′)) ≤ α · d(j′, φN (j′)).

Now assume that φN (j′) = π(j). Because j′ is a type-1 points and so φN (j′) 6= π(j′), we can
infer that π(j) 6= π(j′). Also, d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ 2R. However, the latter
contradicts the assumption that j got its assignment according to Case (C). Therefore, we
know that φN (j′) 6= π(j) necessarily.

• Suppose that both j, j′ are type-2 points, and j gets its assignment via Case (C).

At first, assume π(j′) 6= π(j). Then j can potentially get assigned to π(j′), and therefore
d(j, φN (j)) ≤ d(j, π(j′)) ≤ d(j, j′) + d(j′, π(j′)) ≤ 2d(j′, φN (j′)) ≤ α · d(j′, φN (j′)).

Now let π(j′) = π(j). To begin with, assume that there exists a c ∈ S \ {π(j)} such that
d(j′, c) ≤ 2R. Moreover, because c 6= π(j), j can potentially get assigned to c, and thus
d(j, φN (j)) ≤ d(j, c) ≤ d(j, j′) + d(j′, c) ≤ d(j, j′) + d(j′, φN (j′)) ≤ α · d(j′, φN (j′)). To get
d(j′, c) ≤ d(j′, φN (j′)) we simply used the way Case (B) works. Finally, suppose that ∀c ∈
S \ {π(j)} we have d(j′, c) > 2R. Then φN (j′) 6= π(j) and thus j can potentially get assigned
to φN (j′). Therefore, d(j, φN (j)) ≤ d(j, φN (j′)) ≤ d(j, j′)+d(j′, φN (j′)) ≤ α·d(j, φN (j′)).

Combining Lemmas 3.10 and 3.11 we immediately get the following.

Lemma 3.12. After the execution of Algorithm 3, for every j ∈ CN we have that the constructed
assignment φN will 1) satisfy j’s fairness constraint, and 2) guarantee d(j, φN (j)) ≤ 5R.

Finally, by combining Lemmas 3.7, 3.12 and 3.8 with the fact that the number of centers we
use is |S′I |+ |SN |, we see that we provide a procedure that for a guess R ≥ Rm works as follows. It
either returns a feasible solution with maximum assignment distance 5R, or returns an infeasibility
message that indicates R < R∗. As mentioned earlier, this concludes the proof of Theorem 1.5.
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3.1 Cases with bounded PoF

As we have already shown in Theorem 2.4, the Price of Fairness for both variants of EqCenter
can in general be unbounded. However, we are going to demonstrate that in certain scenarios we
can provably achieve solutions with bounded PoF. This means that the objective function value of
the solution will be comparable to the optimal unfair value, up to some constant factor.

For the given instance of EqCenter, let R∗unf be the value of the optimal k-center solution,
when we drop the fairness constraints from the problem’s requirements.

The first scenario we study is a small modification to our main algorithm, which consists of
only changing Algorithm 2, and thus the construction of S′I and φI . Specifically, if for some c ∈ SI
we have |Gc| = 1, then we use c as a center and set φI(c) = c. If for some c ∈ SI we have |Gc| ≥ 2,
then we immediately use the procedure of Lemma 2.2, without checking if only one point of Gc can
yield a feasible solution. This modification yields the results of Theorem 1.6.

Proof of Theorem 1.6. At first, note that due to Assumption 1.1 we have Rm ≤ ψR∗unf , and hence
the guess ψR∗unf will be among the ones we test; recall that we test guesses R ∈ [Rm,maxj,j′ d(j, j′)].
Assume for now that ψ ≥ 1. For the iteration where the guess is ψR∗unf , Lemmas 3.7 and 3.12
will clearly hold, thus ensuring that the returned solution has value 5ψR∗unf , and the constructed
assignment satisfies all fairness constraints. The only thing left to analyze is the number of centers
we end up using when the guess is ψR∗unf . Combining Observation 3.1, the fact that ψ ≥ 1 and the
fact that the optimal unfair solution uses at most k centers, we immediately get |SI | + |SN | ≤ k.
On the other hand, observe that the number of centers our modified algorithm uses is in the worst
case is 2|SI |+ |SN |, and therefore at most 2k.

When ψ < 1, then we know for sure that R∗unf will be among the tested guesses. In that case,
the previous analysis follows through, with the only difference being that now the maximum radius
of our returned solution would be 5R∗unf .

Finally, to conclude the proof, we just need to make sure that for a radius guess that resulted
in |SI |+ |SN | > k, we return an infeasibility message.

Although the result of Theorem 1.6 is interesting in the sense of showing a scenario with bounded
PoF, it is not a true approximation algorithm, because we end up violating the number of chosen
centers by a multiplicative factor of 2. We are now going to demonstrate another case, where we
achieve a true feasible solution to EqCenter-AG, that additionally enjoys a bounded PoF.

In this scenario, the radius Rj is the same for all points, i.e., for all j ∈ C we have Rj = Rd for
some Rd. Our algorithm here is actually identical to the one presented in the previous subsection,
and the difficulty in proving Theorem 1.7 for it lies only on the analysis.

Proof of Theorem 1.7. At first, note that due to Assumption 1.1 we have Rd ≤ ψR∗unf , and hence
the guess ψR∗unf will be among the ones we test. As in the proof of Theorem 1.6 we can solely
focus on the ψ ≥ 1 case. For the iteration of ψR∗unf , Lemma 3.12 clearly holds. We will show that
Lemma 3.7 will hold as well, and furthermore that Algorithm 2 will always pick just one center
in each Gc for c ∈ SI . This will immediately imply that the returned solution has value at most
5ψR∗unf , all constraints (2) are satisfied, and the centers we end up using are exactly |SI | + |SN |.
Finally, note that by Observation 3.1, the fact that ψ ≥ 1 and the fact that the optimal unfair
solution uses at most k centers, we will also have |SI |+ |SN | ≤ k.

Therefore, all we need to show is that for every c ∈ SI , Algorithm 2 is able to find exactly
one center that satisfies constraint (2) for all j ∈ Gc (recall that Sj ⊆ Gc). To do that, we prove
that there exists an x ∈ Gc, such that that for all j ∈ Gc we have

∑
j′∈Sj d(j, j′) ≤

∑
j′∈Sj d(j′, x).

This suffices to prove the desired statement. To see why, assume that we make x the chosen center
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of Gc, and assign all points of Gc to it. Then for any point j ∈ Gc and any j′ ∈ Sj we have
d(j, x) ≤ d(j, j′) + d(j′, x) by the triangle inequality. Summing over all j′ ∈ Sj and using the
property of x gives:

d(j, x) ≤ 1

|Sj |
∑
j′∈Sj

d(j, j′) +
1

|Sj |
∑
j′∈Sj

d(j′, x) ≤ 2

|Sj |
∑
j′∈Sj

d(j′, x) ≤ α

|Sj |
∑
j′∈Sj

d(j′, x)

For the sake of contradiction, assume now that for all x ∈ Gc there exists a point j ∈ Gc such
that

∑
j′∈Sj d(j, j′) >

∑
j′∈Sj d(j′, x). Based on this, we can create a dependency graph, where every

point of Gc is a vertex, and there is a directed edge from x to j if
∑

j′∈Sj d(j, j′) >
∑

j′∈Sj d(j′, x).
The assumption for the contradiction implies that this dependency graph will contain a directed
cycle x1, x2, . . . , xr, for which we have

∑
j′∈Sxt

d(xt, j
′) >

∑
j′∈Sxt

d(j′, xt−1) for all t ∈ [2, r + 1],
assuming that xr+1 = x1. If we add all the above inequalities we get

r+1∑
t=2

∑
j′∈Sxt

d(j′, xt) >

r+1∑
t=2

∑
j′∈Sxt

d(j′, xt−1)

Now focus on any j′, and see that its contribution in the LHS of the above inequality is A =∑
t:j′∈Sxt

d(j′, xt), and in the RHS is B =
∑

t:j′∈Sxt
d(j′, xt−1). We argue that A > B is impossible,

and thus reach a contradiction. If A > B, we can first subtract from both A and B the common
terms appearing in the sums. Then, in what is left of A we will only have terms d(j′, xt) being
added, for j′ ∈ Sxt . In what is left of B we will only have terms d(j′, xt−1) being added, but
for which j′ /∈ Sxt−1 . Note also that the number of leftover terms is the same in both A and B.
Moreover, since the similarity radius is the same for all points, for any two points z, y ∈ Gc with
j′ ∈ Sz and j′ /∈ Sy, we have d(j′, z) < d(j′, y). Hence we reached the desired contradiction.

4 Solving the assignment problem

In this section we address the assignment problem for EqCenter. Specifically, for an instance
with α, k ≥ 2, if we are given the set of centers S∗ used in the optimal solution, can we efficiently
find the optimal assignment φ∗ : C 7→ S∗? In other words, if R∗ is the value of the optimal solution,
we want to compute φ∗ such that 1) φ∗ satisfies the appropriate fairness constraint for all points,
and 2) for every j ∈ C we have d(j, φ∗(j)) ≤ R∗. In what follows, we demonstrate in full detail
a procedure that achieves this for EqCenter-PP. A similar process can handle EqCenter-AG,
but for the sake of not repeating the same arguments, we are only going to sketch this.

Before we proceed with our assignment algorithm for EqCenter-PP, note that w.l.o.g. we can
always assume that the optimal value R∗ is known. This is because there are only polynomially
many options for it, and thus we can efficiently guess the optimal one. Our process is presented in
Algorithm 4, and it works iteratively. The high-level idea is that it always maintains an assignment
of value at most R∗, and in each iteration it corrects one violated fairness constraint. As we show
later, a polynomial number of iterations suffices in order to reach a feasible assignment.

Lemma 4.1. Every time the condition of the while loop in Algorithm 4 is checked, we have
d(φ(j), j) ≥ d(φ∗(j), j) for every j ∈ C.

Proof. We are going to prove this via induction. For the first time we check the condition, the
statement is obviously true by the way we initialized the mapping φ before the start of the loop,
and the fact that d(j, φ∗(j)) ≤ R∗ for all j ∈ C.
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Algorithm 4: Solving the assignment problem for EqCenter-PP

For every j ∈ C set φ(j)← arg maxi∈S∗:d(i,j)≤R∗ d(i, j);

while there exists a j ∈ C with a j′ ∈ Sj such that d(j, φ(j)) > αd(j′, φ(j′) do
Find such a pair j ∈ C and j′ ∈ Sj ;
Let ∆j,j′ = {i ∈ S∗ : d(i, j) < d(j, φ(j)) and d(i, j) ≤ αd(j′, φ(j′))};
Set φ(j)← arg maxi∈∆j,j′

d(i, j);

end
Return φ;

Consider now the tth time we check the condition, for which by the inductive hypothesis the
statement of the lemma holds. If at that time no violated fairness constraint is found, then we are
done. Hence, we need to focus on the case where the main body of the while loop is executed, and
show that after the changes that occur in φ, the statement will still be satisfied for the (t + 1)th

time we will check the condition.
Let jt be the point chosen at that iteration, with j′t ∈ Sjt the point with d(jt, φ(jt)) >

αd(j′t, φ(j′t)). By the inductive hypothesis we have d(j′t, φ(j′t)) ≥ d(j′t, φ
∗(j′t)). Combining the

two previous inequalities gives d(jt, φ(jt)) > αd(j′t, φ
∗(j′t)). Now because the optimal assignment

satisfies d(jt, φ
∗(jt)) ≤ αd(j′t, φ

∗(j′t)), we finally get d(jt, φ(jt)) > d(jt, φ
∗(jt)). In addition, we have

d(jt, φ
∗(jt)) ≤ αd(j′t, φ

∗(j′t)) ≤ αd(j′t, φ(j′t)). Therefore, we see that φ∗(jt) ∈ ∆jt,j′t
. Let now φ′(jt)

be the updated assignment for jt after the end of the iteration. From the way we update the
assignment for jt and the fact that φ∗(jt) ∈ ∆jt,j′t

, we infer that d(φ′(jt), jt) ≥ d(φ∗(jt), jt).

Theorem 4.2. Algorithm 4 terminates within |C||S∗| iterations, and the final assignment φ satis-
fies: 1) d(j, φ(j)) ≤ R∗ for all j ∈ C, and 2) d(j, φ(j)) ≤ αd(j′, φ(j′) for all j ∈ C and j′ ∈ Sj.

Proof. From the condition of the while loop we know that when the algorithm terminates, the
fairness constraints will be satisfied by the mapping φ. Also, because we never assign a point to a
center that is further than R∗ from it, we know that φ achieves the optimal value.

Now we are going to count the total possible number of iterations. We do that by considering
how many times we changed the assignment of every single point j, i.e., how many times an
iteration tried to fix one of j’s violated constraints. By Lemma 4.1, we see that for any j the
minimum possible assignment distance we can provide to it is d(j, φ∗(j)). Observe that if at any
moment d(j, φ(j)) = d(j, φ∗(j)), then Lemma 4.1 guarantees that j’s assignment will never change
again. This is because for every j′ ∈ Sj we always have d(j′, φ(j′)) ≥ d(j′, φ∗(j′)), and thus using the
properties of the optimal assignment we get d(j, φ(j)) = d(j, φ∗(j)) ≤ αd(j′, φ∗(j′)) ≤ αd(j′, φ(j′)).

On the other hand, if at some point d(j, φ(j)) > d(j, φ∗(j)), then one of j’s fairness constraints
might be violated, and hence we might end up using an iteration to fix it. In this case, let j′ ∈ Sj
the point causing the problematic situation. In addition, note that Lemma 4.1 and the properties
of the optimal solution ensure that d(jt, φ

∗(jt)) ≤ αd(j′t, φ
∗(j′t)) ≤ αd(j′t, φ(j′t)). Thus, for this

iteration φ∗(j) ∈ ∆j,j′ , and the new assignment distance of j will be strictly smaller than the one
it had at the beginning of the iteration. Thus, j can be chosen in at most |S∗| iterations.

The assignment procedure for EqCenter-AG is almost identical to Algorithm 4, with the only
difference being that we should instead be looking for violated constraints (2). In addition, the
analysis of that algorithm remains identical to that of Algorithm 4.
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5 Experimental evaluation

We implemented all algorithms in Python 3.8 and ran our experiments on Intel Xeon (Ivy Bridge)
E3-12 @ 2.4 GHz with 20 cores and 96 GB 1200 MHz DDR4 memory. Our code can be found here.

Datasets: We used 5 datasets from the UCI Machine Learning Repository [15], namely:
(1) Bank-4,521 points [30], (2) Adult-32,561 points [27], (3) Creditcard-30,000 points [33], (4)
Census1990-2,458,285 points [29] and (5) Diabetes-101,766 points [31]. From Adult, Creditcard,
Census and Diabetes we uniformly subsampled 25, 000 points, and performed our experiments with
respect to those sampled sets. In order to construct the distances between points, we removed
non-numeric features, standardized each of the remaining features, took the Euclidean distances
between these modified points, and then normalized the distances to be in [0, 1] for each dataset
(by dividing the distances for a given dataset by the maximum distance between any two points).

Algorithms: We first implemented the two versions of the algorithm of Theorem 1.5, one
solving EqCenter-AG and the other EqCenter-PP. We call Alg-AG the variant solving Eq-
Center-AG, and Alg-PP the variant solving EqCenter-PP. Furthermore, we implemented the
algorithm of Theorem 1.6 and we refer to this as Pseudo-PoF-Alg. Finally, as baselines we used
our own implementations of two “unfair” k-center algorithms, specifically the 2-approximation of
[19] and the 2-approximation of [18].

Range of k and value of fairness parameter α: We ran all of our experiments for every
value of k in {2, 4, 8, 16, 32, 64, 128}, and in all our simulations we set α = 2 for constraints (1) and
(2). We did not test any other value for α, since in practice α > 2 is unsuitable if reasonably strong
fairness considerations are at play.

Constructing the similarity sets: For each combination of dataset and value of k that we
are interested in, we need to construct the similarity sets Sj , such that they satisfy Assumption
1.1. Our first step in doing so, was utilizing the filtering procedure from [19], which for a given
instance (combination of a dataset and a value k) returns a value Rf . If R∗unf is the value of the
optimal “unfair” k-center solution for the instance, the aforementioned filtering guarantees that
Rf ≤ R∗unf . Then, for each point j we drew Rj uniformly at random from [0, 2Rf ], and then set
Sj = {j′ | d(j, j′) ≤ Rj}. There were two reasons for constructing the sets Sj in this way. At first,
this approach agrees with the canonical case for ψ. As described in Section 1.1.1, ψ = 2 is the most
well-justified instantiation of Assumption 1.1. Second, this approach forces non-uniformity in the
values of Rj , and thus we are able to test our algorithms in the most general setting (for instance
the uniform setting described in Theorem 1.7 is more restricted and less realistic).

Evaluated Metrics: Let S be the set of chosen centers and φ : C 7→ S the corresponding
assignment function, that constituted the solution we got when we ran some particular algorithm
on some problem instance. The quantities we evaluate are:

• Maximum assignment distance (maxj∈C d(j, φ(j)): This is the actual objective function
value of the returned solution.

• Satisfaction of constraint (1): Here for each j we define fPP
j = maxj′∈Sj

d(j,φ(j))
d(j′,φ(j′)) .

• Satisfaction of constraint (2): Here for each j we define fAG
j =

|Sj |d(j,φ(j))∑
j′∈Sj

d(j′,φ(j′)) .

We now present our results that involve running all 5 mentioned algorithms on the Adult dataset.
The corresponding plots for the other four datasets can be found in Appendix B, and they exhibit
the exact behavior as the ones displayed here. In addition, the maximum runtime encountered
in all our simulations was approximately 30 minutes (running Alg-PP on Census1990), and the
bottleneck in all executions was computing the pairwise distances and not running the algorithms.
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Figure 2: Maximum assignment distance for all algorithms

In Figure 2 we present the maximum assignment distance as a function of k for all algorithms.
At first, we observe that even our algorithms with no PoF guarantees, i.e., Alg-PP and Alg-AG,
perform very well in terms of an empirical PoF with respect to the baseline solutions. In addition,
we want to compare the objective values of Alg-PP and Alg-AG. Recall that since a solution to
EqCenter-PP also constitutes a solution to EqCenter-AG, we are theoretically expecting Alg-
AG to perform better. However, we see that in practice there is no clear-cut winner, and hence the
use of Alg-PP is highly recommended, since the notion of fairness guaranteed by that algorithm is
much stronger.

(a) (b) (c)

Figure 3: Satisfaction of fairness constraints

In Figure 3 we demonstrate how all algorithms perform in terms of the fairness constraints.1

Figure 3a shows maxj f
PP
j as a function of k for our two algorithms for EqCenter-PP, i.e., Alg-

PP and Pseudo-PoF-Alg. Here we see that as the theory suggests, our algorithms always satisfy
constraint (1) and have maxj f

PP
j ≤ 2. On the other hand, Figure 3b shows maxj f

PP
j as a function

of k for the baselines. Here we see that the baselines are far from satisfying constraint (1), and
specifically that there exist points that are treated very unfairly. Finally, Figure 3c shows maxj f

AG
j

1In these plots, for the two baseline algorithms we excluded points with fPP
j = +∞ or fAG

j = +∞ in the
computation of maxj f

PP
j and maxj f

AG
j . In other words, we were very lenient with the two baselines.
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as a function of k for all algorithms that can be potentially used for EqCenter-AG. Here we see
that our algorithms again satisfy the corresponding constraint (2), and furthermore have a better
maxj f

AG
j value compared to the baselines. Finally, in the AG case the baselines seem to perform

much better compared to the PP case, and this is reasonable because the notion of fairness described
by (2) is much weaker. Nonetheless, in most cases the baselines are not able to satisfy (2).

(a) (b) (c)

Figure 4: Amount of constraint violation

In Figures 4a and 4b we are interested in the percentage of points for which baselines do not
satisfy the appropriate fairness constraint. Specifically, Figure 4a demonstrates that for the stronger
notion of PP-fairness, a substantial percentage of points gets unfair treatment (fPPj > 2). On the
other hand, for the weaker notion of fairness captured by (2), the two baselines do much better.
Nonetheless, even if one is interested only in the weaker AG concept of fairness, they should not use
the baselines. Even one unfairly treated point goes against the very nature of individual fairness.

Finally, in Figure 4c we see by how much Pseudo-PoF-Alg violates the constraint |S| ≤ k on
the set of chosen centers (recall that in theory Pseudo-PoF-Alg yields |S| ≤ 2k). Here we plot the
ratio of the number of centers used by the algorithm over the given value k, and see that in practice
Pseudo-PoF-Alg does not actually incur any violation.
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[26] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. “Fair k-Center Clustering
for Data Summarization”. In: Proceedings of the 36th International Conference on Machine
Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, Sept. 2019, pp. 3448–
3457.

[27] Ron Kohavi. “Scaling up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid”.
In: Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 202–207.

[28] Sepideh Mahabadi and Ali Vakilian. “Individual Fairness for k-Clustering”. In: Proceedings
of the 37th International Conference on Machine Learning. Proceedings of Machine Learning
Research. PMLR, 13–18 Jul 2020, pp. 6586–6596.

[29] Christopher Meek, Bo Thiesson, and David Heckerman. “The Learning-Curve Sampling
Method Applied to Model-Based Clustering”. In: Journal of Machine Learning Research 2
(June 2002), pp. 397–418. doi: 10.1162/153244302760200678.

[30] Sérgio Moro, Paulo Cortez, and Paulo Rita. “A Data-Driven Approach to Predict the Success
of Bank Telemarketing”. In: Decision Support Systems 62 (June 2014). doi: 10.1016/j.dss.
2014.03.001.

[31] Beata Strack, Jonathan Deshazo, Chris Gennings, Juan Luis Olmo Ortiz, Sebastian Ventura,
Krzysztof Cios, and John Clore. “Impact of HbA1c Measurement on Hospital Readmission
Rates: Analysis of 70,000 Clinical Database Patient Records”. In: BioMed research interna-
tional 2014 (Apr. 2014), p. 781670. doi: 10.1155/2014/781670.

[32] Hal R Varian. “Equity, envy, and efficiency”. In: Journal of Economic Theory 9.1 (1974),
pp. 63–91.

[33] Ivy Yeh and Che-Hui Lien. “The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients”. In: Expert Systems with Applications
36 (Mar. 2009), pp. 2473–2480. doi: 10.1016/j.eswa.2007.12.020.

23

https://arxiv.org/abs/1908.09041
https://arxiv.org/abs/2109.04554
https://arxiv.org/abs/2006.04960
https://doi.org/10.1162/153244302760200678
https://doi.org/10.1016/j.dss.2014.03.001
https://doi.org/10.1016/j.dss.2014.03.001
https://doi.org/10.1155/2014/781670
https://doi.org/10.1016/j.eswa.2007.12.020


A Explicitly enforcing Assumption 1.1

It is reasonable to assume that there will be situations in which a central planner is not certain that
Assumption 1.1 holds. Furthermore, there may also be cases where the sets Sj are not explicitly
provided, e.g., because individuals have a fuzzy understanding of similarity and cannot accurately
determine their most comparable points. Nonetheless, even under such conditions, the central
planner can help the points construct the sets Sj , in way that is explainable and will also satisfy
the necessary assumption. This is clearly described in what follows.

The planner can first compute a nearly-tight lower bound Rf for R∗unf (note that computing
R∗unf exactly is NP-hard). This can be done efficiently in multiple ways, for example by using
the thresholding technique of [19]. Afterwards, the planner publishes Rf and informs the agents
that even under optimal conditions, the points that are considered similar to each of them are
only within distance ψRf , for some small constant ψ. Then, the points are asked to independently
construct their similarity sets, such that Sj ⊆ {j′ ∈ C : d(j, j′) ≤ ψR∗unf}.

This strategy certainly enjoys explainability merits. Besides having the planner compute, pub-
lish and clarify the meaning of ψRf to the points, it also gives the planner a valid justification
to turn down requests for Sj that do not satisfy Assumption 1.1, by clearly explaining to such an
agent j why this choice is unreasonable.
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B Additional experimental results

Experimental results for Bank:

Figure 5: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure 6: Satisfaction of fairness constraints

(a) (b) (c)

Figure 7: Amount of constraint violation
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Experimental results for Creditcard:

Figure 8: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure 9: Satisfaction of fairness constraints

(a) (b) (c)

Figure 10: Amount of constraint violation
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Experimental results for Census1990:

Figure 11: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure 12: Satisfaction of fairness constraints

(a) (b) (c)

Figure 13: Amount of constraint violation
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Experimental results for Diabetes:

Figure 14: Maximum assignment distance for all algorithms

(a) (b) (c)

Figure 15: Satisfaction of fairness constraints

(a) (b) (c)

Figure 16: Amount of constraint violation
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