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With this issue of the Bulletin, my tenure as editor of the Computational Complexity Column
comes to an end. Lance Fortnow will edit this column beginning with the June issue, and we can
look forward to a long series of informative columns under his direction. It has been a pleasure,
and I am glad that the column will be in good hands.

Although columns appearing in this space focus on complexity classes and lower bounds, it
is important to realize that algorithmic techniques (upper bounds) frequently find application in
proving lower bounds, and in proving new relationships among complexity classes. This is especially
evident in the exciting developments in the field of derandomization. We are fortunate, in this issue
of the Bulletin, to have an overview of some important algorithmic and techniques by a leading
figure in the field of derandomization.

Low-discrepancy sets for high-dimensional rectangles: a survey
Aravind Srinivasan 1

Abstract

A sub-area of discrepancy theory that has received much attention in computer science re-
cently, is that of explicit constructions of low-discrepancy point sets for various types of rectangle
families in high dimension. This research has led to interesting applications in error-control cod-
ing, distributed protocols, Web document filtering, derandomization, and other areas. We give
a short survey of this area here.

1 Introduction

One major approach in the general area of derandomization is that of explicit or efficient con-
structions. This is the problem of giving efficient deterministic constructions of various discrete
structures (e.g., error-correcting codes, hash function families) whose existence has been shown
(typically via probabilistic arguments). Our notion of efficiency throughout will be that of time
polynomial in the size of some natural description of such a structure. A particular class of such
structures that has received much attention in the last decade, is that of pseudorandom generators
or low discrepancy sets for rectangle families. (The reader is referred to [9, 20] for investigations
into discrepancy theory.) These studies have led to interesting applications in coding theory, de-
randomization, fault-tolerant leader election protocols, and testing Web documents for similarity.
We give a short survey of this area here. This survey certainly does not cover all the interesting
research in this field; our purpose is to give a sample of the key ideas here, so that the interested
reader can delve into the relevant literature for further information.
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Given positive integers n and m, let Cnm be the following family of n-dimensional combinatorial
rectangles:

Cnm = {S1 × · · · × Sn : ∀i, Si ⊆ {0, 1, . . . ,m− 1}}.

Given a finite (multi-)set A, let U(A) denote the uniform distribution on A. A finite multiset
S ⊆ {0, 1, . . . ,m− 1}n is defined to be an ε-approximation for Cnm, if for ~X sampled from U(S), we
have for all R = S1 × · · · × Sn ∈ Cnm that

|Pr( ~X ∈ R)− (
∏
i

|Si|)/mn| ≤ ε. (1)

In other words, a random sample from S looks approximately like a random element of {0, 1, . . . ,m−
1}n, for each rectangle in Cnm: the discrepancy of S w.r.t. Cnm,

max
R=S1×···×Sn∈Cnm

|Pr( ~X ∈ R)− (
∏
i

|Si|)/mn|, (2)

is at most ε. Furthermore, we would like a low-discrepancy (multi-)set S to be constructible in the
following way. Suppose the ith element of S is the vector si,1si,2 · · · si,n ∈ {0, 1, . . . ,m − 1}n. We
desire a deterministic algorithm, which, given any i and j, can construct si,j in time poly(log |S|+
log n + logm); note that representing i and j in the natural way needs log |S| + log n bits. For
all the constructions of low-discrepancy sets surveyed here, such a constructibility property will be
true.

A natural subclass of Cnm is the following family of geometric rectangles:

Gnm = {[a1, b1]× [a2, b2]× · · · × [an, bn] : ∀i, ((ai ≤ bi) ∧ (ai, bi ∈ {0, 1, . . . ,m− 1}))}.

(This family is sometimes also referred to as axis-parallel rectangles.) We can analogously define
low-discrepancy sets S for Gnm. This survey will consider the efficient construction of “small”
low-discrepancy sets S as defined above. We shall consider variants of this basic problem, and
applications thereof.

It is not hard to show that if C is a sufficiently large constant and if we choose Cmn/ε2

points independently from U({0, 1, . . . ,m − 1}n), then this random multi-set Z of points is an
ε-approximation for Cnm with high probability. Briefly, consider any fixed combinatorial rectangle
R = S1 × · · · × Sn ∈ Cnm. A Chernoff-type argument [12, 14] shows that for any desired constant
C ′ > 0, there is a large enough value for C such that (1) fails with probability at most 2−C

′mn for
Z. Now, Cnm has 2mn elements; so, the probability that Z is not an ε-approximation for Cnm is at
most 2(2−C′)mn, a tiny quantity if C ′ > 2.

Thus, there certainly exists an ε-approximation for Cnm with cardinality O(mn/ε2). The primary
question is: is there an efficient deterministic construction of such a multiset? (In fact, a construc-
tion of such a multiset with cardinality bounded by any fixed polynomial of m, n, and ε−1 would
be a major breakthrough.) “Deterministic construction” here, and throughout this survey, refers
to the notion of constructibility presented above after (2).

We next present two useful families of rectangles that are closely related to Cnm and Gnm respec-
tively. Let us say that R = S1×S2×· · ·×Sn ∈ Cnm is trivial in dimension i iff Si = {0, 1, . . . ,m−1};
R is nontrivial in dimension i otherwise. Let Cnm,k denote the subset of Cnm containing the rectan-
gles that are nontrivial in at most k dimensions. In a natural way, one can also define Gnm,k ⊆ Gnm,



and ε-approximations for Cnm,k and Gnm,k. A probabilistic construction shows that there exists an
ε-approximation of cardinality

O

((
mk + log

((
n

k

)))
/ε2
)
≤ O((mk + k log n)/ε2)

for Cnm,k (and hence for Gnm,k). The major open question here is to construct an ε-approximation of
cardinality poly(m+ k+ log n+ ε−1) for Cnm,k, or at least for Gnm,k as a first step. We will illustrate
the utility of Cnm,k and Gnm,k later through some applications.

We now start by considering the basic but very important case where m = 2, in §2. The
general cases of geometric rectangles and combinatorial rectangles are then studied in §3 and §4
respectively. Sample applications are presented throughout. We conclude with some open problems
in §5.

2 The case m = 2

Note that Cnm = Gnm if m = 2. Breakthrough work on low-discrepancy sets for Cn2 was presented in
[21] through a notion of small-bias sample spaces, which will be introduced shortly. In particular,
the problem of constructing an ε-approximation for Cn2,k of cardinality poly(k + log n + ε−1) was
settled in their work. Let us briefly survey some of the key ideas and applications of their and
related results.

2.1 From bias to approximation

Let [`] denote the set {1, 2, . . . , `}; log x will denote log2 x. To construct an ε-approximation for
Cn2,k, we want an efficient construction of a “small” multiset S ⊆ {0, 1}n such that for a vector
(X1, X2, . . . , Xn) sampled according to U(S),

∀j ∈ [k] ∀{i1, i2, . . . , ij} ⊆ [n] ∀(b1, b2, . . . , bj) ∈ {0, 1}j , |Pr(
j∧
`=1

(Xi` = b`))− 2−j | ≤ ε. (3)

(Setting k = n will yield an ε-approximation for Cn2 .)
A key idea in [21] is to approach this through small-bias sample spaces. Given a distribution D

on {0, 1}n and any T ⊆ [n], define

biasD(T ) = |Pr((
⊕
i∈T

Xi) = 1)− Pr((
⊕
i∈T

Xi) = 0)|;

(X1, X2, . . . , Xn) ∈ {0, 1}n is a random vector chosen according to D, and “
⊕

” is the usual XOR
operation. Define D to be k-wise ε-biased if biasD(T ) ≤ ε for all T such that |T | ≤ k; D is simply
called ε-biased if it is n-wise ε-biased. Via Fourier analysis, it is shown in [21] that if D is k-wise
ε-biased, then our desired property (3) also holds. (Thus, in particular, we have for all distinct
indices i1, i2, . . . , ik that ∑

(b1,b2,...,bk)∈{0,1}k
|Pr(

k∧
`=1

(Xi` = b`))− 2−j |

 ≤ 2kε. (4)



It is shown in [3, 21] that the left-hand-side of (4) can in fact be upper-bounded by 2k/2ε.)
Another interesting result of [21] (using a construction of [1]) is the following reduction. Suppose

we have an efficient construction of a multiset S ⊆ {0, 1}n with |S| ≤ F (n, ε), such that U(S) is
ε-biased. Then, for any k ∈ [n], there is also an efficient construction of an S′ ⊆ {0, 1}n with
|S′| ≤ F (O(k log n), ε), such that U(S′) is k-wise ε-biased.

2.2 Constructing small-bias spaces

Having seen that small-bias spaces suffice to solve our ε-approximation problem for m = 2, we now
present a construction of small-bias spaces due to [3]. We will also survey another approach to
small-bias spaces from [21], and show a connection to error-correcting codes.

Suppose m = dlog(n/ε)e. The following construction of a multiset S ⊆ {0, 1}n such that U(S)
is ε-biased, is due to [3]. We will describe S by showing how to generate an element according
to U(S); it will be immediate then that |S| = 22m, i.e., that |S| = O(n2/ε2). Choose elements
x, y of the finite field GF [2m] independently and uniformly at random. Next generate a vector
X = (X1, X2, . . . , Xn) ∈ {0, 1}n by defining Xi = (xi · y) mod 2 for each i. Here, xi denotes raising
x to the ith power in the field GF [2m]; xi · y denotes interpreting xi and y as m-bit strings and
taking their dot product. This vector X represents a vector chosen according to U(S).

As mentioned above, it is immediate that |S| = 22m. Let us quickly see why the above distri-
bution on (X1, X2, . . . , Xn) is ε-biased; we need to show that biasD(T ) ≤ ε for all T ⊆ [n]. Fix any
T = {i1, i2, . . . , ij} ⊆ [n]. By elementary properties of sums over the field GF [2m], we have⊕

`∈T
X` = (xi1 + xi2 + · · ·+ xij ) · y mod 2, (5)

where the sum t(x) = xi1 + xi2 + · · · + xij is taken in GF [2m]. Now if t(x) is nonzero for our
random x, it is easy to check that the right-hand-side of (5) is equally likely to be 0 or 1. On the
other hand, if t(x) is zero, the right-hand-side of (5) is 0. Since t(z) is a polynomial of degree at
most n, it has at most n roots; thus, Pr(t(x) = 0) ≤ n/2m ≤ ε. This, combined with the above
observations, helps show that biasD(T ) ≤ ε.

Thus we have an efficient construction of a multiset S ⊆ {0, 1}n with |S| ≤ O(n2/ε2) such that
U(S) is ε-biased; a different such construction with |S| ≤ O(n/ε3) is presented in [2]. For k-wise
ε-bias, the reduction of [21] mentioned at the end of §2.1 yields constructions of size

O(min{((k log n)/ε)2, (k log n)/ε3}). (6)

We now sketch a different approach to small-bias spaces due to [21], which has connections to
coding theory. An efficient construction of a multi-set A ⊆ {0, 1}n with |A| = poly(n) is shown in
[21], such that for a certain constant β > 0,

for all nonempty T ⊆ [n], Pr((
⊕
i∈T

Xi) = 1) ≥ β; (7)

(X1, X2, . . . , Xn) is a vector chosen according to U(A). (As expected, a random construction helps
show the existence of such an A; the challenge is in efficient construction.) This construction is
used as a key building block in [21] in designing small-bias sample spaces.

As shown in [21], such a set A has a close connection to linear codes. Recall that a linear code
over a field F is basically given by a generator matrix G ∈ Fn×m, for some n and m with m ≥ n.



Given a message a ∈ Fn, it is encoded by the codeword aG. Clearly, the set of all codewords form
a subspace; hence, the minimum distance of the coding represented by G (the maximum, over all
distinct pairs of codewords x, y, of the Hamming distance between x and y) equals the minimum
weight (the minimum, over all nonzero codewords x, of the number of nonzero symbols in x) of
the code. The minimum distance is a fundamental parameter of a code. Let us specialize the
discussion to the case where F = GF [2]. Suppose we have an efficient construction of a matrix
G ∈ (GF [2])n×m, with m ≤ poly(n) and with minimum distance at least βm, for some constant
β ∈ (0, 1). If we consider the set A of m column-vectors of G, a moment’s reflection shows that (7)
holds. Indeed, matrices G with these properties with, in fact, m = O(n), are efficiently constructible
[17]. Conversely, construction of an A satisfying (7) yields a linear code. Thus we see a connection
to coding theory. These connections are further explored in [2].

2.3 Some applications

Suppose independent random bits Y1, Y2, . . . , Yn with Pr(Yi = 1) = 1/2 for each i, are used by some
randomized algorithm. Now suppose that random bits Xi are “almost k-wise independent” in the
sense of (3). Then, one may expect that if we take k and ε−1 sufficiently large based on the analysis
of the given randomized algorithm, the analysis will work out if we use (X1, X2, . . . , Xn) in place
of (Y1, Y2, . . . , Yn). In such cases, one may choose the Xi from a small sample space (of cardinality
such as (6)), and deterministic exhaustive search of this space will lead us to a derandomization.
This has proved to be a powerful idea for derandomization over the last several years. As a quick
example, suppose we are given an n-vertex, m-edge undirected graph G = (V,E). Finding a
maximum cut in G, i.e., a partition of V into two subsets such that a maximum number of edges
“cross” this cut, is a well-known NP -hard problem. Suppose we just wish to find a “large” cut in
G; a classical algorithm finds a cut with at least m/2 edges crossing the cut. Here is an efficient
NC algorithm that finds a cut with at least m(1− δ)/2 edges crossing the cut, for a given constant
δ > 0. Suppose a random bit-vector X = (X1, X2, . . . , Xn) satisfies (3), with k = 2 and ε = δ/4.
Consider a randomized algorithm that samples such a vector X and constructs a cut in G by setting
V` = {i ∈ V : Xi = `}, for ` = 0, 1. The probability that a given edge {i, j} is cut is given by

Pr(Xi = 1, Xj = 0) + Pr(Xi = 0, Xj = 1) ≥ (1/4− ε) + (1/4− ε) = (1− δ)/2.

Thus, by linearity of expectation, the expected number of edges cut is at least m(1 − δ)/2. So,
as in (6), we can construct a sample space of size O((log n)/ε3) = O(log n) such that at least
one sample from this space will lead to a cut in which at least m(1 − δ)/2 edges cross the cut.
Exhaustive search (e.g., using (n+m) logn processors and O(log n) time in total) of such a space
leads to an efficient deterministic NC algorithm for our problem. See [21, 11] for extensions to the
more general problem of finding heavy codewords in linear codes, and for more efficient algorithms
for smaller values of δ.

The above application shows how small-bias spaces, combined with the fact that randomized
algorithms are typically robust to small changes in the underlying probabilities, leads to fruitful
derandomization schemes. Furthermore, the work of [4] presents a nice approximate method of
conditional probabilities, which works well with small-bias sample spaces to lead to efficient deran-
domization approaches. The reader is referred to [4, 6, 11] for a study of this useful approach.

Finally, explicit constructions of small-bias spaces have had an impact on constructing various
combinatorial objects; one of these that has seen many applications (e.g., in computational learning



theory and hardness-of-approximation results) is the following. Given integers k, n with k ≤ n, a
family V (n, k) of subsets of [n] is called (n, k)-universal if for any T ⊆ [n] with |T | = k and any
T ′ ⊆ T , there is a T ′′ ∈ V (n, k) such that for all t ∈ T , t ∈ T ′′ iff t ∈ T ′. A simple random
construction shows the existence of such a family V (n, k) of cardinality poly(2k + logn). Suppose
a family W (n, k) has the property that for some ε < 2−k, (3) holds for (X1, X2, . . . , Xn) sampled
according to U(W (n, k)). (Subsets of [n] are identified here with their characteristic vectors.) Then,
the reader may verify that W (n, k) is (n, k)-universal. So, from (6), we see that there are explicit
constructions of (n, k)-universal sets with cardinality poly(2k + log n); see [22] for an improved
bound on the polynomial in this “poly(2k + log n)” construction.

The reader is referred to [21] for some further applications of small-bias spaces.

3 Geometric rectangles

Suppose we have independent random variables Y1, Y2, . . . , Yn such that Pr(Yi = 0) = Pr(Yi = 1) =
1/2 for each i. Then, a random vector (X1, X2, . . . , Xn) satisfying (3) can be considered an “almost
k-wise independent” analog of ~Y = (Y1, Y2, . . . , Yn). As seen in §2, such approximations are very
useful in derandomizing, say, randomized algorithms for which ~Y is the vector of random bits used.
However, a randomized algorithm could use a vector of independent random variables ~Y where
each Yi has an arbitrary distribution over a domain of size larger than 2. Formally, our “almost
k-wise independence” requirement now is as follows. Suppose Y1, Y2, . . . , Yn ∈ {0, 1, . . . , ` − 1}
are independent random variables with arbitrary marginal (i.e., individual) distributions and joint
distribution D, for an arbitrary `. A multi-set S ⊆ {0, 1, . . . , `−1}n is called a (k, ε)-approximation
for D if, for ~X = (X1, X2, . . . , Xn) sampled from U(S),

∀I ⊆ [n] (|I| ≤ k) ∀a1, . . . , a|I| ∈ {0, 1, . . . , `− 1}, |Pr(
∧
i∈I

(Xi = ai))−
∏
i∈I

Pr(Yi = ai)| ≤ ε. (8)

Thus, ~X is an “almost k-wise independent” analog of ~Y ; if |S| is “small”, we may hope for reasonable
derandomization approaches for randomized algorithms that use ~Y as their sequence of random
variables.

As pointed out in [13], there is a single approach to all possible distributions D above, as
follows. Suppose m ≥ 2 is an integer. We can approximate the random variables Yi by new random
variables Y ′i , as follows. Let pi,j = Pr(Yi = j). Given the vector (pi,0, pi,1, . . . , pi,`−1), the reader
can verify that we can efficiently construct a vector of non-negative reals (p′i,0, p

′
i,1, . . . , p

′
i,`−1) such

that: (P1)
∑
j p
′
i,j = 1; (P2) each p′i,j is an integer multiple of 1/m, and (P3) for any indices

0 ≤ j′ ≤ j ≤ ` − 1, |
∑j
t=j′ p

′
i,t −

∑j
t=j′ pi,t| ≤ 2/m. Now consider independent random variables

Y ′1 , Y
′

2 , . . . , Y
′
n ∈ {0, 1, . . . , ` − 1}, with Pr(Y ′i = j) = p′i,j . Using (P3), we can verify that for all

I ⊆ [n] with |I| ≤ k and for all a1, b1, a2, b2, . . . , a|I|, b|I| ∈ {0, 1, . . . , `− 1} such that ai ≤ bi,

|Pr(
∧
i∈I

(Yi ∈ [ai, bi]))− Pr(
∧
i∈I

(Y ′i ∈ [ai, bi]))| ≤ 2k/m. (9)

Moreover, (P2) suggests an obvious way of generating Y ′i via a sample Zi from U({0, 1, . . . ,m−1}):
Y ′i = j iff

Zi ∈ Φj
.= [

j−1∑
t=0

mp′i,t, (
j∑
t=0

mp′i,t)− 1].



(For example, suppose p′i,0 = p′i,1 = 1/8, p′i,2 = 3/4, and m = 8. Choose a sample Zi from
U({0, 1, . . . , 7}). If Zi = 0, define Y ′i = 0; else if Zi = 1, define Y ′i = 1; else define Y ′i = 2.)
Suppose m ≥ 4k/ε; using (9) and the fact that Φj is not just an arbitrary subset of {0, 1, . . . ,m−
1} but is an interval, it is not hard to verify the following. Suppose a multi-set S is an (ε/2)-
approximation for Gnm,k. Choose a random sample (Z ′1, Z

′
2, . . . , Z

′
n) from U(S), and define a vector

~X = (X1, X2, . . . , Xn) ∈ {0, 1, . . . , ` − 1}n by “Xi = j iff Z ′i ∈ Φj”. Then, for all I ⊆ [n] with
|I| ≤ k and for all a1, b1, a2, b2, . . . , a|I|, b|I| ∈ {0, 1, . . . , `− 1} such that ai ≤ bi,

|Pr(
∧
i∈I

(Xi ∈ [ai, bi]))− Pr(
∧
i∈I

(Yi ∈ [ai, bi]))| ≤ ε. (10)

Note that this is stronger than (8).
Thus, ε-approximations for Gnm,k have direct applications to approximating arbitrary indepen-

dent random variables. Three constructions S1, S2, S3 of such ε-approximations were presented in
[13], with

|S1| = (logn+ 2k + 1/ε)O(1), |S2| = (n/ε)O(log(1/ε)), and |S3| = (n/ε)O(logn). (11)

S2 and S3 are also ε-approximations for Gnm. (The parameter m does not figure in (11) since, as
discussed above, we may assume that m ≤ O(k/ε).)

By utilizing and extending the results of [13], these bounds were improved to poly(logn+ 1/ε+
(dk/ log(1/ε)e)log(1/ε)) in [11]. Briefly, by extending some ideas behind the construction of S2, it is
shown in [11] that for certain values k′ = O(log(1/ε)) and ε′ = 1/poly(1/ε+ (dk/ log(1/ε)e)log(1/ε)),
any ε′-approximation for Gnm,k′ is also an ε-approximation for Gnm,k. Using S1 now gives the desired
construction. These constructions have been further improved in [19] to one of cardinality

poly(log n+ 1/ε+ (1/ε)
√

log(dk/ log(1/ε)e)). (12)

Two of the applications of explicit low-discrepancy sets for geometric rectangles are as follows.
First, the strong property (10) is used in [23] to develop a derandomized NC version of a hyper-
graph coloring algorithm presented in [23]. Second, a useful notion of pseudorandom permutation
families, that of approximate min-wise independent permutation families, has been introduced in
[10]. Efficient construction of such families has applications to a quantitative notion of similarity of
Web documents [10]. Certain constructions of such families have been developed in [16]; via a con-
nection to low-discrepancy sets for geometric rectangles, different constructions that have smaller
size for certain ranges of the parameters of interest, have been shown in [25].

4 Combinatorial rectangles and hitting sets

This short section considers low-discrepancy sets, and a related notion of hitting sets, for combina-
torial rectangles. Explicit ε-approximations for Cnm with cardinality poly(m + n + (1/ε)O(log(1/ε)))
were presented in [7], and were improved to poly(m+n+(1/ε)O(

√
log(1/ε))) in [19]. These approaches

introduce certain new ideas and also build on [15, 18]. An ε-approximation for Cnm,k with cardinality

poly(log n+mO(log(1/ε)) + (1/ε)log(dk/ log(1/ε)e))



is given in [8], by extending an idea of [11].
The following reductions are also shown in [8, 19]. Suppose that for all (n,m, k, ε), an ε-

approximation S′ for Cnm,k with log |S′| = O(log log n + k + logm + log(1/ε)) can be efficiently
constructed. Then, for all (n,m, k, ε), the following constructions of ε-approximations S′′ for Cnm,k
are possible, as shown respectively in [8] and [19]:

• one with log |S′′| = O(log log n+ log k + logm+ log(1/ε) + log(1/ε) log(dk/ log(1/ε)e)), and

• one with log |S′′| = O(log log n+ log k + logm+ log(1/ε) + log(1/ε) log log(1/ε)).

Note that log |S′| is allowed to be quite high as a function of k. Also, constructions of such S′ are
indeed known for geometric rectangles: see S1 in (11). Thus, these reductions could be potentially
useful approaches to get improved bounds for ε-approximations for Cnm,k.

Finally, we consider the concept of hitting sets for combinatorial rectangles. Suppose S is an ε-
approximation for Cnm, and that a random vector ~X is sampled from U(S). It is immediate from (1)
that

∀R = S1 × · · · × Sn ∈ Cnm such that v(R) .= (
∏
i

|Si|)/mn > ε, Pr( ~X ∈ R) > 0. (13)

Now suppose that we want a multi-set T ⊆ {0, 1, . . . ,m−1}n such that a random vector ~X sampled
from U(T ) satisfies (13)—but not necessarily (1). Such a T is called an ε-hitting set for Cnm, since
it “hits” (i.e., has a nonempty intersection with) every combinatorial rectangle R ∈ Cnm for which
v(R) > ε. Every ε-approximation is an ε-hitting set, but not vice versa. Work of [18] solves the
hitting set problem, by presenting an ε-hitting set of size poly(m + log n + 1/ε) constructible in
poly(m+ n+ 1/ε) time. This construction has had an interesting application to efficient protocols
for leader election in a model of fault-tolerant asynchronous distributed computing [24].

5 Open Questions

One of the main open questions in our context is the construction of ε-approximations of cardinal-
ity poly(m + n + ε−1) for Cnm. An even more general question is to construct ε-approximations of
cardinality poly(m+ k + log n+ ε−1) for Cnm,k. A first step may be to approach the corresponding
problems for geometric rectangles. Can the two reductions mentioned in §4 be of help? As men-
tioned in the journal version of [13], one can also ask the following easier versions of these issues
of efficient construction. Instead of a deterministic construction of suitably small multi-sets S that
are ε-approximations for the above-mentioned rectangle families, we could first aim for randomized
Las Vegas constructions of such multi-sets: randomized constructions that are guaranteed to be
correct, and whose expected running times are suitably small. Note that the randomized construc-
tion sketched, e.g., in §1 is Monte Carlo. This “Las Vegas” issue is of complexity that lies between
the Monte Carlo and deterministic notions of constructibility.
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