
Approximation Algorithms for Channel
Allocation Problems in Broadcast Networks

Rajiv Gandhi1, Samir Khuller2, Aravind Srinivasan3, and Nan Wang4

1 Department of Computer Science, University of Maryland, College Park, MD
20742. Research supported by NSF Award CCR-9820965.

E-mail: gandhi@cs.umd.edu.
2 Department of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742. Research supported by NSF Award
CCR-9820965 and an NSF CAREER Award CCR-9501355.

E-mail: samir@cs.umd.edu.
3 Department of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742. Research supported in part by NSF
Award CCR-0208005. E-mail: srin@cs.umd.edu.

4 Department of Computer Science, University of Maryland, College Park, MD
20742. Research supported by NSF Award CCR-0208005.

E-mail: nwang@cs.umd.edu.

Abstract. We study two packing problems that arise in the area of
dissemination-based information systems; a second theme is the study
of distributed approximation algorithms. The problems considered have
the property that the space occupied by a collection of objects together
could be significantly less than the sum of the sizes of the individual
objects. In the Channel Allocation Problem, there are users who request
subsets of items. There are a fixed number of channels that can carry
an arbitrary amount of information. Each user must get all of the re-
quested items from one channel, i.e., all the data items of each request
must be broadcast on some channel. The load on any channel is the
number of items that are broadcast on that channel; the objective is to
minimize the maximum load on any channel. We present approximation
algorithms for this problem and also show that the problem is MAX-SNP
hard. The second problem is the Edge Partitioning Problem addressed
by Goldschmidt, Hochbaum, Levin, and Olinick (Networks, 41:13-23,
2003). Each channel here can deliver information to at most k users,
and we aim to minimize the total load on all channels. We present an
O(n1/3)–approximation algorithm and also show that the algorithm can
be made fully distributed with the same approximation guarantee; we
also generalize to the case of hypergraphs.

1 Introduction

We develop approximation algorithms for certain packing problems arising in
broadcast systems; these have the property that the objects to be packed “over-
lap”. In other words, the space occupied by a collection of objects together

could be significantly less than the sum of the sizes of the individual objects.
This is in contrast with traditional packing problems in which the objects to be
packed are disjoint. A second theme of our work is that some of our algorithms
can also be made completely distributed and implemented to run in polyloga-
rithmic time, with only a constant-factor loss in the approximation guarantee.
We study problems that arise in the area of dissemination-based information
systems [1, 2, 11, 12, 23]. Such systems are used in application domains such as
public-safety systems, election-result servers and stock tickers [3]. One character-
istic of dissemination-based applications is that there is a high degree of overlap
in the user needs. Since many user-requests in such applications are similar, it
would be a waste of resources to transmit the information to each user separately.
For users with similar requests, if their requests are grouped and transmitted
only once then this wastage of bandwidth could be avoided. On the negative
side, the grouped data may contain information that would be irrelevant for
some users. Hence, the users would have to process the broadcast information
to obtain the data that they want. Thus, there is a trade-off between reducing
the bandwidth used by grouping the requests and the amount of processing of
the broadcast data that the clients need to do to obtain the data that they re-
quested. In our model, there is a transmitter such as a satellite that broadcasts
information on a fixed number of physical multicast channels. Each user is as-
signed to some channel on which the user gets his/her requested data. Our work
deals with satisfying the client requests in a timely manner, while minimizing
the amount of bandwidth used.

Problems and Results. The first problem, Channel Allocation, can be defined
as follows. There is a set of topics (e.g., news, sports events, stock-market up-
dates), as well as a set of users. Each user requests a subset of items (topics).
There are a fixed number of channels that can each carry an arbitrary amount
of information. Each user must get all of the requested items from one channel,
i.e., all the data items of each request must be broadcast on some channel. The
load on any channel is the number of items that are broadcast on that channel,
and the goal is to minimize the maximum load on any channel. Formally, we
are given: (i) a set of topics T = {t1, t2, . . . , tn}, (ii) a collection of user-requests
R = {R1, R2, . . . , Rm}, where Ri ⊆ T for all i, and maxi |Ri| is a constant w;
and (iii) a positive integer k denoting the number of channels. Our goal is to
construct a family C = {C1, C2, . . . , Ck}, Ci ⊆ T , such that for each set Ri ∈ R,
there exists a Cj such that Ri ⊆ Cj . For all j, Cj constitutes the set of topics
on channel j. If Ri ⊆ Cj then we say that request Ri is satisfied by channel j.
The load on channel j is the number of topics placed on it: i.e., |Cj |. The objec-
tive function is to minimize the maximum load on any channel, i.e., to minimize
maxj |Cj |. We will denote this problem as CHA.

The second problem, Edge-Partitioning (EP), basically arises by bounding
the number of requests that any channel can handle, in CHA. The setting is
the same as in CHA, with the additional constraint that each Ri must be as-
signed to some channel Cj for which Ri ⊆ Cj holds; furthermore, the number
of requests (i.e., users) assigned to a channel should be at most k. Subject to

these constraints, the objective is to minimize
∑

j |Cj |. This problem was stud-
ied by Goldschmidt et al. [14] for the special case of w = 2, in the context of
optical network design. (That is, given a graph G, we seek to cover the edges by
subgraphs containing at most k edges each, and we aim to minimize the total
number of vertices in the chosen subgraphs.) The work of [14] considers the case
w = 2, and presents an O(

√
k)–approximation algorithm.

We give an O(n
w−1
w+1 (lg n)

1
w)–approximation algorithm for CHA; this is ob-

tained by taking the better of a random construction and the output of a suit-
able set-cover problem. We also show that the problem is MAX-SNP hard for
all w ≥ 4; thus, a polynomial time approximation scheme for the problem would
imply that P = NP . For the case w = 2, CHA is the following graph problem:
cover all the edges of a given graph by a given number of subgraphs, minimiz-
ing the maximum number of vertices in these subgraphs. Here, we obtain an
O(n1/3−ε)–approximation algorithm for some positive constant ε. We also show
that the problem is NP-hard for w = 2, even when there are only two channels.

For EP, we obtain an O(w · nw−1
w+1)–approximation algorithm, by taking the

better of a simple approach and a greedy algorithm. Recall that an O(
√

k)–
approximation algorithm was developed in [14] for the case w = 2; in this case,
our bound of O(n1/3) is incomparable with O(

√
k) (note that k can take on

values from 1 up to m, the number of edges in the graph). We then present
an alternative approach with the same approximation guarantee for the case
w = 2, with the help of certain tail bounds for sums of correlated random
variables [17, 18, 22]. We show that this can be implemented as a polylogarithmic
time, distributed algorithm, where each arriving user only communicates with
the servers handling the topics that the user is interested in. This brings us to
the next main theme of this paper: that of distributed approximation algorithms.
Given the emergence of various contexts where distributed agents (e.g., in the
Internet) make decisions using only local information, it is natural to ask whether
the notion of approximation algorithms can be brought to bear fruitfully in such
contexts. Not many polylogarithmic-time distributed approximation algorithms
are known: the few that we are aware of include [15, 19, 9]. We hope that the
intriguing mix of approximation and the constraint of locality will be understood
further by research in distributed approximation algorithms.

Related Work. A problem related to the ones we study is the well-known
Dense k-Subgraph problem (DkS): given a graph G, select a subset of k vertices
whose induced subgraph has the maximum number of edges. In the language of
CHA, we have w = 2 and one channel with capacity k; we wish to satisfy the
maximum number of user requests. This problem is NP-hard, and an O(na)-
approximate solution for some a < 1

3 was given by Feige et al. [10]. The problem
is not even known to be MAX-SNP hard. Also, Daskin et al. [8] discuss the
following related printed circuit board (PCB) assembly problem. In this problem
we have a list of PCBs and a list of different component types required by each
PCB. The machine that produces the PCBs can hold only a fixed number of
different component types, and can be loaded any number of times. The goal
here is to minimize the sum over all component types, of the number of times

each component type is loaded. The users correspond to the PCBs, the items
correspond to the different component types required by a PCB and the channel
corresponds to the machine. In other words, the channel capacity is fixed, any
number of channels could be used and the objective is to minimize the sum
of the channel loads. They show that the problem is NP-hard. For the general
version of the problem in which each component type (item) and PCB (user)
is associated with a cost, they provide a heuristic solution. They also provide a
branch-and-bound algorithm that can optimally solve small to moderate sized
instances of the problem.

Due to the lack of space, many proofs are deferred to the full version.

2 The Channel Allocation Problem

2.1 Algorithm

Our approach employs two different algorithms and chooses a solution of lower
cost from the two solutions obtained. As we will see, these two algorithms per-
form “well” on different sets of inputs that cover the entire spectrum of inputs.

The first algorithm is the following simple randomized algorithm. Indepen-
dently place each topic on each channel, i, 1 ≤ i ≤ k, with a probability p which
will be determined later. We will show that with a sufficiently high probabil-
ity we obtain a feasible solution whose cost is close to its expected cost. This
probability can be boosted by repeating the random process.

The second algorithm uses the greedy set cover algorithm [6, 20, 21] on the
set cover instance, I, that is constructed as follows. The elements of the instance,
I, are the requests in R. Let t be some fixed large constant. For all i, 1 ≤ i ≤ (

t
w

)
,

consider all
(
m
i

)
combinations of i elements. For each combination, Z, let Sz be

the set of requests corresponding to the elements in Z and let Tz be the topics
obtained by taking the union of the requests in Sz. The combination Z forms
a set in I iff |Tz| ≤ t. The size of our set cover instance, |I| =

∑t
j=1

(|T |
j

) ≤∑t
j=1 |T |j = O(|T |t) = O(nt) = O(mt). Let M

.= maxSz∈I{|Sz|} = O(tw) be
the size of the largest set in I. Since t and w are constants, |I| is polynomially
bounded and M is a constant. Now we use the greedy set cover algorithm on I
to obtain a set cover for R. For each set Sz chosen by the set cover algorithm
we create a new channel. The topics in Tz constitute this channel and hence the
requests in Sz are satisfied by this channel. The set cover covers all requests in
R. This solution may be infeasible as it may use more than k channels. By using
Lemma 1 we can convert it into a feasible solution using k channels.

We will now analyze our algorithm. Note that we can obtain solutions with
good approximation guarantees trivially for the following values of w and k. If
w = 1 we can get an optimal solution of cost dm/ke. If k < 2 ln m, we get a
2 ln m approximation guarantee, since for any k we can obtain a k-approximate
solution by placing all topics on each of the k channels. If k > (n

ln n)w, we can
partition the requests into groups of size d(lnn)we and place each group on a
separate channel. This is a feasible solution as there are at most nw requests.

The cost of our solution is at most O(w(ln n)w), thus giving an approximation
guarantee of O((ln n)w). For the rest of the analysis we will assume that w ≥ 2
and 2 ln m ≤ k ≤ (n

ln n)w.
Let (X, y) solution to CHA denote allocating y channels such that the load on
each of the channels is at most X.

Lemma 1. If (L, k′), where k′ > k, is a solution to CHA then there exists a
feasible solution (dk′

k eL, k).

Lemma 2. With a sufficiently high probability, the randomized algorithm gives
a (O(n(lg n

k)
1
w), k) solution.

Lemma 3. The set cover approach gives a (O((LOPT)w), k) solution.

Theorem 1. There is a polynomial-time algorithm for CHA that gives an
O(n

w−1
w+1 (lg n)

1
w)-approximate solution.

2.2 Hardness of Approximation

We will prove that CHA is MAX-SNP hard via a reduction from 3-Dimensional
Matching problem (3DM) which can be formally stated as follows.
3-Dimensional Matching (3DM): Given three disjoint set of elements, X, Y,
and Z, such that |X| = |Y | = |Z| = q, and a set of triples, C, each triple
containing one element from X,Y, and Z. The goal is to find the maximum
number of pairwise disjoint triples.
For clarity, we prove Theorem 2 for all w ≥ 10. We can show that CHA is MAX-
SNP hard for all w ≥ 4 by replacing each request, D, of size 10 in the reduction
by

(
10
4

)
requests of size 4, where each new request is a subset of D.

Theorem 2. Unless P = NP , for some fixed ε > 0, the channel allocation
problem is hard to approximate to within a factor of (1 + ε).

Proof. Let 3DM(I) denote the cost of an optimal solution to instance I. Similar
definitions apply to CHA. 3DM is NP-complete [13]. We will prove the following.

I ∈ 3DM =⇒ CHA(f(I)) ≤ 12 (1)

I /∈ 3DM =⇒ CHA(f(I)) ≥ 13 (2)

The function f shows that an approximation algorithm for CHA yielding a
solution of cost lower than 13

12OPT would imply that P=NP. Our reduction
is inspired by the NP-hardness reduction from 3DM to Partition into
Triangles [13].

Consider a 3DM instance I. For notational convenience we will drop the
parameter I while using the symbols, for e.g., we will use C instead of C(I) to
denote the set of triples in I. We now describe the function f that converts I
into a CHA instance, f(I), as follows. The CHA instance that we construct will

T5

xl

yp

zr

T1

T6

T2

T7

T3

T4

Fig. 1. Gadget corresponding to each triple.

have big requests, small requests and dummy requests. We start by describing
the big requests. There are (3q + 9|C|) big requests, one for each of the 3q
elements in I and 9 for each triple in C. The big requests are mutually disjoint.
Each big request, B, has 4 topics, tBi , 1 ≤ i ≤ 4. We will now describe the
small requests. For each triple, Cj ∈ C, we will construct the gadget shown
in Figure 1. Each gadget consists of 12 big requests (mentioned earlier), 9 of
which are unique to the gadget and the other 3 big requests corresponding
to the elements in Cj are shared between the gadgets corresponding to the
triples containing the elements. Each edge connecting two big requests U and
V represents 16 small requests, {tUi } ∪ {tVj }, for all combinations of i, j for
1 ≤ i, j ≤ 4. Thus each small request has size 2 and contains one topic from
each of the two big requests. We also have (144|C| − 48q) dummy requests of
size 10 each. The dummy requests are mutually disjoint and disjoint from all
other requests. This completes our description of requests. The set of topics
is the union of the big requests and dummy requests. The total number of
channels is 4q + 3(|C| − q) + 96q + 144(|C| − q) = q + 3|C|+ 144|C| − 48q.
Before we prove (1) and (2), let us define some notation. Consider a gadget rep-
resenting a triple Cj ∈ C. Let T j

i , 1 ≤ i ≤ 7, denote the set of 12 corresponding
to the big requests that form the triangle T j

i as seen in Figure 1. For notational
convenience, we will drop the superscript j. Note that Ti denotes a set of topics
as well as a triangle. The reference will be clear from the context in which it is
used. A channel satisfying a triangle Ti would mean that the set of topics, Ti,
is placed on the channel and hence the 3 big requests that form the vertices of
the triangle and 48 small requests represented by the edges of the triangle are
satisfied.

Claim. If 3DM(I) = q then CHA(f(I)) ≤ 12.

Claim. If 3DM(I) < q then CHA(f(I)) ≥ 13.

3 CHA Instances with Small Set-Size

In this section we consider the case of CHA instances when user requests are of
size at most 2. In this case the user requests can be modeled as a graph in which
the vertices represent the topics and the edges represent the user requests, i.e.,
an edge (i, j) would represent a user requesting topics i and j. The goal is to
allocate channels while minimizing max1≤i≤k Li. We can show:

Theorem 3. CHA is NP-hard when each request is of size two and there are
two channels.

We next give an approximation algorithm for CHA. Our algorithm uses the
solution for the the Dense k-Subgraph problem (DkS) described in Section 1.
Specifically, we use the approximation algorithm DkS(G, k) due to [10].

Algorithm: Guess the optimal load by trying out all possible values. Con-
sider a guess L. Invoke DkS(G,L), which returns an approximate solution for the
densest subgraph on L vertices. Place these L vertices returned by DkS(G,L)
onto a new channel. Remove all the covered edges from G. If any edges remain
uncovered invoke DkS again.

It is not hard to show that we get an O(ρ lg n)-approximate solution here,
where ρ is the approximation guarantee of DkS(G, k). Thus we have

Theorem 4. For a certain constant a < 1/3, there is an O(na ln n)-
approximation algorithm for CHA.

4 The Edge-Partitioning Problem

We now present approximation algorithms for EP: a sequential, deterministic
algorithm in Section 4.1, and a distributed, randomized one in Section 4.2. We
will throughout use hypergraph covering terminology: given a hypergraph H =
(V, E) with n vertices and m edges (each having a fixed number w of vertices),
we wish to partition the edges into sets of at most k edges each, in order to
minimize the sum of the total number of vertices in each set (“each set” here
means “each block of the partition”).

4.1 A deterministic algorithm

We now present a deterministic O(w ·nw−1
w+1)–approximation algorithm; see The-

orem 5. Recall that the degree of a vertex in a hypergraph is the number of
edges incident to it (i.e., contain it). Let H = (V,E) be the given hypergraph.
We start by considering the following greedy algorithm:

Edge Partition(H = (V, E), k)
1 F ← ∅
2 While |E| > k do
3 Remove the isolated vertices from V

4 H ′ = (V ′, E′) ← H = (V, E)
5 L ← ∅
6 While |E′| > k do
7 u ← a lowest degree vertex in H ′

8 L ← {edges in E′ that are incident to u}
9 V ′ ← V ′ \ {u}
10 E′ ← E′ \ L
11 End
12 R ← E′⋃ L
13 Arbitrarily remove some edges from R to make |R| = k
14 F ← F

⋃{R} (i.e., R is the set of edges assigned to a new channel)
15 H ← H\R
16 End
17 F ← F

⋃{E}

Lemma 4. For each iteration of the outer while loop, the number of vertices
in R is at most w

(
k

m′
) 1

w n′ + 1 ' w
(

k
m′

) 1
w n′, where n′ = |V ′|, m′ = |E′| for

the H ′ = (V ′, E′) being used in that iteration.

Lemma 5. The total number of vertices in the edge partition is at most
wn

(1−1/w)

(
m
k

)1−1/w.

Lemma 6. The optimal solution has at least max{n, w/e
k1−1/w m} ≥ n1/w ·

(w/e)1−1/w

k(1−1/w)2 m1−1/w vertices.

Lemma 7. From Lemmas 5 and 6, the approximation ratio of our algorithm is
at most w2

w−1

(
en

wk1/w

)1−1/w.

Note that in the case of graphs, i.e., w = 2, the approximation ratio of our
algorithm is at most 4

√
en

2
√

k
. Also note that the constant factor of this ratio can

be improved in the analysis for w = 2. The algorithm of [14] works for w = 2,

and their approximation ratio for w = 2 is about
√

k
2 .

Lemma 8. By partitioning E into m parts such that each part consists of exactly
one edge, we obtain a trivial algorithm whose approximation ratio is at most
ek1−1/w.

Theorem 5. By running the first algorithm and the trivial algorithm and taking
the best solution, we obtain an algorithm with approximation ratio at most 2w ·
n

w−1
w+1 . The running time of the composite algorithm is O(m

k (m + n)).

4.2 A distributed algorithm for the graph case

We now present a randomized distributed O(n1/3)–approximation algorithm for
the case where the given hypergraph H is a graph G = (V, E). Recall that

in the present case where w = 2, each user basically requests two topics. We
consider a fully distributed model where each broadcast channel has a server
running it, and where each topic also has its own distribution server. A topic-
distribution server can communicate with a channel server, if the former wants
its topic broadcast on that channel. Each arriving user communicates only with
the two topic-distribution servers of interest to it; thus, the model is distributed
in the sense that the users need not have any knowledge about each other. By
interpreting the topics as vertices and as the two topics of interest to a user
as an edge, we thus equivalently get the following familiar distributed point-
to-point model. Each vertex in the graph G = (V, E) has a processor which
can communicate with its neighbors, as well as with the servers handling the
channels. Each processor knows the values of n (which is a static parameter –
the number of topics) and k. We now wish to assign each edge to one channel
(from among an arbitrary number of channels), such that each channel has at
most k edges assigned to it. (The two processors at the end-point of an edge
co-operatively decide which channel that edge gets assigned to.) The goal is to
minimize the sum, over all channels i, of the total number of vertices that use
i (a vertex v uses i iff some edge incident to v is assigned to i). Computation
proceeds in rounds: in each round, every node communicates with its neighbors,
and updates its internal state. The running time of an algorithm is the number
of rounds, and hence locality is the main constraint in this model; we aim for
polylogarithmic-time algorithms.

We further distinguish two models: strong and weak. In the weak model, if a
channel has more than k edges that attempt to get assigned to it, the channel
sends back a “No” message to the end-points of these edges, after which the
end-points can retry. In the strong model, even such attempts are disallowed,
and if we ever attempt to send more than k edges to a channel, the system
enters a “Failed” state. Such a strongly constrained model is less realistic than
the weak model – in practice, a channel can typically report that it is getting
overloaded, without crashing. However, we also study the strong model and show
that if all nodes know the value of m (which can be obtained if each incoming
user “registers” with a central server which broadcasts the value of m to all
servers), then we can develop an O(n1/3)–approximation algorithm even for the
strong model. (There is a positive probability of entering the Failed state in
our algorithm for the strong model – indeed, this seems inevitable – but this
probability can be made as small as n−c for any desired constant c.) In the weak
model, the processors need not know the value of m.

The algorithm. We first assume the strong model, where the value of m is
known to all nodes; we will finally show how to translate our results to the
weak model. As in Section 4.1, there is the “trivial algorithm” (which places at
most k edges arbitrarily on each channel) whose total objective function value
is at most 2m. The trivial algorithm can be easily implemented in the strong
model with a contention-resolution type algorithm, where each edge chooses to
be assigned to each channel independently with a suitable probability p. Briefly,
if k ≥ log2 n, we take, say, 4(m/k) log n channels and p = k/(2m); each edge

tries each channel with probability p, and goes to the first one on which its trial
came up 1. If k < log2 n, we just take p = n−c and take (4/p) log n channels,
for a suitable constant c. It is easy to show that with high probability, we get
a feasible solution with the desired objective function value of O(m). Like in
Section 4.1, our focus is on showing how to construct a feasible solution with
objective function value O(n

√
m/k); taking the better of this solution and that

of the trivial algorithm, will yield an O(n1/3)–approximation. For the rest of this
discussion, we assume k ≥ log4 n, say; if k is smaller, the above trivial algorithm
already results in a poylog(n) approximation.

The heart of our algorithm is the following: a preprocessing step followed by
a random-selection step. Define d̄ = d 2m

n e, and let deg(v) be the current degree
of v. The preprocessing step is as follows; it basically ensures that the maximum
degree is not much more than the average degree. Each v ∈ V makes ddeg(v)

d̄
e

virtual copies of itself; it then distributes its deg(v) incident edges to these copies,
so that no copy gets more than d̄ edges. Thus we get a new graph with m edges,
and maximum degree d̄. It is easy to see that the new number of vertices is at
most 2n. So, we have a graph with number of vertices in the range [n, 2n], which
has m edges and maximum degree at most 2m/n. Now, the random-selection
step is as follows. Choose am/k new channels, where a is a suitable constant.
Each vertex then independently goes into each of these channels with probability
p =

√
k/(2m). (More precisely, the choices for all virtual copies of an original

vertex v, are all made independently by v.) An edge is assigned to a channel iff
both of its end-points choose to go into that channel; if an edge gets assigned to
more than one channel, it chooses one arbitrarily.

The above preprocessing and random-selection constitute the main iteration
of the algorithm. Note that the expected number of edges on any channel is k/2,
and that for any edge, the probability that it was assigned to at least one of
the channels is 1 − (1 − k/(2m))am/k ≈ 1 − e−a/2. The expected total load on
the channels is a(m/k) · np = an

√
m/(2k). If everything happens according to

expectation, we would have covered a constant fraction b ∼ 1 − e−a/2 of the
edges, at a total cost of Θ(n

√
m/k). We can then try to iterate this argument

on the residual graph, leading to a toal cost of

Θ(
∑

i≥0

n
√

m(1− b)i/k) = Θ(n
√

m/k); (3)

furthermore, the running time is basically the number of iterations, which would
be O(log m) = O(log n) with high probability.

The above idea on total cost can be carried through by using the Chernoff-
Hoeffding bounds [5, 16]. However, bounding the number of edges assigned to
a channel is harder, due to correlations; moreover, the correlation among the
edges is in the “wrong” direction, as far as proving a concentration of measure
is concerned. This is where our preprocessing step helps; intuitively, since it
eliminates high-degree vertices, the correlation among the edges is lessened. First
of all, to lower-bound the number of edges assigned to any channel, we use
Janson’s inequality for lower-tail bounds [17]. Fix a particular channel. Let Xe =

1 be the event that edge e is assigned to that channel, and Xe = 0 otherwise.
Define e ∼ f iff the edges e and f are different, and have a common end-
point. Then, ∆

.=
∑

(e,f): e∼f Pr [Xe = Xf = 1] can be bounded by O(n(d̄)2p3) =
O(k3/2); this is because there are O(n(d̄)2) pairs (e, f) such that e ∼ f , and
because Pr [Xe = Xf = 1] = p3 for any such pair. Thus, by Janson’s inequality,
the probability that at most k/4 edges get assigned to that channel is at most
e−Ω(µ/(2+∆/µ)), which is e−Ω(

√
k). Since we have assumed that k ≥ log4 n, this

is negligibly small. Next, in order to follow the constraint of the strong model,
we also need to show that at most k edges get assigned to the channel. Such
upper-tail bounds are usually harder, but the recent tail bounds of [18, 22] can
be shown to help; they help show that the probability of more than k edges
getting assigned to a channel is once again at most e−Ω(

√
k). (The fact that our

preprocessing significantly reduces the maximum degree, once again plays a key
role.)

The above brief sketch shows that “everything relevant happens nearly ac-
cording to expectation”, with high probability. The nodes no longer know the
exact value of m after one or more iterations, but choose an estimate slightly
larger than expectation, and repeat. We can now use the argument following (3)
to claim our performance bounds, and this concludes our brief discussion of the
main ideas. Finally, for the weak model, we do not know the value of m, but
guess it by repeated doubling. More precisely, we first run the above protocol for
the strong model assuming m = 2; for each surviving edge, its end-points then
run the above protocol for m = 4, and so on. When we finally hit the correct
value of m, we will terminate with high probability. Since the cost function in
(3) is proportional to

√
m, our final cost now is just a constant times that of (3)

with high probability; the running time remains polylogarithmic.
Acknowledgments. We thank Michael Franklin, Guy Kortsarz, Vincenzo Lib-
eratore, Christine Piatko, I-Jeng Wang and An Zhu for useful discussions. The
third author thanks the Institute for Mathematics and its Applications at the
University of Minnesota for its pleasant hospitality during his visit in April 2003;
part of this author’s writing took place during this visit. We also thank the AP-
PROX 2003 referees for their useful comments.

References

1. S. Acharya, R. Alonso, M. Franklin and S. Zdonik. Broadcast Disks: Data man-
agement for asymmetric communication environments. Proc. ACM SIGMOD
International Conference on Management of Data, San Jose, CA., 1995.

2. S. Acharya, M. Franklin and S. Zdonik. Balancing push and pull for data broad-
cast. Proc. ACM SIGMOD International Conference on Management of Data,
Tuscon, AZ., 1997.

3. D. Aksoy, M. Altinel, R. Bose, U. Cetintemel, M. Franklin, J. Wang and S.
Zdonik. Research in Data Broadcast and Dissemination. International Confer-
ence on Advanced Multimedia Content Processing (AMCP), Osaka, Japan, 1998.

4. R. Bhatia. Approximation Algorithms for Scheduling Problems. Ph.D. Thesis,
University of Maryland at College Park, 1998.

5. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Mathematical Statistics, 23:493-509, 1952.

6. V. Chvátal. A greedy heuristic for the set-covering problem. Math. of Oper. Res.
Vol. 4, 3, 233-235, 1979.

7. A. Crespo, O. Buyukkokten and H. Garcia-Molina. Efficient Query Processing
in a Multicast Environment. Proceedings of the 16th International Conference on
Data Engineering (ICDE), San Diego, 2000.

8. M. S. Daskin, O. Maimon, A. Shtub and D. Braha. Grouping components in
printed circuit board assembly with limited component staging capacity and
single card setup: problem characteristics and solution procedures. International
Journal of Production Research, 35, 1617-1638, 1997.

9. D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast
Distributed Algorithms for (Weakly) Connected Dominating Sets and Linear-
Size Skeletons. Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 717–
724, 2003.

10. U. Feige, G. Kortsarz and D. Peleg. The Dense k-Subgraph Problem. Algorith-
mica 29, 410-421, 2001.

11. M. Franklin and S. Zdonik. A framework for scalable dissemination-based sys-
tems. Proc. Object Oriented Programming Systems, Languages and Applications,
OOPSLA, 1997.

12. M. Franklin and S. Zdonik. “Data in your face”: push technology in perspec-
tive. Proceedings of ACM SIGMOD International Conference on Management
of Data, 1998.

13. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

14. O. Goldschmidt, D. Hochbaum, A. Levin and E. Olinick. The SONET Edge-
Partition Problem. Networks, 41:13-23, 2003.

15. D. A. Grable and A. Panconesi. Nearly optimal distributed edge coloring in
O(log log n) rounds. Random Structures & Algorithms, 10:385–405, 1997.

16. W. Hoeffding. Probability inequalities for sums of bounded random variables.
American Statistical Association Journal, 58:13-30, 1963.

17. S. Janson. Poisson approximations for large deviations. Random Structures &
Algorithms, 1:221–230, 1990.

18. S. Janson and A. Ruciński. The deletion method for upper tail estimates. Tech-
nical Report 2000:28, Department of Mathematics, Uppsala University, Sweden,
2000.

19. L. Jia, R. Rajaraman and T. Suel. An Efficient Distributed Algorithm for Con-
structing Small Dominating Sets. Proc. ACM Symposium on Principles of Dis-
tributed Computing, pages 33–42, 2001.

20. D. S. Johnson. Approximation Algorithms for Combinatorial Problems. Journal
of Computer and System Sciences, 9:256–278, 1974.

21. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math-
ematics, 13:383–390, 1975.

22. V. H. Vu. Concentration of non-Lipschitz functions and applications. Random
Structures & Algorithms, 20:262–316, 2002.

23. J. Wong. Broadcast Delivery. In Proc. of the IEEE, 76(12), 1988.

