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1 Introduction

Due to the emergence and anticipated rapid growth of high-speed integrated networks that provide

vast bandwidth (e.g., optical networks) and support heterogeneous applications, considerable at-

tention has been paid recently to edge-disjoint paths, bandwidth allocation, and related algorithmic

problems on large-scale networks: see Kleinberg’s thesis for background, motivation, and several

new results (Kleinberg (1996)). Edge-disjoint paths and related path selection/routing problems

have been studied intensely, broadly using two approaches: random walks (e.g., Peleg and Upfal

(1989), Broder, Frieze and Upfal (1994), Broder, Frieze and Upfal (1999)), and multi-commodity
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flow (e.g., Raghavan and Thompson (1987), Leighton and Rao (1988), Leighton and Rao (1996),

Kleinberg and Rubinfeld (1996)). By taking the latter approach, we present improved approxima-

tion algorithms and bounds for edge-disjoint paths and related problems.

We first recall the notion of an approximation algorithm, a particularly useful approach for

computationally hard problems. Given an optimization problem P and an instance I of P, let

OPT (I) denote the optimal objective-function value for I; each feasible solution for I will have

a non-negative objective-function value, for all problems P studied here. If P is a maximization

problem, an approximation algorithm A for P is an efficient (which for our purposes we shall take

to be polynomial-time) algorithm that, for some λ ≥ 1, produces a feasible solution of value at least

OPT (I)/λ for all instances I. A is called a λ-approximation algorithm for P; λ is the approximation

guarantee or approximation bound of A. To preserve the convention that λ ≥ 1 for minimization

problems also, we define an algorithm A to be a λ-approximation algorithm for a minimization

problem P, if A produces a solution of value at most OPT (I) · λ for all instances I of P. Our

main goal for all problems studied here is to develop polynomial-time algorithms with improved

approximation guarantees, i.e., guarantees that are smaller than ones known before.

Notation. Given an undirected graph G = (V,E), we shall let n = |V |, m = |E|, and let ∆

denote the maximum degree of the vertices of G. The diameter of G (the maximum length of

a shortest path between any pair of vertices in G) will be denoted diam(G). Given S ⊆ V , let

δ(S) denote the set of edges of G that have precisely one end-point in S. The edge-expansion of

G, β = β(G), is minS⊆V :|S|≤n/2 |δ(S)|/|S|. Expansion is well-known to be of much importance in

routing: see, e.g., Leighton (1992), Upfal (1992), and Arora, Leighton and Maggs (1996). Given

a non-negative integer k, we define [k] .= {1, 2, . . . , k}, and logarithms will be to the base 2 unless

specified otherwise. We now present the problems considered.

(i) Edge-disjoint paths and unsplittable flow. Suppose we are given G and a (multi-)set

T = {(si, ti) : 1 ≤ i ≤ k} of pairs of vertices of G. A sub-(multi-)set T ′ of T is termed realizable

if the pairs of vertices in T ′ can be connected in G by mutually edge-disjoint paths. The classical

maximum disjoint paths problem (henceforth mdp) is to find a realizable sub-(multi-)set of T of

maximum cardinality. This is a well-known NP-hard problem (Karp (1975)), and has resisted

attempts at showing good approximability. Also, much of the difficulty in admission control and

virtual-circuit routing in communication networks stems from the lack of good heuristics for the
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mdp: see Chapter 1 of Kleinberg (1996). A natural generalization of the mdp, motivated by

networks supporting heterogeneous applications, is to allow each pair (si, ti) to have a demand

ρi > 0, and each edge f of G to have a capacity cf > 0 (Kleinberg (1996)). (We shall reserve the

symbol e for the base of the natural logarithm, so a generic edge in G will be denoted by f .) T ′ ⊆ T

is now called realizable if each pair of vertices (si, ti) in T ′ can send ρi flow along a single path

in G from si to ti, such that the total flow using any edge f does not exceed cf . The unsplittable

flow problem (ufp) is to find a realizable T ′ ⊆ T that maximizes
∑
i:(si,ti)∈T ′ ρi (Kleinberg (1996)).

As in Kleinberg (1996) and Kolliopoulos and Stein (1997), we assume that ∀i ∀f, ρi ≤ cf ; i.e.,

that any single demand can be accommodated on any edge. If all capacities cf are the same, we

call the problem uniform-capacity ufp (ucufp); by scaling, we shall always take the common edge

capacity to be 1 for the ucufp. It is easy to see that the mdp is a special case of the ucufp wherein

∀i, ρi = 1.

The mdp seems hard to approximate: the current-best approximation guarantee for arbitrary

graphs G is O(max{
√
m,diam(G)}) (Kleinberg (1996)). No non-trivial approximation bound of the

form F (n,m) is known for the ucufp; an O(max{
√
m,diam(G)}·(maxi ρ−1

i )) approximation bound

is known (Kleinberg (1996)). However, for special classes of graphs such as the mesh, a family of

“densely embeddable” graphs, and “strong” expanders G with sufficiently large β(G) = Ω(1), recent

breakthrough results have led to O(1) or polylog(n) approximations for the mdp (e.g., Awerbuch,

Gawlick, Leighton and Rabani (1994), Aumann and Rabani (1995), Kleinberg and Tardos (1995),

Kleinberg and Tardos (1998), Kleinberg and Rubinfeld (1996), Kleinberg (1996)).

Our approximation guarantees for the ufp will be to within a small constant factor of our

guarantees for the mdp; thus, we shall only state our results for the more general ufp. We in fact

work with the general weighted case of the ufp, where each (si, ti) has a weight wi > 0, with the

objective being to find a realizable T ′ ⊆ T that maximizes
∑
i:(si,ti)∈T ′ wi. (We assume without

loss of generality that maxiwi = 1.) Let α(T ) denote the optimal value for a given ufp instance.

We first present an efficient algorithm that outputs a feasible path selection of value: Ω(α(T )) if

α(T ) ≥ m, and Ω(max{(α(T ))2/m,α(T )/
√
m}) if α(T ) < m. Even for the mdp, a special case

of the ufp, this is better than the current-best Ω(α(T )/max{
√
m,diam(G)}) mentioned above.

Consider, e.g., constant-degree graphs with diameter Θ(n): our improvement is by a factor of

Ω(
√
n). Also, for constant-degree graphs, if α(T ) = Ω(n/polylog(n)), our approximation guarantee

is O(polylog(n)), as opposed to the Ω(
√
n) of Kleinberg (1996).
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While it is encouraging that we now have an O(
√
m) approximation for the ufp and an improved

approximation for the mdp, the approximation bounds are rather high and reflect the generally

felt hardness of these problems. It may be that these problems cannot be approximated to within

no(1) unless P = NP or some such unexpected containment holds, but such a result is not (yet)

known. Also, as mentioned in Section 6, our results above are essentially best-possible for general

graphs if we use our “linear relaxations” based approach. So, a natural problem is to focus on

important classes of graphs for which good approximations are not known: in particular, popular

interconnection networks such as the butterfly and meshes of dimension 3 and higher. Also, since

graph expansion is well-known to be a key parameter in routing, it is natural to relate the approx-

imability of these problems to β(G) (Raghavan and Upfal (1994)). We now describe our next set

of results, which follow these leads.

Given an instance (G, T ) of the ufp, a well-known approach is to start with its multi-commodity

flow relaxation: shipping a flow of at most ρi from each si to ti subject to no edge f having to carry a

total flow of more than cf , to maximize the total weighted amount of flow sent. That is, we relax the

“integrality” constraint of either choosing one path or none at all for each (si, ti), to its fractional

counterpart. This relaxation is a linear program (LP) and hence can be solved/approximated

efficiently, and its optimum α∗(T ) is an upper bound on α(T ). Suppose we have any feasible

fractional flow F—i.e., an (si, ti)-flow of at most ρi for each i, where each edge f carries a total

flow of at most cf—such that the objective function value of F is at least α∗(T )/2. (The constant

2 here can be replaced by any constant greater than 1.) Let d be the maximum length (number of

edges) of any flow path in F , i.e., the length of a longest path that carries nonzero flow from any si

to the corresponding ti. This d will be crucial in the sequel: a nice result of Kleinberg and Rubinfeld

(1996) shows that we can efficiently compute such an F that has d = O(∆2β−2 log3 n), for ucufp

instances. Since d appears in many of our approximations, we pause to note that d = O(polylog(n))

if ∆ and β−1 are O(polylog(n)), key examples of which are the butterfly and related hypercubic

networks (∆ = Θ(1) and β = Θ(1/ log n) for them). For the r-dimensional mesh with n1/r nodes

per side, d = O(r2n2/r log3 n).

Our next main result is that the ufp (and hence the mdp) can be approximated to within a

factor of O(d). Thus, an important corollary is that the ucufp can be approximated to within

polylog(n) on the butterfly and on related networks; the analogous result for the mdp follows

from the approaches of Broder, Frieze and Upfal (1994) and Kleinberg and Rubinfeld (1996).
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We next consider a special (“ε-bounded”) case of the ufp studied in Kleinberg (1996), where

∀i ∀f, ρi ≤ (1−ε)cf . An approximation of O(ε−1 max{
√
m,diam(G)}) is given for this in Kleinberg

(1996) and we show an approximation of O(dmin{1/ε−1,1}): compare the results as ε approaches 1.

The quantity B
.= 1/(1 − ε) is called the edge bandwidth, and it is well-known that B = Ω(log n)

suffices to ensure an O(1) approximation for the ucufp (Raghavan and Thompson (1987)). Our

O(d1/ε−1) approximation shows that for networks such as the butterfly wherein d = O(polylog(n))

as seen above, even if B = Ω(log log n) (i.e., if ε = 1 − O(1/ log log n)), we can achieve O(1)

approximations for the ucufp. Experimental machines such as the iWarp (Borkar et al. (1988))

and the J-Machine (Noakes, Wallach and Dally (1993)) have B > 1, e.g., B ∈ {2, 4}; also note that

log log n < 6 for all practical purposes. We also apply our O(d1/ε−1) approximation to a “routing

within limited time” problem.

(ii) Routing in rounds and all-optical routing. Given an instance (G, T ) of the ucufp, if

T is not realizable, we may still need to connect each si to ti; so, a natural question is, how to

do this in the minimum number of rounds. This minimum, χ(T ), is thus the minimum number

of realizable sets into which T can be partitioned, and is clearly NP-hard to determine. Also,

finding χ(T ) is the problem of minimizing the number of wavelengths in all-optical networks, and

hence has also received attention (Aggarwal et al. (1996), Raghavan and Upfal (1994), Aumann

and Rabani (1995), Kleinberg (1996), Rabani (1996)). We only state here our approximation

results for the ucufp, the same also holding for χ(T ) for the mdp. An approach of Aumann

and Rabani (1995) and Kleinberg (1996) shows that a ψ-approximation for α(T ) translates to an

O(ψ log n)-approximation for χ(T ). Using this with our approximation algorithms for the ucufp

yields the analogous approximation algorithms for χ(T ); however, we show how further improved

approximations can be obtained, in Section 4.

The above, along with a few other results, are our contributions. All of this work starts with

the corresponding multi-commodity flow relaxation, and uses some new and some known random-

ized/deterministic approaches to “round” it suitably. Section 2 starts with the multi-commodity

flow relaxation for the ufp, and our basic randomized rounding approach. It then presents proba-

bilistic tools that we will be of use in analyzing such algorithms. Our approximation algorithms for

the ufp are shown in Section 3, and Section 4 considers the problem of routing in rounds. Further

extensions and applications are presented in Section 5, and Section 6 concludes.
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2 Multi-commodity flow relaxation and probabilistic tools

Consider the ufp, and recall that wi > 0 is the weight given to (si, ti). (By scaling, we assume that

maxiwi = 1.) Let Ed(u) denote the set of edges incident at vertex u. There is a natural integer

programming (IP) formulation for a given weighted instance (G, T ) of the ufp:

maximize
∑
i∈[k]wixi, subject to

xi =
∑

f∈Ed(si)

yi,f , i = 1, 2, . . . , k; (1)

xi =
∑

f∈Ed(ti)

yi,f , i = 1, 2, . . . , k; (2)

yi,f =
∑

f ′∈Ed(u): f ′ 6=f
yi,f ′ , i = 1, 2, . . . , k, u 6∈ {si, ti}, f ∈ Ed(u); (3)

∑
i∈[k]

ρiyi,f ≤ cf , f ∈ E; (4)

xi ∈ {0, 1}, i = 1, 2, . . . , k; (5)

yi,f ∈ {0, 1}, i = 1, 2, . . . , k, f ∈ E. (6)

The variable xi is 1 if we choose to connect si to ti by a path, and is 0 otherwise. The variable

yi,f is 1 if the path chosen (if any) for (si, ti), passes through f ; it is 0 otherwise. The constraints

(1), (2) and (3) model these. Next, (4) is the capacity constraint on edge f . Finally, (5) and (6)

are the integrality constraints on the variables. If we relax (5) and (6), and let each xi and yi,f to

be a real lying in [0, 1], we get a natural LP (multi-commodity flow) relaxation.

From now on, we let {x∗i , y∗i,f ∈ [0, 1] : i ∈ [k], f ∈ E} denote a generic feasible (not neces-

sarily optimal) solution to the LP relaxation, with objective function value y∗ =
∑
iwix

∗
i . We

first transform this flow in polynomial time into a set of flow-paths, using the well-known “flow

decomposition” idea (Ahuja, Magnanti and Orlin (1993)). Thus, we now have, for each i, a set

{Pi,1, Pi,2, . . . , Pi,`i} of (si, ti)-paths, where `i ≤ m. Each path Pi,j carries a positive amount ρiz∗i,j

of flow from si to ti, where x∗i =
∑
j z
∗
i,j and where, by the capacity constraints, we have

∀f ∈ E,
∑

(i,j): f∈Pi,j

ρiz
∗
i,j ≤ cf . (7)

As mentioned in the introduction, we shall let d denote the length of a longest Pi,j ; this shall be a

key parameter for us. We will occasionally view each Pi,j as a set of edges.

Theorems 3.1, 3.2, 3.3 and Corollary 3.1 will show how to use randomization to “round” the

above fractional solution well. The rounding process will be to choose a suitable γ > 1, and,
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independently for each i, j, to define zi,j to be 1 with probability z∗i,j/γ, and zi,j to be 0 with

probability 1 − z∗i,j/γ. Let us call this “γ-rounding”. For each i: (i) if at least one of the zi,j ’s is

1, we shall arbitrarily choose one of them, say zi,k, and connect si to ti by path Pi,k; (ii) if all the

zi,j ’s are 0, we do not connect si to ti. An alternative approach as in Raghavan and Thompson

(1987) and Srinivasan (1996), might have been to randomly round at most one zi,j to 1, for each i:

it seems wasteful to potentially round more than one zi,j to 1, for any given i. However, we shall

see that it buys us sufficient independence and desirable correlations.

Given some f ∈ E, note that the pairs {(si, ti) : i ∈ [k]} request a total demand of at most

Rf
.=

∑
(i,j): f∈Pi,j

ρizi,j (8)

from f . (We have used the phrase “at most” here because even if some zi,j gets defined as one, the

path Pi,j may not be used if some other zi,k was also one, as seen above.) From (7), we get

E[Rf ] =
∑

(i,j): f∈Pi,j

ρiz
∗
i,j/γ ≤ cf/γ. (9)

For any f ∈ E, let Ef denote the “bad” event that Rf > cf ; if Ef holds, then edge f ’s capacity

is not violated. Let “r.v.” denote the phrase “random variable”; all r.v.s that we consider will take

on values from finite domains. Our focus from now on will be to show that for a suitable γ, γ-

rounding will, with positive probability, avoid all the bad events Ef and keep the objective function

reasonably high; note that the underlying collection of r.v.s is R .= {zi,j : i ∈ [k], j ∈ [`i]}. Section

2.1 presents tools that help bound probabilities such as Pr[Ef ] for individual edges f . Section 2.2

then shows how to analyze the correlations involved and get constructive results (i.e., how to set

values for the r.v.s in R appropriately).

Note that R is the set of underlying independent binary r.v.s in our basic algorithm above. For

the sake of generality, Sections 2.1 and 2.2 present probabilistic results for an arbitrary sequence

~X = (X1, X2, . . . , X`) of binary, independent r.v.s. The sequence ~X can thus be associated with

any fixed ordering of the variables in R. The reader is asked to keep this correspondence in mind;

whenever we specify key tools in Sections 2.1 and 2.2, we also point out how they will help in our

analyses that begin in Section 3.
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2.1 Large-deviation bounds

As mentioned above, suppose ~X = (X1, X2, . . . , X`) is a sequence of binary, independent r.v.s. We

will say that an event Z is an assignment event w.r.t. ~X, iff Z is of the form “
∧
i∈S(Xi = bi)”,

for any S ⊆ [`] and any sequence of values bi. Now, even conditional on any assignment event Z,

we can still view the Xi’s as independent: it is just that for all i ∈ S, Xi = bi with probability 1.

This simple idea, which we will call the “independence view”, will be useful. In our setting (where

~X is associated with our set R), most of our algorithms will be based on rounding the r.v.s zi,j

one-by-one, deterministically. Thus, our assignment events will be settings of the variables in some

subset of R; we will need to condition on such assignment events, to determine how to round the

remaining r.v.s. In this process, the independence view will simplify things greatly for us.

We recall the Chernoff-Hoeffding bounds (see, e.g., Motwani and Raghavan (1995)):

Theorem 2.1 Let ~X = (X1, . . . , X`) be a sequence of independent r.v.s, with each Xi ∈ {0, 1},

and let u1, . . . , u` ∈ [0, 1]. Define R =
∑
i uiXi, and let E[R] = µ. Also let Z be any assignment

event w.r.t. ~X. Then:

(i) For any δ ≥ 0,

Pr[R ≥ µ(1 + δ)|Z] ≤ E[(1 + δ)R|Z]
(1 + δ)µ(1+δ)

=
∏
i∈[`] E[(1 + δ)uiXi |Z]

(1 + δ)µ(1+δ)
; (10)

Pr[R ≥ µ(1 + δ)] ≤
∏
i∈[`] E[(1 + δ)uiXi ]

(1 + δ)µ(1+δ)
≤ G(µ, δ) .= (eδ/(1 + δ)(1+δ))µ. (11)

(ii) If 0 ≤ δ < 1, then

Pr[R ≤ µ(1− δ)|Z] ≤ E[(1− δ)R|Z]
(1− δ)µ(1−δ) =

∏
i∈[`] E[(1− δ)uiXi |Z]

(1− δ)µ(1−δ) ; (12)

Pr[R ≤ µ(1− δ)] ≤
∏
i∈[`] E[(1− δ)uiXi ]

(1− δ)µ(1−δ) ≤ H(µ, δ) .= e−µδ
2/2. (13)

Note from (8) that for any edge f ∈ E, Rf is an r.v. such as the r.v. R of Theorem 2.1. Thus,

bounds such as (10) and (11) will help in bounding Pr[Ef ].

We next record some simple properties of the above functions G and H:

Lemma 2.1 (i) If µ1(1 + δ1) = µ2(1 + δ2) where µ1 ≤ µ2 and µ1, µ2, δ1, δ2 ≥ 0, then G(µ1, δ1) ≤

G(µ2, δ2). (ii) If µ1 ≥ µ2 ≥ 0 and δ1, δ2 ∈ [0, 1] are such that µ1(1 − δ1) = µ2(1 − δ2), then

H(µ1, δ1) ≤ H(µ2, δ2).
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Proof: (i) Suppose we hold µ1 and δ1 fixed; let a = µ1(1 + δ1). Then, 0 ≤ δ2 ≤ δ1 and

µ2 = a/(1 + δ2). Now, ln(G(µ2, δ2)) = a(δ2/(1 + δ2)− ln(1 + δ2)) has a derivative (w.r.t. δ2) equal-

ing −aδ2/(1 + δ2)2. Thus, in the range [0, δ1], ln(G(µ2, δ2)) (and hence G(µ2, δ2)) is minimized

when δ2 = δ1. (ii) We need to show that µ1δ
2
1 ≥ µ2δ

2
2 ; as above, this is accomplished by holding µ1

and δ1 fixed and then showing that µ2δ
2
2 is maximized when δ2 = δ1.

We also need a simple proposition:

Proposition 2.1 If
∑N
i=1 ai ≤ b where ai ≥ 0 for each i, then

∑
i<j aiaj ≤

(N
2

)
(b/N)2 < b2/2.

Proof: If au < av for some u, v, then setting au := au + ε and av := av− ε for any ε ∈ (0, av−au),

increases the value of
∑
i<j aiaj . Thus, subject to the condition that

∑N
i=1 ai = b′ for any 0 ≤ b′ ≤ b,∑

i<j aiaj is maximized when each ai equals b′/N . Thus,
∑
i<j aiaj ≤

(N
2

)
(b/N)2 < b2/2.

2.2 Correlation inequalities and well-behaved estimators

We now introduce ways to analyze the correlations among our events such as Ef ; we will then

present Theorem 2.3, which will let us extract efficient algorithms from our probabilistic arguments.

As in Section 2.1, we present the results for a general sequence ~X
.= (X1, X2, . . . , X`) of binary

independent r.v.s; we will point out specializations to our set R of r.v.s, as we go along. All events

and r.v.s considered in this subsection will be assumed to be completely determined by the value

of ~X.

The FKG inequality. This powerful inequality that originated in statistical physics (Fortuin,

Ginibre and Kasteleyn (1971)) is summarized as follows for our purposes. Given ~a = (a1, . . . , a`) ∈

{0, 1}` and ~b = (b1, . . . , b`) ∈ {0, 1}`, let us say that ~a � ~b iff ai ≤ bi for all i. Define an event A

to be increasing iff: for all ~a ∈ {0, 1}` such that A holds when ~X = ~a, A also holds when ~X = ~b,

for any ~b such that ~a � ~b. Analogously, event A is said to be decreasing iff: for all ~a ∈ {0, 1}` such

that A holds when ~X = ~a, A also holds when ~X = ~b, for any ~b � ~a. In our setting with R playing

the role of ~X, note, e.g., that any “capacity non-violation” event such as Ef is a decreasing event,

while the objective function
∑
iwi

∨
j(zi,j = 1) is increasing. Thus, non-trivial ways of bounding

correlations among increasing and decreasing events will help.

The FKG inequality proves the “intuitively plausible” idea that any set of increasing events are

positively correlated with each other; analogously for any set of decreasing events. Similarly, any
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increasing event is negatively correlated with any set of decreasing events; each decreasing event is

negatively correlated with any set of increasing events. The formal statement is:

Theorem 2.2 (FKG inequality) Let I1, I2, . . . , It be any collection of increasing events and

D1, D2, . . . , Dt be any sequence of decreasing events (each Ii and Di completely determined by

~X). Then for any i ∈ [t] and any S ⊆ [t],

(i) Pr[Ii|
∧
j∈S Ij ] ≥ Pr[Ii] and Pr[Di|

∧
j∈S Dj ] ≥ Pr[Di];

(ii) Pr[Ii|
∧
j∈S Dj ] ≤ Pr[Ii] and Pr[Di|

∧
j∈S Ij ] ≤ Pr[Di].

Well-behaved estimators. Suppose E is some event (determined completely by ~X, as assumed

above). A random variable g is said to be a well-behaved estimator for E (w.r.t. ~X) iff it satisfies the

following three properties, for all t ≤ `, for all T = {i1, i2, . . . , it} ⊆ [`], and for all b1, b2, . . . , bt ∈

{0, 1} for which Pr[
∧t
s=1(Xis = bs)] > 0:

(P1) E[g|
∧t
s=1(Xis = bs)] is efficiently computable (i.e., in time polynomial in `);

(P2) Pr[E|
∧t
s=1(Xis = bs)] ≤ E[g|

∧t
s=1(Xis = bs)]; and

(P3) if E is increasing, then for all it+1 ∈ ([`]− T ) for which Pr[Xit+1 = 1] ∈ (0, 1),

E[g|(Xit+1 = 0) ∧
t∧

s=1

(Xis = bs)] ≤ E[g|(Xit+1 = 1) ∧
t∧

s=1

(Xis = bs)].

Taking g to be the indicator variable for E will satisfy (P2) and (P3), but not necessarily (P1). So

the intuition here is that we want to approximate quantities such as Pr[E|
∧t
s=1(Xis = bs)] “well”

(in the sense of (P2) and (P3)) by an efficiently computable value (E[g|
∧t
s=1(Xis = bs)]).

Suppose E1, E2, . . . , Em+1 are all “bad” events: we would like to find an assignment for ~X that

avoids all of the Ei. (For us, Ei, i = 1, 2, . . . ,m, could represent the “capacity violation” events

for the m edges of G. Finally, Em+1 could be the event that, say, the objective function is less

than half its expected value. We aim for a rounding that avoids all of these bad events.) We now

follow an approach of Srinivasan (1995) based on the method of conditional probabilities (Erdős

and Selfridge (1973), Spencer (1987), Raghavan (1988)), that shows a useful sufficient condition for

this.

Theorem 2.3 Suppose ~X = (X1, X2, . . . , X`) is a sequence of independent r.v.s Xi, with Xi ∈

{0, 1} for each i. Let E1, E2, . . . , Em+1 be events and g1, g2, . . . , gm+1 be r.v.s, all completely deter-

mined by ~X, such that each gi is a well-behaved estimator for Ei (w.r.t. ~X). Suppose further that
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E1, E2, . . . , Em (and not necessarily Em+1) are all increasing events (as functions of ~X). Then, if

1− (
∏
i∈[m]

(1−min{E[gi], 1})) + E[gm+1] < 1 (14)

holds, we can efficiently construct a deterministic assignment for ~X under which none of E1, E2, . . . , Em+1

hold.

Proof: We first upper-bound Pr[∃i ∈ [m] : Ei] = 1− Pr[
∧
i∈[m]Ei] as

1− Pr[
∧
i∈[m]

Ei] ≤ 1−
∏
i∈[m]

Pr[Ei] (by the FKG inequality, since E1, . . . , Em are all decreasing)

= 1−
∏
i∈[m]

(1− Pr[Ei]) ≤ 1−
∏
i∈[m]

(1−min{E[gi], 1});

the last inequality is a consequence of (P2). Also, Pr[Em+1] ≤ E[gm+1] by (P2). Thus,

Pr[∃i ∈ [m+ 1] : Ei] ≤ Pr[∃i ∈ [m] : Ei] + Pr[Em+1] ≤ 1− (
∏
i∈[m]

(1−min{E[gi], 1})) + E[gm+1] < 1,

by (14). Thus, we know that there exists a value of ~X that avoids all of E1, E2, . . . , Em+1.

How to find such a value for ~X? For any t ≤ ` and any ~b = (b1, b2, . . . , bt) ∈ {0, 1}t, define

h(t,~b) = 1− (
∏
i∈[m]

(1−min{E[gi|
∧
j∈[t]

(Xj = bj)], 1})) + E[gm+1|
∧
j∈[t]

(Xj = bj)].

We first round the r.v.s Xi for which Pr[Xi = 1] ∈ {0, 1}, in the obvious way. Renumber the

r.v.s so that Pr[Xi = 1] ∈ {0, 1} is true precisely for the indices i = 1, 2, . . . , t′, for some t′.

For i = 1, 2, . . . , t′, define ξi = 0 if Pr[Xi = 0] = 1, and ξi = 1 if Pr[Xi = 1] = 1. Then, for

i = 1, 2, . . . , t′, it is easy to see that h(i, (ξ1, ξ2, . . . , ξi)) = h(i − 1, (ξ1, ξ2, . . . , ξi−1)). Thus we see

from (14) that h(t′, (ξ1, ξ2, . . . , ξt′)) < 1.

Next, suppose t′ ≤ t ≤ `−1, and that (b1, b2, . . . , bt) ∈ {0, 1}t with b1 = ξ1, b2 = ξ2, . . . , bt′ = ξt′ .

A result of Srinivasan (1995) that will be of crucial use to us is that

min
r∈{0,1}

h(t+ 1, (b1, b2, . . . , bt, r)) ≤ h(t,~b). (15)

Consider the following algorithm, which starts with ~b initialized to the list (ξ1, ξ2, . . . , ξt′):

for i := t′ + 1 to ` do:

bi := argminr∈{0,1} h(i, (b1, b2, . . . , bi−1, r));

~b := (b1, b2, . . . , bi).
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Starting with the initial condition h(t′, (ξ1, ξ2, . . . , ξt′)) < 1 and using (15), it is easy to see by

induction on i that we maintain the property h(i,~b) < 1. Setting i = `, this implies, by (P2), that

the final vector ~b indeed is such that all of the Ei are avoided when ~X = ~b.

We shall use Theorem 2.3; note that it works even if Pr[
∧
i∈[m+1]Ei] is very small. We also

remark that we will often need to show that an r.v. g = g( ~X) is such that for any assignment

event A w.r.t. X, we can efficiently compute E[g( ~X) | A] (e.g., we may want to verify property

(P1) of well-behaved estimators). The “independence view” is very useful in such situations. In

all such situations, g will be a sum of terms (r.v.s) of the form
∏v
i=1 fui(Xui), where all the uis are

distinct. Even conditional on A, the independence view lets us compute the expectation of this

term as
∏v
i=1 E[fui(Xui)]; thus, it will suffice if each E[fui(Xui)] is efficiently computable, which

will always be the case for us.

3 Approximation algorithms for the ufp

The main results of Section 3 are Theorems 3.1, 3.2, 3.3, and Corollary 3.1. We start with Lemma

3.1, which bounds maxf∈E Pr[Ef ]. Its part (ii) is useful when all demands ρi are “small”, while its

part (iii) helps handle the case where all demands are “large”.

Lemma 3.1 Fix any f ∈ E. We have:

(i) Pr[Ef ] ≤ 1/γ.

(ii) Suppose, for some λ ≥ 1, that for all Pi,j passing through f , we have ρi ≤ cf/λ. Then, there

is a well-behaved estimator uf for Ef (w.r.t. R), such that E[uf ] ≤ G(λ/γ, γ − 1), where G

is defined in the statement of Theorem 2.1.

(iii) Suppose, for some η ∈ (0, 1], that for all Pi,j passing through f , we have ρi ≥ cfη. Then,

there is a well-behaved estimator vf for Ef (w.r.t. R), with E[vf ] ≤ (ηγ)−2/2.

Proof: Bound (i) follows directly from Markov’s inequality, using (9). To see (ii), define ρ′i =

λρi/cf and R′f
.=
∑

(i,j): f∈Pi,j ρ
′
izi,j . Since ρ′i ∈ [0, 1] for all Pi,j passing through f , R′f is a sum

of independent r.v.s, each taking values in [0, 1]. Also, (9) shows that µ .= E[R′f ] is at most λ/γ.

Define δ > 0 by µ(1 + δ) = λ; let

uf
.=

∏
(i,j): f∈Pi,j (1 + δ)ρ

′
izi,j

(1 + δ)λ
.
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Now, Ef ≡ (R′f > λ). Using (10), (11), part (i) of Lemma 2.1 and the independence view, we can

check that uf is a well-behaved estimator for Ef (w.r.t. R), with E[uf ] ≤ G(λ/γ, γ − 1).

As for (iii), note that Rf > 1 holds only if
∑

(i,j): f∈Pi,j zi,j ≥ 2; this holds even conditional on

any assignment event w.r.t. R. Define

vf
.=

∑
(i,j),(i′,j′): (i,j) 6=(i′,j′), f∈(Pi,j∩Pi′,j′ )

zi,j · zi′,j′ . (16)

(Each choice of distinct pairs (i, j) and (i′, j′) is counted exactly once–not twice–in the sum in (16).)

The independence view helps show that vf is a well-behaved estimator for Ef (w.r.t. R). Also,

since ρi ≥ cfη for all Pi,j passing through f , we see from (9) that
∑

(i,j): f∈Pi,j E[zi,j ] ≤ (ηγ)−1.

This, in combination with Proposition 2.1, shows that E[vf ] ≤ (ηγ)−2/2.

The next definition and lemma handle the objective function.

Definition 3.1 For each i ∈ [k], let Zi be the r.v. that is 1 if at least one of the zi,j’s is 1, and let

Zi be 0 if all the zi,j’s are 0. For any T ⊆ [k], define y∗T
.=
∑
i∈T wix

∗
i and Z(T ) .=

∑
i∈T wiZi.

Lemma 3.2 For any T ⊆ [k] and ψ ∈ (0, 1), there is a well-behaved estimator Wψ,T for the event

“Z(T ) < y∗T (1−ψ)(1−1/e)/γ” (w.r.t. R), such that E[Wψ,T ] ≤ H(y∗T (1−1/e)/γ, ψ) (the function

H is from the statement of Theorem 2.1).

Proof: For each i ∈ T , Pr[Zi = 1] = 1 −
∏
j(1 − z∗i,j/γ) ≥ 1 − e

−(
∑

j
z∗i,j)/γ = 1 − e−x

∗
i /γ ;

the last term is at least x∗i (1 − 1/e)/γ since for all y ∈ [0, 1], 1 − e−y ≥ y(1 − 1/e). Thus,

E[Z(T )] =
∑
i∈T wiE[Zi] ≥

∑
i∈T wix

∗
i (1 − 1/e)/γ = y∗T (1 − 1/e)/γ. Let µ1 = E[Z(T )] and let

δ1 ∈ (0, 1) be given by µ1(1− δ1) = y∗T (1− ψ)(1− 1/e)/γ. Defining

Wψ,T =
∏
i∈T (1− δ1)wiZi

(1− δ1)(1−δ1)µ1
,

we can see using part (ii) of Theorem 2.1 and of Lemma 2.1 that Wψ,T is a well-behaved estimator

for the event “Z(T ) < y∗T (1 − ψ)(1 − 1/e)/γ” (w.r.t. R), with E[Wψ,T ] ≤ H(y∗T (1 − 1/e)/γ, ψ).

(Since “Z(T ) < y∗T (1−ψ)(1− 1/e)/γ” is not an increasing event, we need not check property (P3)

of well-behaved estimators.)

As mentioned in Section 1, we make the usual balance assumption that (maxi ρi) ≤ (minf cf );

thus, by scaling all the demands and capacities uniformly, we may assume

∀i, ρi ≤ 1; ∀f, cf ≥ 1. (17)
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We partition [k] into S0 = {i ∈ [k] : ρi ≤ 1/2} and S1 = {i ∈ [k] : ρi > 1/2}.

3.1 The first approximation algorithm

We now present our first approximation result for α(T ).

Theorem 3.1 There is an absolute constant c3 > 0 such that for any weighted instance of the

ufp, we can produce a feasible path-selection in deterministic polynomial-time, with the objective

function value
∑
i∈[k]wiZi being at least c3 ·min{(α∗(T ))2/m,α∗(T )}.

Proof: Let {x∗i , y∗i,f ∈ [0, 1] : i ∈ [k], f ∈ E} be an optimal solution to the LP relaxation,

computed in polynomial time. Thus, y∗ =
∑
iwix

∗
i = α∗(T ). We treat the “small” and “large”

demands separately. Define S = S0 if y∗S0
≥ y∗S1

, and S = S1 otherwise; thus, y∗S ≥ y∗/2. We now

show how to do a feasible path selection for S with objective function value Ω(min{(y∗S)2/m, y∗S}) =

Ω(min{(y∗)2/m, y∗}). In what follows, uf , vf and Wψ,T are the r.v.s from Lemmas 3.1 and 3.2.

First suppose S = S0. Since cf ≥ 1 for all f , we can, in the notation of part (ii) of Lemma 3.1,

take λ = 2 here. Suppose we do a γ-rounding (for a suitable γ > 1 to be chosen below). By part

(ii) of Lemma 3.1, E[uf ] ≤ e2/γ2 holds for all f ∈ E. Also, by Lemma 3.2,

E[W0.5,S ] ≤ H(y∗S(1− 1/e)/γ, 0.5) ≤ H(y∗(1− 1/e)/(2γ), 0.5),

since y∗S ≥ y∗/2. A simple calculation shows that for a suitably large absolute constant c4 > 0,

γ = c4 · max{m/y∗, 1} satisfies: (i) e2/γ2 < 1 and (ii) (1 − e2/γ2)m > H(y∗(1 − 1/e)/(2γ), 0.5);

thus we have

1− (
∏
f∈E

(1−min{E[uf ], 1})) + E[W0.5,S ] < 1. (18)

Note from Lemmas 3.1 and 3.2 that uf and W0.5,S are well-behaved estimators for the events Ef

and “Z(S) < y∗S(1−1/e)/(2γ)” respectively. Also, all the events Ef are increasing. Thus, (18) and

Theorem 2.3 combine to show that if S = S0, we can efficiently do a feasible path selection for S

with objective function value Ω(min{(y∗)2/m, y∗}).

The case S = S1 needs a little more work. Fix any f ∈ E. If cf ≥ 2, we can, as above, take

λ = 2; E[uf ] ≤ e2/γ2 holds as above. If cf < 2, then since ρi > 1/2 for all i ∈ S1, we can take

η = 1/4 in the notation of part (iii) of Lemma 3.1; by part (iii) of Lemma 3.1, we have E[vf ] ≤ 8/γ2.

Thus, whether cf ≥ 2 or not, we have a well-behaved estimator sf for Ef , with E[sf ] ≤ 8/γ2. The
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desired analog of (18) now is

1− (
∏
f∈E

(1−min{E[sf ], 1})) + E[W0.5,S ] < 1.

Thus, it suffices if 8/γ2 < 1 and (1 − 8/γ2)m > H(y∗(1 − 1/e)/(2γ), 0.5), which are once again

assured by taking γ = c4 ·max{m/y∗, 1} for a suitably large constant c4.

Corollary 3.1 Given any weighted instance of the ufp we can efficiently do a feasible path selec-

tion with objective function value Ω(α∗(T )/
√
m).

Proof: If α∗(T ) ≥
√
m, we are done by Theorem 3.1. So suppose α∗(T ) <

√
m. We may assume

without loss of generality that there is an (si, ti)-path in G for each i. Recalling that maxi wi = 1,

simply choose a j such that wj = 1 and connect sj to tj ; this ensures an objective function value

equaling 1, which is Ω(α∗(T )/
√
m).

So we can efficiently do a path-selection of value Ω(min{α∗(T ),max{(α∗(T ))2/m,α∗(T )/
√
m}}).

3.2 The second approximation: parametrization by d

Recall from the introduction that d denotes the maximum length of the flow-paths Pi,j . Since d can

be assumed “small” in some cases (e.g., for expanders), we would like approximations parametrized

by d. Our approach of Section 3.1 does not seem to help directly with this, as it treats the objective

function separately from the “capacity non-violation” constraints. More precisely, we now wish to

lower-bound probabilities such as Pr[zi,j = 1 |
∧
f∈E Ef ]. Part (ii) of the FKG inequality shows

that this quantity is upper-bounded by Pr[zi,j = 1], but what we require is a lower bound. (We will

actually require a lower bound on Pr[zi,j = 1 | (A ∧
∧
f∈E Ef )], where A is an assignment event;

the independence view will let us handle this extra conditioning on A.)

We start with Lemma 3.3, which is motivated by the work of Boppana and Spencer (1989); this

will then help us prove Lemma 3.4, which handles the above-mentioned lower-bounding problem.

To appreciate Lemma 3.3, the reader is asked to associate: (i) {y1, . . . , y`} with the r.v.s {zi,j},

(ii) {U1, . . . , Ut} with the “capacity violation” events {Ef}, and (iii) A with any assignment event

w.r.t. R. Finally, suppose yu gets associated with the r.v. zi,j . Then, Su will be the set of edges

contained in the path Pi,j ; note that |Su| ≤ d. With these associations, Lemma 3.3 will be of help

15



to us: e.g., the independence view shows that the term “Pr[(yu = 1) | (A ∧
∧
r∈([t]−Su) Ur)]” in the

statement of Lemma 3.3, simply equals Pr[(yu = 1) | A].

Lemma 3.3 Let y1, . . . , y` be arbitrary r.v.s, each taking values in {0, 1}; let A, U1, . . . , Ut be any

events. For any S1, S2, . . . , S` ⊆ [t], Pr[(∃j : yj = 1) | (A ∧
∧t
r=1 Ur)] is at least

∑̀
j=1

(Pr[(yj = 1) | (A ∧
∧

r∈([t]−Sj)
Ur)]−

∑
s∈Sj

Pr[((yj = 1) ∧ Us) | (A ∧
∧

r∈([t]−Sj)
Ur)])−

∑
1≤j<j′≤`

Pr[(yj = yj′ = 1) | (A ∧
t∧

r=1

Ur)].

Proof: By inclusion-exclusion, Pr[(∃j : yj = 1) | (A ∧
∧t
r=1 Ur)] is at least

∑̀
j=1

Pr[(yj = 1) | (A ∧
t∧

r=1

Ur)]−
∑

1≤j<j′≤`
Pr[(yj = yj′ = 1) | (A ∧

t∧
r=1

Ur)]. (19)

Fix an arbitrary j. Using the inequality Pr[A | (B ∧ C)] ≥ Pr[(A ∧ B) | C], we lower-bound

Pr[(yj = 1) | (A∧
∧t
r=1 Ur)] by Pr[((yj = 1)∧

∧
s∈Sj Us) | (A∧

∧
r∈([t]−Sj) Ur)]; this, in turn, can be

lower-bounded using inclusion-exclusion, by the expression

Pr[(yj = 1) | (A ∧
∧

r∈([t]−Sj)
Ur)]−

∑
s∈Sj

Pr[((yj = 1) ∧ Us) | (A ∧
∧

r∈([t]−Sj)
Ur)].

Substituting this into (19) completes the proof.

As in the proof of Theorem 3.1, define S = S0 if y∗S0
≥ y∗S1

, and S = S1 otherwise; thus,

y∗S ≥ y∗/2. For all i ∈ ([k] − S), we remove the pair (si, ti) and all paths Pi,j from consideration;

the capacity constraints (7) continue to hold, of course. Thus, any index i of an (si, ti) pair, flow

path Pi,j , or r.v.s zi,j and Zi that we refer to for the rest of Section 3.2, implies that i ∈ S. Our

next approximation algorithm, presented in Theorem 3.2, shows how to do a feasible path selection

for S with objective function value Ω(y∗S/d) = Ω(y∗/d).

Define, for all (f, i, j) such that f ∈ Pi,j ,

Rf (i, j) .= Rf − ρizi,j =
∑

(r,s) 6=(i,j): f∈Pr,s

ρrzr,s. (20)
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Lemma 3.4 For any set X of pairs (i, j) and any set of {0, 1} values {bi,j ∈ {0, 1} : (i, j) ∈ X},

let A denote the assignment event that “∀(i, j) ∈ X, zi,j = bi,j”. Suppose Pr[
∧
f∈E Ef | A] > 0.

Then, for any i, E[Zi | (A ∧ (
∧
f∈E Ef ))] is at least

(
∑
j

Pr[zi,j = 1 | A](1−
∑
f∈Pi,j

Pr[Rf (i, j) > (cf − ρi) | A]))−
∑
j<j′

Pr[(zi,j = zi,j′ = 1) | A].

Proof: Recall that zi,j is the indicator for path Pi,j being chosen by the randomized rounding

process. For notational convenience, we define, for all j,

g(j) .= Pr[zi,j = 1 | (A ∧ (
∧

f ′ 6∈Pi,j

Ef ′))]−
∑
f∈Pi,j

Pr[(zi,j = 1) ∧ (Rf > cf ) | (A ∧ (
∧

f ′ 6∈Pi,j

Ef ′))]. (21)

By Definition 3.1, (Zi = 1) ≡ (∃j : zi,j = 1). By Lemma 3.3,

E[Zi | (A ∧ (
∧
f ′∈E

Ef ′))] ≥ (
∑
j

g(j))−
∑
j<j′

Pr[zi,j = zi,j′ = 1 | (A ∧ (
∧
f ′∈E

Ef ′))]. (22)

We now proceed to lower-bound (22). Recall that even conditional on A, our “independence

view” lets us take all the zi,j ’s as independent: it is just that for all (i, j) ∈ X, Pr[zi,j = bi,j ] = 1.

Fix j arbitrarily. By the independence view, it is not hard to deduce that

Pr[zi,j = 1 | (A ∧ (
∧

f ′ 6∈Pi,j

Ef ′))] = Pr[zi,j = 1 | A]. (23)

Next, consider any f ∈ Pi,j . Once again via our independence view, even conditional on A,

“zi,j = 1” and “Rf > cf” are increasing events, while “
∧
f ′ 6∈Pi,j Ef ′” is decreasing. Thus, the

independence view and FKG inequality show that

Pr[(zi,j = 1) ∧ (Rf > cf ) | (A ∧ (
∧

f ′ 6∈Pi,j

Ef ′))] ≤ Pr[(zi,j = 1) ∧ (Rf > cf ) | A]

= Pr[(zi,j = 1) ∧ (Rf (i, j) > cf − ρi) | A]. (24)

Since Rf (i, j) involves only variables other than zi,j (see (20)), the independence view yields

Pr[(zi,j = 1) ∧ (Rf (i, j) > (cf − ρi)) | A] = Pr[zi,j = 1 | A] · Pr[Rf (i, j) > (cf − ρi) | A]. (25)

The independence view and the FKG inequality show, for j 6= j′, that

Pr[zi,j = zi,j′ = 1 | (A ∧ (
∧
f ′∈E

Ef ′))] ≤ Pr[zi,j = zi,j′ = 1 | A]. (26)
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Substituting (21), (23), (24), (25) and (26) into (22) completes the proof.

Now, suppose γ ≥ 2 is such that

∀i ∈ S ∀j ∀f ∈ Pi,j , Pr[Rf (i, j) > (cf − ρi)] ≤ 1/(2d). (27)

Then, since γ > 1, part (i) of Lemma 3.1 shows that Pr[Ef ] < 1 for all f ∈ E. So, by the FKG

inequality, Pr[
∧
f∈E Ef ] ≥

∏
f∈E Pr[Ef ] > 0. Recall that ∀i,

∑
j Pr[zi,j = 1] = x∗i /γ. Thus, by

Proposition 2.1,
∑
j<j′ Pr[zi,j = zi,j′ = 1] ≤ (x∗i /γ)2/2 ≤ x∗i /(4γ), the last inequality following since

x∗i ∈ [0, 1] and γ ≥ 2. Next, since each Pi,j has at most d edges, we see, by setting X = φ and A

to be the tautology in Lemma 3.4, that for all i ∈ S,

E[Zi |
∧
f∈E

Ef ] ≥ (
∑
j

Pr[zi,j = 1](1− d/(2d)))− x∗i /(4γ) = x∗i /(2γ)− x∗i /(4γ) = x∗i /(4γ).

Thus, E[Z(S) |
∧
f∈E Ef ] ≥ (

∑
i∈S wix

∗
i )/(4γ) = y∗S/(4γ). This yields

Corollary 3.2 Suppose γ ≥ 2 is such that (27) holds. Then, Pr[
∧
f∈E Ef ] > 0, and E[Z(S) |∧

f∈E Ef ] ≥ y∗S/(4γ) ≥ y∗/(8γ). Thus, there exists a way of rounding the zi,j’s so that no edge’s

capacity is violated, with objective function value at least y∗/(8γ).

We are now led to our next main theorem:

Theorem 3.2 We can round the zi,j’s in deterministic polynomial time to produce a feasible path

selection that has objective function value Z =
∑
i∈[k]wiZi ≥ c′y∗/d, for an absolute constant c′ > 0.

Proof: There are 2 cases: S = S0 or S = S1. Suppose S = S0. Choose γ = 4d. For any i ∈ S,

ρi ≤ 1/2 since S = S0; also, cf ≥ 1 for all f ∈ E, by (17). Thus, for any f, i, j,

Pr[Rf (i, j) > (cf − ρi)] ≤ Pr[Rf (i, j) > cf/2]

≤ (2/cf ) ·
∑

(r,s) 6=(i,j): r∈S, f∈Pr,s

ρr Pr[zr,s = 1] (Markov’s ineq.) (28)

≤ (2/cf ) ·E[Rf ] ≤ (2/cf ) · (cf/γ) = 1/(2d). (29)

Thus, Corollary 3.2 implies the existence of a rounding that does a feasible path selection for S = S0,

with objective function value Ω(y∗/d). We now show how to turn this into an efficient algorithm,

by rounding the zi,j ’s one-by-one: to this end, we build on the method of conditional probabilities.
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Assume inductively, for some set X of pairs (i, j) and some set Y = {bi,j ∈ {0, 1} : (i, j) ∈ X},

that we have already rounded zi,j to bi,j , ∀(i, j) ∈ X. Let A denote the event that “∀(i, j) ∈

X, zi,j = bi,j”. (X = Y = φ when we start our algorithm.) As in the proof of Lemma 3.4, even

conditional on A, we can take the independence view that all the zi,j ’s are independent: it is just

that ∀(i, j) ∈ X, Pr[zi,j = bi,j ] = 1. Suppose we define h(A) to be

∑
i∈S

wi((
∑
j

Pr[zi,j = 1](1−
∑
f∈Pi,j

2
cf
·

∑
(r,s) 6=(i,j): r∈S,f∈Pr,s

ρr Pr[zr,s = 1]))−
∑
j<j′

Pr[zi,j = 1]·Pr[zi,j′ = 1]),

(30)

with the convention that “∀(i, j) ∈ X, Pr[zi,j = bi,j ] = 1”. Now, (28) holds even when the

probabilities in its l.h.s. and r.h.s. are computed conditional on A. Thus, Lemma 3.4 and our

independence view show that

E[Z(S) | (A ∧ (
∧
f∈E

Ef ))] ≥ h(A). (31)

Our inductive requirements on X and A are: (Q1) Pr[
∧
f∈E Ef | A] > 0, and (Q2) h(A) ≥

y∗S/(4γ). By (28), (29) and the proof of Corollary 3.2, (Q1) and (Q2) are satisfied initially, when

X = φ. Given that some A satisfies (Q1) and (Q2), we now show how to add one or more new

elements to X and update A appropriately, to maintain (Q1) and (Q2). If we have rounded all the

zi,j ’s and still maintain (Q1) and (Q2), we see by (31) that we have made a feasible path selection

of value at least y∗S/(4γ).

Let (i, j) 6∈ X be arbitrary, with i ∈ S. Define A0 to be “A ∧ (zi,j = 0)”, and A1 to be

“A ∧ (zi,j = 1)”. For any f ∈ E, define cdA(f) .=
∑

(r,s)∈X: f∈Pr,s ρrbr,s. This is the committed

demand on f : since we have decided to round zr,s to br,s for each (r, s) ∈ X, this is the demand

that we have so far committed on f . Now, if ∃f ∈ Pi,j : cdA(f) > cf − ρi, then clearly,

Pr[
∧
f∈E

Ef | A1] = 0. (32)

Otherwise, suppose that ∀f ∈ Pi,j , cdA(f) ≤ cf − ρi. Then, since there is a nonzero probability

that all the yet-unrounded variables get rounded to 0 (∀(r, s), z∗r,s/γ < 1 since γ > 1),

Pr[
∧
f∈E

Ef | A0] > 0, and Pr[
∧
f∈E

Ef | A1] > 0. (33)

Our algorithm is now as follows. There are two possibilities:
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(i) ∃(i, j) 6∈ X : (i ∈ S) ∧ (∀f ∈ Pi,j , cdA(f) ≤ cf − ρi). Now,

h(A) = E[(
∑
i′∈S

wi′
∑
j′

zi′,j′(1−
∑

f∈Pi′,j′
(2/cf ) ·

∑
(r,s) 6=(i′,j′): r∈S,f∈Pr,s

ρrzr,s))−
∑
i′∈S

wi′
∑
j′<j′′

zi′,j′ · zi′,j′′ ]

(34)

by the independence view. Thus, h(A) is a convex combination of h(A0) and h(A1): so there exists

an efficiently computable u ∈ {0, 1} such that h(Au) ≥ h(A). Furthermore, Pr[
∧
f∈E Ef | Au] > 0,

from (33). Thus, adding (i, j) to X and rounding zi,j to u (i.e., setting A := Au), will maintain

(Q1) and (Q2). We next consider case (ii), the complement of case (i):

(ii) ∀(i, j) 6∈ X : (i ∈ S) → ∃f ∈ Pi,j , cdA(f) > cf − ρi. Then, by (32), rounding any yet-

unrounded (i, j) to 1 will make Ef true for some f ∈ E. But, we are assured by (31), (Q1) and

(Q2) that there exists a rounding of the yet-unrounded variables, such that Ef holds for all f ∈ E

and such that Z(S) ≥ y∗S/(4γ). Thus, the only possible valid rounding for all remaining variables

is to set them to 0, and this is guaranteed to be a feasible path selection (Ef holds for all f ∈ E)

with objective function value at least y∗S/(4γ). Thus, in both cases (i) and (ii), we can successfully

keep rounding the variables; this is clearly a deterministic polynomial-time algorithm that outputs

a feasible path selection of value Ω(y∗S/d).

Remark: In case (i) above, suppose Pr[zi,j = 0] = 1. Then, h(A) = h(A0), and so our proof

above shows that we may just round zi,j to zero. Similarly, if Pr[zi,j = 1] = 1, then we may round

zi,j to one, without decreasing the value of h(A). It is also easy to see that if we do such an

obvious rounding to all the variables zi,j such that Pr[zi,j = 1] ∈ {0, 1} before rounding any other

variable, we will violate neither (Q1) nor (Q2). Thus, our algorithm remains correct if we started

by rounding all variables zi,j such that Pr[zi,j = 1] ∈ {0, 1}: those with Pr[zi,j = 1] = 0 are rounded

to zero, and those with Pr[zi,j = 1] = 1 are rounded to one.

We next consider the case S = S1. We now choose γ = 8d. Consider any f, i, j. If cf ≥ 2, then

since ρi ≤ 1 by (17), we get, exactly as in (28) and (29), that

Pr[Rf (i, j) > (cf − ρi)] ≤ (2/cf ) ·
∑

(r,s) 6=(i,j): r∈S, f∈Pr,s

ρr Pr[zr,s = 1] ≤ (2/cf ) · (cf/γ) = 1/(4d).

On the other hand, if cf < 2, we have ρi ∈ (1/2, 1] and cf ∈ [1, 2) since i ∈ S1 and from (17).

Thus, by the definition of Rf (i, j), we see that if Rf (i, j) > 0, then Rf (i, j) > 1/2. So

Pr[Rf (i, j) > (cf − ρi)] ≤ Pr[Rf (i, j) > 1/2]
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≤ Pr[Rf (i, j) > cf/4]

≤ (4/cf ) ·
∑

(r,s) 6=(i,j): r∈S, f∈Pr,s

ρr Pr[zr,s = 1] (Markov’s inequality)

≤ (4/cf ) · (cf/γ) = 1/(2d).

Hence, irrespective of the value of cf , we have

Pr[Rf (i, j) > (cf − ρi)] ≤ (4/cf ) ·
∑

(r,s) 6=(i,j): r∈S, f∈Pr,s

ρr Pr[zr,s = 1] ≤ 1/(2d).

Thus, by replacing the term “(2/cf )” in the expression (34) by the term “(4/cf )”, we can apply

our above approach for the case S = S0, to the case S = S1.

3.3 The case of small demands

We now consider situations where the demands are noticeably smaller than the capacities.

Theorem 3.3 Suppose ∃ε ∈ [1/2, 1) ∀i ∀f, ρi ≤ (1 − ε)cf . Then we can efficiently do a feasible

path selection for the ufp, with objective function value Ω(y∗/d1/ε−1).

Proof: Take γ = e(2d)1/ε−1/ε and conduct a γ-rounding. We now take S = [k], i.e., we now

consider all the given (si, ti) pairs. Fix any (f, i, j). We have Pr[Rf (i, j) > cf − ρi] ≤ Pr[Rf (i, j) >

εcf ] since ρi ≤ (1 − ε)cf . We now mimic our proof approach for part (ii) of Lemma 3.1 to bound

Pr[Rf (i, j) > εcf ]. Define ρ′r,f = ρr/((1 − ε)cf ) and R′f (i, j) .=
∑

(r,s) 6=(i,j): f∈Pr,s ρ
′
r,fzr,s. R

′
f (i, j)

is a sum of independent r.v.s, each taking values in [0, 1]; by (9), µf,i,j
.= E[R′f (i, j)] is at most

((1− ε)γ)−1. Define δf,i,j > 0 by µf,i,j(1 + δf,i,j) = ε/(1− ε). Thus, by part (i) of Theorem 2.1,

Pr[Rf (i, j) > εcf ] = Pr[R′f (i, j) > µf,i,j(1 + δf,i,j)]

≤
E[
∏

(r,s) 6=(i,j): f∈Pr,s(1 + δf,i,j)
ρ′r,f zr,s ]

(1 + δf,i,j)µf,i,j(1+δf,i,j)

≤ G(µf,i,j , δf,i,j)

≤ G(((1− ε)γ)−1, γε− 1) (Lemma 2.1, part (i))

≤ (e/(εγ))ε/(1−ε) = 1/(2d).

Thus, by Corollary 3.2, there exists a rounding that leads to a feasible path selection of value

Ω(y∗/γ) = Ω(y∗/d1/ε−1).
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The above calculation also shows how this can be made constructive by a small modification

to the proof of Theorem 3.2. Suppose, as in the proof of Theorem 3.2, A denotes the event that

“∀(i, j) ∈ X, zi,j = bi,j” (for some setting of X and the bi,j ’s). In place of (30) and (34), we now

define

h(A) = E

∑
i∈S

wi
∑
j

zi,j

1−
∑
f∈Pi,j

∏
(r,s) 6=(i,j): f∈Pr,s(1 + δf,i,j)

ρ′r,fzr,s

(1 + δf,i,j)µf,i,j(1+δf,i,j)

−∑
i∈S

wi
∑
j<j′

zi,j · zi,j′

 ,
with the convention that “∀(i, j) ∈ X, Pr[zi,j = bi,j ] = 1”. Note that h(A) is efficiently computable,

by the independence view; it equals∑
i∈S

wi
∑
j

E[zi,j ]

1−
∑
f∈Pi,j

∏
(r,s) 6=(i,j): f∈Pr,s E[(1 + δf,i,j)

ρ′r,f zr,s ]

(1 + δf,i,j)µf,i,j(1+δf,i,j)

−∑
i∈S

wi
∑
j<j′

E[zi,j ] ·E[zi,j′ ],

under the convention that “∀(i, j) ∈ X, Pr[zi,j = bi,j ] = 1”. We can now follow the proof of

Theorem 3.2.

Note next that for any parameter D, it is easy to add the constraint that “all flow paths are of

length at most D” to our LP relaxation; we now present a few applications based on this.

(i) Bandwidth requirement for expander graphs. Recall that a fractional flow is feasible

for us iff the total demand using any edge f is at most cf . Suppose all capacities cf are the same

(say, 1, by scaling); i.e., suppose we have a ucufp instance. Then, it is shown in Kleinberg and

Rubinfeld (1996) that if there is a feasible fractional flow shipping a flow of fi (∈ [0, ρi]) from si to

ti for each i, then there exists a feasible fractional flow shipping a flow of at least fi/2 for each i,

such that all flow paths are of length at most d0
.= a∆2β−2 log3 n, for some absolute constant a.

Suppose we add the constraint that “all flow paths are of length at most d0” to our LP relaxation;

an optimal flow thus produced is guaranteed to have objective function value y∗ ≥ α∗(T )/2, by the

above result of Kleinberg and Rubinfeld (1996). Thus, we may replace d by d0 in Theorems 3.2 and

3.3, leading to the applications discussed in §1. In particular, for hypercubic networks such as the

butterfly, there are O(polylog(n)) approximations for the ucufp, and Ω(log log n) edge bandwidth

suffices to derive O(1) approximations. Appropriate improvements also hold for other networks

with “moderate” d0, such as meshes of dimension 3 or more.

We remark that even the single-source version of the ufp (wherein all the source vertices are the

same) is an interesting NP-hard problem (Kleinberg (1996)); good constant-factor approximation

algorithms have been developed for it (Kleinberg (1996), Kolliopoulos and Stein (1997)).
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(ii) Routing within limited time. Recall that store-and-forward routing (packet-switching) is

a common alternative to circuit switching. Here, packets move from source to destination through

the network G, with each edge traversal taking unit time and each edge carrying at most one packet

per time step. Edges of G are allowed to queue packets. Suppose we are given an arbitrary network

G and some collection T = {(si, ti) : 1 ≤ i ≤ k} of vertex pairs. The ith packet has some given

weight wi ≥ 0 and needs to be routed from si to ti. Given a time bound T , what is a maximum-

weight collection of packets that can be routed in store-and-forward fashion, within time T? We

now use Theorem 3.3 to develop a bicriteria approximation algorithm for this problem; since the

case T = 1 is trivial, we assume that T ≥ 2.

Our first task is to find a suitably large-weight T ′ ⊆ T and to identify one (si, ti)-path (routing

path) for each (si, ti) ∈ T ′. Now, whatever paths the packets use in any solution to the problem,

their congestion (maximum number of paths using any given edge) and dilation (maximum length

of any of the routing paths) must clearly be at most T . So, if we view the problem as a ufp instance

with all demands being one, all edge-capacities being T and all flow-paths of length at most T ,

the optimal value y∗ of the corresponding LP relaxation will be an upper bound on the optimal

value OPT for the given problem. In the LP relaxation, we equivalently view the problem as a

ucufp instance with all demands being 1/T . In the notation of Theorem 3.3, we ε = 1− 1/T and

d ≤ T ; thus by Theorem 3.3, we can efficiently do a path-selection with objective function value

Ω(y∗/T 1/(T−1)). Since T ≥ 2, this quantity is Ω(y∗), i.e., Ω(OPT ).

The congestion and dilation of the paths chosen are bounded by T . We now use results of

Leighton, Maggs and Rao (1994) and Leighton, Maggs and Richa (1996) to convert such a path-

selection into an O(T )–length routing schedule using constant-sized queues. Thus we get

Corollary 3.3 There are absolute constants c0 < 1 and c1, c2 > 1 such that the following holds. For

any instance of the “routing within limited time” problem with time bound T and optimal solution

weight OPT , we can efficiently route a collection of packets of total weight at least c0 ·OPT within

c1T time, using c2-sized edge-queues.

(iii) Routing along short paths. In practice, it is often required that no routing path have length

more than a small constant D such as 5, 6 etc. As seen above, we can add such constraints to our

LP; thus, if the specified D is a constant, Theorem 3.2 provides a constant-factor approximation

algorithm for the corresponding ufp instances (this application does not require the demands to
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be noticeably smaller than the capacities).

4 Routing in Rounds

Given a network G with unit edge-capacities and a collection T = {(si, ti) : i ∈ [k]} of request

pairs with (si, ti) having a demand ρi ∈ [0, 1], we now consider the problem of “routing in rounds”

introduced in §1; we present improved approximation algorithms and bounds for χ(T ). Let χ∗(T )

be the smallest positive real such that ∀i, a fractional flow of ρi can be shipped from si to ti with

each edge carrying a total flow of at most χ∗(T ). It is easily seen that χ∗(T ) ≤ χ(T ); we thus

have an LP relaxation and hence, χ∗(T ) and the corresponding fractional flow can be found in

polynomial time. Let y∗ ≥ χ∗(T ) be some real such that we have a fractional flow F routing ρi

units of flow for each i, with the total flow on any edge being at most y∗. Let the flow-paths in F

for (si, ti) be denoted Pi,1, Pi,2, . . . , with Pi,j carrying a flow of ρiz∗i,j as before (thus,
∑
j z
∗
i,j = 1).

Also as before, we let d denote the length of a longest flow path in F .

As mentioned in the introduction, results of Aumann and Rabani (1995) and Kleinberg (1996)

show that a ψ-approximation for α(T ) translates to an O(ψ log n)-approximation for χ(T ). Thus,

our results for the ufp directly lead to O(d log n) and O(
√
m log n) approximations for χ(T ), the

former again implying a polylog(n) approximation, e.g., for the butterfly. However, Theorems 4.1

and 4.2 present further improved approximations for χ(T ).

The following lemma will be useful in proving Theorems 4.1 and 4.2:

Lemma 4.1 Let δ ∈ (0, 1/2] be arbitrary. In deterministic polynomial time, we can do a feasible

“routing in rounds” of all (si, ti) such that ρi ≤ δ, using O(χ(T )dδ/(1−δ) log n) rounds.

Proof: It is known that all pairs (si, ti) with ρi ≤ 1/ log n can be routed in O(χ(T )) rounds

in deterministic polynomial time (Raghavan and Thompson (1987), Raghavan (1988)). We route

all these “low demand” pairs first. We next consider P0 = {(si, ti) : ρi ∈ [1/ log n, δ]}. A result

of Kleinberg (1996) shows that we can turn a ν-approximation algorithm for α(T ) efficiently into

an O(ν(log n + log(maxi ρ−1
i ))-approximation algorithm for routing in rounds. Since ρi ≤ δ if

(si, ti) ∈ P0, we see from Theorem 3.3 that α(P0) can be approximated to within O(dδ/(1−δ)). As

maxi: (si,ti)∈P0
ρ−1
i = O(logn), we can efficiently route all of P0 in O(χ(T )dδ/(1−δ) log n) rounds.

Our main results are as follows:
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Theorem 4.1 We can do a feasible “routing in rounds” in deterministic polynomial time, the

number of rounds being: (i) O(χ(T )dδ log n + d(y∗ + log n)), for arbitrary T and for any desired

fixed δ ∈ (0, 1), and (ii) O(η−1d(y∗ + log n)), if ∀i, ρi ≥ η.

Proof: We prove part (ii) first. Suppose we conduct the “standard” randomized rounding of

Raghavan and Thompson (1987): independently for each i, we pick exactly one Pi,j , the proba-

bility of picking Pi,j being z∗i,j . (Note that this is different from our randomized rounding approach

of §3.) Then, the results of Raghavan and Thompson (1987) and Raghavan (1988) yield an efficient

derandomization of this that ensures that the total demand using any edge is at most O(y∗+log n).

Thus, since ρi ≥ η for all i, each edge is used by at most O(η−1(y∗+log n)) paths. Now, we follow an

idea from Aumann and Rabani (1995), and Aggarwal et al. (1996). Construct an undirected graph

G′ with the chosen paths as nodes and with two nodes being adjacent in G′ iff the corresponding

paths have a common edge in G. Since each chosen path can meet at most O(η−1(y∗ + log n))

paths per edge, and it has at most d edges, the maximum degree ∆′ of G′ is O(η−1d(y∗ + logn)).

Thus, we can efficiently color the vertices of G′ using at most ∆′ + 1 = O(η−1d(y∗ + log n)) colors:

in other words, we can do a feasible routing in rounds using at most O(η−1d(y∗ + log n)) rounds.

We now prove part (i). Let δ′ ∈ (0, 1/2] be the constant such that δ′/(1 − δ′) = δ. Thus, by

Lemma 4.1, we can efficiently do a feasible “routing in rounds” of all (si, ti) such that ρi ≤ δ′, using

O(χ(T )dδ log n) rounds. Next, all (si, ti) such that ρi > δ′ can be handled as in part (ii). Thus,

the total number of rounds is O(χ(T )dδ log n+ d(y∗ + log n)).

A flow F which has y∗ ≤ 2χ∗(T ) and d = O(∆2β−2 log3 n) can be efficiently computed, using

the work of Kleinberg and Rubinfeld (1996). Thus, we get

Corollary 4.1 Theorem 4.1 remains true if we replace y∗ by χ∗(T ) and d by ∆2β−2 log3 n.

Our next theorem shows an approximation independent of d:

Theorem 4.2 We can do a feasible “routing in rounds” using O(χ(T ) ·
√
m(1 + (log n)/χ(T )))

rounds, in deterministic polynomial time.

Proof: Let us start with an optimal solution to the LP relaxation, and let d be the length of a

longest path among the flow paths {Pi,j}. Setting δ = 1/4 in Lemma 4.1 and observing that d ≤ m

w.l.o.g., we first route all (si, ti) with ρi ≤ 1/4, using O(χ(T )m1/3 log n) rounds.
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Next, consider P1 = {(si, ti) : ρi ∈ (1/4, 1]}. We first weed out very long paths; this is “filtering”

in the usage of Lin and Vitter (1992). (The basic idea is to take each i such that (si, ti) ∈ P1, and

let Di be the total amount of flow for the pair (si, ti). Then, one can see that the total flow on paths

Pi,j of length more than 2Di/ρi is “small”. Hence, we can effectively ignore such paths.) Formally,

we let |Pi,j | denote the number of edges in path Pi,j ; define, for each i such that (si, ti) ∈ P1,

Di
.= ρi

∑
j z
∗
i,j |Pi,j |. Di is thus the total amount of flow for the pair (si, ti), summed over all edges.

Call a flow-path Pi,j long iff |Pi,j | > 2Di/ρi. Since the z∗i,j ’s are non-negative and
∑
j z
∗
i,j = 1, we

see that for any i, hi
.=
∑
j: Pi,j long z

∗
i,j < 1/2. We now set z∗∗i,j := 0 for all long Pi,j , and re-scale all

the z∗i,j corresponding to non-long Pi,j by setting z∗∗i,j := z∗i,j/(1 − hi). Since hi < 1/2, we see that

z∗∗i,j ≤ 2z∗i,j . Hence, the maximum edge-congestion now is at most 2χ∗(T ); crucially, all remaining

flow paths are non-long.

For a parameter x to be chosen soon, partition P1 into two sets: (a) pairs (si, ti), all of

whose flow paths now are of length at most x, and (b) pairs (si, ti) that have at least one flow

path of length more than x. By Theorem 4.1(ii), the pairs in (a) can be routed efficiently in

r1 = O((χ(T ) + log n)x) rounds. Next, since each remaining flow path is non-long, any i for

which (si, ti) falls into category (b) must have x ≤ 2Di/ρi; thus, Di ≥ xρi/2 ≥ x/8. Recall that

Di is the total flow contributed by (si, ti) over all edges, and that the edge-congestion, summed

over all edges, is at most 2mχ∗(T ) ≤ 2mχ(T ). Thus, the number of pairs in category (b) can

be at most r2 = 16mχ(T )/x; so they can trivially be routed within br2c rounds. Now, to bal-

ance r1 and r2, we pick x =
√
mχ(T )/(χ(T ) + log n). Thus, P1 can be routed efficiently in

r1 + r2 = O(χ(T )
√
m · (1 + (log n)/χ(T ))) rounds.

5 Extensions and applications

5.1 Column-restricted packing problems, vertex-disjoint paths

In recent interesting work, Kolliopoulos and Stein (1998) have studied a family of NP-hard integer

linear programs, which they call column-restricted packing integer programs (henceforth referred to

as cpips). The variables in such a problem are x1, x2, . . . , xN ; the objective is to maximize
∑
j wjxj

subject to: (i) a system of m linear constraints Ax ≤ b, and (ii) integrality constraints xj ∈

{0, 1, . . . , dj} for each j (some of the given integers dj could equal infinity). We have furthermore

that: (C1) all the wj ’s lie in [0, 1] (scaled w.l.o.g. so that maxj wj = 1); (C2) all entries in A
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and b are non-negative, with Ai,j ≤ bi for all i, j, and, importantly, (C3) all nonzero entries in any

given column of A are the same (hence the name column-restricted). A key parameter will be d,

the maximum number of nonzero entries in any column of A.

By presenting approximation algorithms for cpips, Kolliopoulos and Stein (1998) show, among

other results, that a fractional solution to a ufp instance can be rounded to an integral solution of

value

Ω(max{ (y∗)2

m log3m
,

y∗√
m logm

,
y∗

d
}), (35)

in the case where y∗ ≤ m. This bound is slightly weaker than our Ω(max{(y∗)2/m, y∗/
√
m, y∗/d})

bound given by Theorems 3.1 and 3.2 and Corollary 3.1, for the case where y∗ ≤ m.

We start with Theorem 5.1 that generalizes Theorems 3.1 and 3.2 and Corollary 3.1; we will

then use it to present an approximation algorithm for cpips. Given an event E, let Ind(E) denote

its indicator: 1 if E occurred, and 0 otherwise. We will also need a small extension of (C1) and

(C3): suppose the variables are indexed as z∗u,v, instead of as xj . Let z∗ be the vector of the z∗u,v’s

(arranged in any fixed order). Then, two useful properties of the vector w and the linear system

Az∗ ≤ b will be: (C1’) for each u, the values wu,1, wu,2, . . . are all the same, and are denoted by

wu; all the wu’s lie in [0, 1] (scaled so that maxu wu = 1); (C3’) for each u, all nonzero entries in

the columns of A that are associated with z∗u,1, z
∗
u,2, . . ., are the same.

Theorem 5.1 Suppose we have non-negative reals {z∗u,v : u ∈ [k], v ∈ [`u]} where the `u are some

given integers. Let b, w be vectors and A be an m-row matrix that satisfy (C1’), (C2), and (C3’);

let d be the maximum number of nonzero entries in any column of A. Suppose we also have (D1)

∀u,
∑
v z
∗
u,v ≤ 1 and (D2) Az∗ ≤ b, where z∗ is the vector of the z∗u,v’s (arranged in any fixed

order). Let y∗ =
∑
uwu

∑
v z
∗
u,v. Then, we can efficiently round all the z∗u,v’s (each z∗u,v is rounded

to some zu,v ∈ {0, 1}) such that (D1) and (D2) are satisfied, and with
∑
uwuInd(

∨
v(zu,v = 1))

being at least: (i) Ω(y∗) if y∗ ≥ m, and and (ii) Ω(max{(y∗)2/m, y∗/
√
m, y∗/d}) if y∗ < m.

Proof: The proof is essentially identical to those of Theorems 3.1 and 3.2 and Corollary 3.1; so

we merely give a sketch. As before, the basic step is as follows: for an appropriate γ > 1, set zu,v

to 1 with probability z∗u,v/γ (and zu,v := 0 with probability 1− z∗u,v/γ), independently for all u and

v. For each u, we then do the following: if more than one zu,v is 1, one of them is chosen arbitrarily

and all others are re-set to 0.
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We then proceed exactly the same way as before: scale the entries of A and b so that mini bi = 1.

Let ρu ∈ [0, 1] be the “common nonzero value” referred to in (C3’). As in the proofs of Theorems

3.1 and 3.2, we partition [k] into S0 = {u ∈ [k] : ρu ≤ 1/2} and S1 = {u ∈ [k] : ρu > 1/2}. For

T ⊆ [k], let y∗T
.=
∑
u∈T wu

∑
v z
∗
u,v. Define S = S0 if y∗S0

≥ y∗S1
, and S = S1 otherwise; thus,

y∗S ≥ y∗/2. For all u ∈ ([k] − S), we remove all variables z∗u,v from consideration (i.e., drive them

all down to 0); we will now focus on rounding z∗u,v for all u ∈ S and for all v ∈ [`u].

The proof of Theorem 3.1 directly implies that by choosing γ = Θ(max{m/y∗, 1}), we can effi-

ciently round so that the objective function,
∑
u∈S wuInd(

∨
j(zu,v = 1)), is Ω((y∗)2/m). The proof

of Corollary 3.1 can then be invoked to show a rounding with objective function value Ω(y∗/
√
m).

Finally, we note that the proof of Theorem 3.2 does not require the underlying path-edge struc-

ture, but simply requires properties (C1’), (C2) and (C3’). Thus, we can also efficiently round to

objective function value Ω(y∗/d).

The vertex-disjoint paths problem is essentially the same as the mdp, except that no two paths

chosen must intersect at a vertex. The integer programming formulation and LP relaxation for

this problem is very much similar to that for the mdp; we now have n constraints, where n is the

number of vertices in the underlying graph G (one constraint per vertex). Let y∗ and d respectively

denote the value of an optimal solution to the LP relaxation and the length of a longest (si, ti)-flow

path in such a solution. Kolliopoulos and Stein (1998) show how to round such a fractional solution

into an integral solution of value Ω(max{(y∗)2/n, y∗/
√
n, y∗/d}). Since the problem of rounding

the fractional flow-paths is modeled by Theorem 5.1, Theorem 5.1 also shows such a result.

Given an instance of a cpip, let y∗ denote the optimal value of its LP relaxation, which is

obtained by relaxing the integrality constraints to “∀j, xj ∈ [0, dj ]”. We now apply Theorem 5.1

to get

Corollary 5.1 The fractional optimum of a given cpip can be efficiently rounded to an integral

solution of value: (i) Ω(y∗) if y∗ ≥ m, and (ii) Ω(max{(y∗)2/m, y∗/
√
m, y∗/d}) if y∗ < m.

Proof: Let {x∗1, . . . , x∗N} be an optimal solution computed for the LP relaxation of the given cpip.

Partition [N ] into S0 = {j : x∗j ≥ 1} and S1 = {j : x∗j < 1}, and, for i = 1, 2, let y∗i =
∑
j∈Si wjx

∗
j .

Now, if y∗0 ≥ y∗/2, we could simply set xj := bx∗jc for all j ∈ S0 and xj := 0 for all j ∈ S1, to get

an integral solution of value at least y∗0/2 = Ω(y∗). So, suppose y∗1 > y∗/2; we set xj := 0 for all

j ∈ S0, and focus on rounding {x∗j : j ∈ S1}. We will show how to do this to get an integral solution
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of value: (i) Ω(y∗1) if y∗1 ≥ m, and (ii) Ω(max{(y∗1)2/m, y∗1/
√
m, y∗1/d}) if y∗ < m. (This will clearly

give us the desired result.) Such a solution directly follows from Theorem 5.1: our problem now is

in fact a cpip instance with `u = 1 for all u.

5.2 Improved approximations for a class of packing problems

Packing integer programs (pips) which subsume cpips, satisfy (C1) and (C2) but not necessarily

(C3). pips model numerous problems in combinatorial optimization such as independent sets and

matchings in graphs and hypergraphs, certain classes of scheduling problems etc. We adopt the

terminology used for cpips, for pips also. A useful parametrization is

B = min
i,j: Ai,j 6=0

bi/Ai,j ; (36)

note that B ≥ 1. By scaling A and b uniformly, we assume that maxi,j Ai,j = 1 and mini bi = B.

The current-best results for pips (Srinivasan (1995), Srinivasan (1996)) are that for a certain

absolute constant K0 ∈ (0, 1), we can efficiently compute an integral solution of value

Ω(y∗) if y∗ ≥ m, and Ω(max{y∗(K0y
∗/m)1/(B−1), y∗(K0/d)1/(B−1)}) otherwise; (37)

these papers have also shown that we can replace (B − 1) by B in (37), if A has only zeroes and

ones. Kolliopoulos and Stein (1998) have generalized this by showing that (B − 1) can be replaced

by bBc in (37) if A satisfies (C3); note that A satisfying (C3), i.e., A being column-restricted, is a

less stringent requirement than that A has only zeroes and ones.

Returning to general pips, note that for “large” values of B—in particular, if B grows as

Ω(log d)—the approximation bound of (37) is reasonable. However, the Ω(·) notation in (37) hides

a constant a0 > 1; thus, even if B is arbitrarily large, the bound (37) does not imply (1 + ε)-

approximations for an arbitrarily small ε > 0. This leads us to the next question we address: can

we approximate pip instances by a factor arbitrarily close to 1, if B is sufficiently large? We answer

this now in the affirmative, via the approach we used for proving Theorem 3.2.

Theorem 5.2 There is an absolute constant a1 > 0 such that for any parameter 0 < ε ≤ 1, pip

instances with B ≥ (a1/ε
2) ln(2d/ε) can be approximated to within 1 + ε.

Proof: We first simplify things by making all entries of b equal B: multiply the ith constraint

of “Ax ≤ b” by B/bi ≤ 1. (Note that all the Ai,j continue to lie in [0, 1] after this.) Thus we
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assume bi = B for all i. Start with an optimal fractional solution {x∗1, . . . , x∗N} to the given pip,

and choose γ = 1 + ε/3. For j = 1, 2, . . . , N , define independent random variables zj ∈ {0, 1}, with

Pr[zj = 1] = x∗j/γ − bx∗j/γc (and with Pr[zj = 0] = 1− Pr[zj = 1]). Next define xj = bx∗j/γc+ zj ;

note that E[xj ] = x∗j/γ. This is our notion of γ-rounding now, which we proceed to analyze. Let

Ei be the bad event that
∑
j Ai,jxj > B. Since γ > 1, Pr[Ei] < 1. Since each Ei is decreasing as a

function of the zj , the FKG inequality shows as before that Pr[
∧
i∈[m]Ei] ≥

∏
i∈[m] Pr[Ei] > 0.

Next, define si =
∑
j Ai,jbx∗j/γc for each i ∈ [m]; note that Ei is the event “

∑
j Ai,jzj > (B−si)”.

For each j, let S(j) denote the set of constraints (in the constraint set Ax ≤ b) in which xj appears

with a nonzero coefficient. In exactly the same way as was proved for Lemma 3.4, we have, setting

X = φ and A to be the tautology in the statement of Lemma 3.4,

E[zj | (
∧
i∈[m]

Ei)] ≥ Pr[zj = 1] · (1−
∑
i∈Sj

Pr[
∑
j′ 6=j

Ai,j′zj′ > (B − si −Ai,j)])

≥ Pr[zj = 1] · (1−
∑
i∈Sj

Pr[
∑
j′ 6=j

Ai,j′zj′ > (B − si − 1)]). (38)

Fix j, and i ∈ Sj . We first upper-bound the probability of Ei ≡ (
∑
j′ 6=j Ai,j′zj′ > (B − si − 1)).

Define µi = E[
∑
j′ 6=j Ai,j′zj′ ]. Since Ax∗ ≤ b, it can be seen that si + µi ≤ B/γ. If µi = 0, then

Pr[Ei] = 0; so suppose si < B/γ and µi > 0. Define δi by µi(1 + δi) = B − si − 1. Since µi > 0,

si + µi ≤ B/γ and B ≥ (a1/ε
2) ln(2d/ε) by assumption, we see that δi ≥ 0 as long as, e.g., a1 ≥ 6.

Next, (11) shows that Pr[Ei] ≤ G(µi, δi); since si + µi ≤ B/γ, part (i) of Lemma 2.1 shows that

G(µi, δi) ≤ G(ui, vi), where ui = B/γ − si and ui(1 + vi) = B − si − 1. So,

Pr[Ei] ≤ G(ui, vi) = eB(γ−1)/γ · e−1 · (1 +
γ −Bγ +B

(B − si − 1)γ
)B−si−1. (39)

Note that (γ − Bγ + B)/γ < 0, if a1 ≥ 6. For any fixed ν > 0, the function λ 7→ (1 − νλ)1/λ

decreases in the range 0 < λ < 1/ν. Thus, if we view si as a variable constrained to lie in [0, B/γ)

and keep all other parameters fixed, then G(ui, vi) is maximized when si = 0. So,

Pr[Ei] ≤
eB(γ−1)/γ · e−1 · (1 + 1/(B − 1))B−1

γB−1
≤ eB−B/γ

γB−1
= (1 + ξ)eB(ξ/(1+ξ)−ln(1+ξ)),

where ξ = ε/3 (recall that γ = 1 + ξ). Also, by definition of d, |S(j)| ≤ d. Substituting these ideas

into (38), we get

E[zj | (
∧
i∈[m]

Ei)] ≥ Pr[zj = 1] · (1− d · (1 + ξ)eB(ξ/(1+ξ)−ln(1+ξ))). (40)
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Now, the function t 7→ ln(1+t)−t/(1+t)−9t2/32 vanishes at t = 0; its derivative is t((1+t)−2−9/16),

which is non-negative for t ∈ [0, 1/3]. Thus, this function is non-negative for t ∈ [0, 1/3]; since

ξ ∈ [0, 1/3], this implies that (1 + ξ)eB(ξ/(1+ξ)−ln(1+ξ))) ≤ (1 + ξ)e−9Bξ2/32, which is at most ξ/d if

B is large enough as specified in the statement of the theorem.

Plugging this into (40), we get E[zj | (
∧
i∈[m]Ei)] ≥ Pr[zj = 1](1 − ξ). Thus, by linearity of

expectation, E[(
∑
j wjzj) | (

∧
i∈[m]Ei)] ≥ (1 − ξ)

∑
j wj Pr[zj = 1]. So there exists a rounding

avoiding all the events Ei, with
∑
j wjzj ≥ (1 − ξ)

∑
j wj Pr[zj = 1]. This can be turned into a

deterministic polynomial-time algorithm by mimicking our proofs of Theorems 3.2 and 3.3. Thus,

the final solution
∑
j wj(bx∗j/γc+ zj) is at least as high as

∑
j

wj(bx∗j/γc+ (1− ξ) · (x∗j/γ − bx∗j/γc)) ≥
∑
j

wj(1− ξ)x∗j/γ ≥
∑
j

wjx
∗
j/(1 + ε) = y∗/(1 + ε).

6 Conclusions

We have presented improved approximation algorithms for a few classes of routing and packing

problems, based on LP relaxations that basically involve multicommodity flow. We have essen-

tially taken this approach to the limit for both our approximation algorithms for the ufp: there

are families of instances of even the mdp wherein d = Θ(
√
m), α(T ) = Θ(1), and α∗(T ) = Θ(

√
m)

(Kleinberg (1996)). In fact, recent work of Guruswami et al. (1999) has shown that these approx-

imations are essentially best-possible: for directed graphs, they have shown that there cannot be

an O(m1/2−ε)-approximation algorithm even for the mdp for any constant ε > 0, unless P = NP .

One interesting question is to what extent correlation inequalities such as the FKG inequality

and that of Lemma 3.3, are required to obtain our results. Suppose the capacities are “small”;

e.g., suppose the maximum demand and the minimum capacity are the same. Then, as shown

by Guruswami et al. (1999), simple greedy algorithms as well as direct randomized rounding

algorithms can yield approximations similar to ours. At the other extreme, if all capacities are

Ω(logm) times larger than all demands, work of Raghavan and Thompson (1987) shows that the

ufp can be approximated to within a constant factor. It is in the intermediate range where the

capacities are “moderately” (say, thrice) larger than the demands, that these other approaches do

not seem to provide results such as Theorem 3.3. It would be interesting if simpler methods than

ours lead to the results reported in this work.
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Some other algorithmic directions are to study the complexity of these problems on specific

interesting classes of networks, and to develop good distributed algorithms. It is also of interest to

develop robust code for many of these problems.
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