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Abstract� Certain types of routing� scheduling and resource allocation problems in a distributed
setting can be modeled as edge coloring problems� We present fast and simple randomized algorithms
for edge coloring a graph� in the synchronous distributed point�to�point model of computation� Our
algorithms compute an edge�coloring of a graph G with n nodes and maximum degree � with at
most ���� � O	log��� n
 colors with high probability 	arbitrarily close to �
� for any �xed � � �

they run in polylogarithmic time� The upper bound on the number of colors improves upon the
	��� �
�coloring achievable by a simple reduction to vertex�coloring�

To analyze the performance of our algorithms� we introduce new techniques for proving upper
bounds on the tail probabilities of certain random variables� The Cherno��Hoe�ding bounds are
fundamental tools that are used very frequently in estimating tail probabilities� However� they
assume stochastic independence among certain random variables� which may not always hold� Our
results extend the Cherno��Hoe�ding bounds to certain types of random variables which are not
stochastically independent� We believe that these results are of independent interest� and merit
further study�

Key words� edge coloring� distributed algorithms� parallel algorithms� probabilistic algorithms�
Cherno��Hoe�ding bounds� stochastic dependence� ��correlation� correlation inequalities� large de�
viations
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�� Introduction� An important limitation for a distributed network without
global memory is locality of computation� sending messages to faraway nodes being
expensive� communication should only take place between nearby nodes� Models
of parallel computation like the PRAM abstract this problem of locality away by
assuming the existence of a global shared memory with fast concurrent access� We
are interested in studying how fast individual processors can compute their portion
of the output in a message�passing distributed system� with such �local� information
alone� The model we consider is the synchronous distributed point�to�point model�
in which the processors are arranged as the vertices of an n�vertex graph G � 	V�E
�
and where all communication is via the edges of G alone� In this model� we study
the edge coloring problem� a basic combinatorial problem with many applications
to distributed computing� Edge colorings can be used to model certain types of
jobshop scheduling� packet routing� and resource allocation problems in a distributed
setting� For example� the problem of scheduling I�O operations in a certain parallel
architecture can be modeled as follows 	Jain� Somalwar� Werth � Browne 
��
� We
are given a set of processes P and a set of resources R such that each process p �
P needs a subset f	p
 � R of the resources where� 	i
 each process p needs every
resource in f	p
 for a unit of time each� and 	ii
 p can use the resources in f	p
 in
any order� From this� we can construct a bipartite graph GP�R � 	P �R� EP�R
 where
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EP�R � f	p� r
j p � P � r � f	p
g� An edge coloring of GP�R with c colors yields a
schedule for the processes to use the resources within c time units� Optimal colorings
correspond to optimal schedules�

Edge coloring can also be used in distributed models in situations where broad�
casts are infeasible or undesirable� an edge coloring of the network results in a schedule
for each processor to communicate with at most one neighbor at every step� at time
step i� processors communicate via the edges colored i only� Using a �small� number
of colors reduces the wastage of time in this schedule�

Related Work� Note that � colors are necessary to edge color a graph with maxi�
mum degree �� Vizing showed that it is always possible to edge color a graph with
� � � colors and gave a polynomial time algorithm to compute such a coloring 	
����
see� for instance� Bollob�as 
��
� E�orts to parallelize Vizing�s theorem have failed
so far� The best known algorithm is an RNC algorithm of Karlo� � Shmoys using
� � O	������
 colors for any �xed � � �� this algorithm has been derandomized in
NC 	Berger � Rompel 
��� Motwani� Naor � Naor 
���
� In the distributed model� the
best edge coloring algorithm known prior to this work was to apply a vertex coloring
algorithm to the line graph L	G
 of G� There are fast 	polylogarithmic
 random�
ized vertex coloring algorithms that use 	� � �
 and � colors� which translate to
	��� �
� and 	��� �
� edge coloring algorithms respectively 	Luby 
���� Panconesi
� Srinivasan 
���
� In the deterministic case� there are no known 	��� �
�edge col�

oring algorithms of polylogarithmic running time� the best running time is �O�
p
logn��

which is asymptotically better than any �xed root of n but which grows faster than
any polylogarithmic function of n 
���� Interestingly� distributed ��edge coloring for
bipartite graphs requires �	diameter	G

 time even with randomization 
���� whereas
this can be done in O	logn
 time deterministically in the PRAM model 
����

Our contributions� In this paper� we present fast and simple randomized algorithms
to edge color G with at most �����O	log��� n
 colors with high probability for any
�xed � � �� where � is the maximum degree of the vertices of G� At the heart of
our analysis is an extension of the Cherno��Hoe�ding bounds� which are key tools in
bounding the tail probabilities of the sums of independent random variables 	Cherno�

 �� Hoe�ding 
!�� Raghavan 
�!�
�

Our edge coloring algorithm is based on a very simple randomized algorithm to
color bipartite graphs� which can be explained in a few lines� Given a bipartite graph
G � 	A�B�E
 with maximum degree �� each vertex in B picks distinct colors from
f�� �� � � � ��g at random for its edges without replacement� i�e�� edges incident to the
same vertex in B get di�erent colors� Then� each vertex v � A checks� for each color
�� if more than one of its incident edges has color � and if so� chooses one of them
at random as the winner� and all the other edges of color � which are incident to v
are decolored� The key claim is that for every vertex� the number of decolored edges
incident to it is at most �	�� �
�e with high probability for any �xed � � �� where e
is the base of natural logarithms� Assuming that this holds� we can repeat the above
iteration with a set of �	� � �
�e fresh colors� and so on� In spite of its simplicity
the algorithm requires an interesting probabilistic analysis� this is based upon an
extension of the Cherno��Hoe�ding bounds to a certain case of dependence among
the random variables� which we call 	�correlation� We believe that these results have
the potential for further applications� and merit further study�

A preliminary version of this work appeared in 
���� where we showed how to edge
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color using at most �����O	log��� n
 colors� By presenting a tighter analysis of the
tail probabilities� we improve this to �����O	log��� n
 colors here�

In x�� we de�ne the basic notation used� and x� describes our main analysis tool�
the extension of the Cherno��Hoe�ding bounds� Section  presents our algorithm�
whose performance is analyzed in x�� Some extensions and applications of this work
are described in x��

�� Notation� A message�passing distributed network is an undirected graph G �
	V�E
 where vertices� or nodes� correspond to processors and edges correspond to bi�
directional communication links� Each node has its unique ID� There is no shared
memory and processors can communicate only by sending messages through the net�
work� The network is synchronous� i�e�� computation takes places in a sequence of
rounds� in each round� each node does any amount of local computation� sends mes�
sages to its neighbors in the graph� and reads messages sent to it by its neighbors�
The time complexity of a distributed algorithm� or protocol� is given by the number
of rounds needed to compute a given function�

Though each node has no knowledge about the topology of the entire network�
it knows upper bounds n and � on the total number of nodes and maximum degree
of the network� respectively� We also sketch an alternative algorithm if � and n are
unknown� but the constant factor in the O	log��� n
 term in the number of colors
used� is higher in this case�

Notice that in this model the cost of sending a message from one vertex to another
is proportional to the length of a shortest path between the two vertices� Hence� if
we want a protocol to run for t rounds� then each vertex can communicate only with
vertices at distance at most t from it� This is not so in the PRAM model� where the
shared memory allows any two processors to communicate in one unit of time� Lower
bounds for distributed computation imposed by this locality� have been presented by
Linial 
���� Also as mentioned before� distributed ��edge coloring for bipartite graphs
requires �	diameter	G

 time� even with randomization 
���� In particular� we cannot
two�color the vertices of a bipartite graph G distributively in o	diameter	G

 time�

Given an undirected graph G � 	V�E
 we denote by � its maximum degree� i�e��
the maximum number of edges incident with any node� by du we denote the degree
of vertex u� by N	u
 we denote the set of neighbors of u� and by �	u
 we denote the
set of edges incident with u�

Given a positive integer n� 
n� denotes the set f�� �� � � � � ng� The permanent of a
	possibly non�square
 matrix M with c columns and r rows where c � r� is de�ned
as the natural extension of the permanent of square matrices� Let P � f
 j 
 � 
c��

r�� 
 is one�to�oneg� Then�

perm	M

�
�
X
��P

nY
i��

M��i��i�

An event A is said to happen with high probability 	w�h�p�
 if Pr	A
 � ����f	n

for some superpolynomial function f	n
 	i�e�� nc � o	f	n

 for all �xed c � �
�

In our algorithms we will use Luby�s vertex coloring algorithm 
��� as a subroutine�
When applied to the line graph of G� the algorithm computes a 	��	G
 � �
�edge
coloring of G� with its running time being O	logn
 w�h�p� The algorithm only needs
local information� a vertex only needs to know its own degree� Another property
of the algorithm that we will use is that vertices can be added dynamically to the
graph� each vertex u with its own palette of deg	u
 � � colors� and the algorithm still
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works as claimed 	the running time is O	logn
 from the time of the last insertion
�
Other algorithms could be used as well but we refer to this algorithm of Luby for
conciseness�

�� The Cherno��Hoe�ding Bounds Extension� In this section we introduce
our extension of the Cherno��Hoe�ding bounds which are important tools used in
estimating the tail probabilities of random variables� Given n independent random
variables X�� X�� � � � � Xn� these bounds are used in deriving an upper bound on the
upper tail probability Pr	X � 	� � �
�
� where X �

Pn
i��Xi� � � E
X �� and � � ��

We extend these bounds to a certain case of dependency among the Xi�s� which we
call 	�correlation�

Let us review Cherno��s approach to upper bound the upper tail probability of
a random variable X � when X is the sum of independent binary random variables
X�� X�� � � � � Xn 
 � 	this idea is apparently originally due to S� N� Bernstein 
!�
� The
idea is to use Markov�s inequality on the random variable etX for an arbitrary t � ��
and minimize with respect to t� That is� to use the fact that

Pr	X � 	� � �
�
 � Pr	etX � et������


� E
etX �

et������
�

and minimize the last ratio for t � �� This is achieved by �nding a good upper bound
for the numerator E
etX � by using the fact that X is the sum of independent random
variables� It is standard 	see� e�g�� Raghavan 
�!�
 to use this for showing that in this
case if Xi � f�� �g for each i� then

min
t��

E
etX �

et������
� F 	�� �


�
�

�
e�

	� � �
���

��
�	�


Hoe�ding 
!� considers a more general case where X is the sum of n independent
and bounded random variables Xi � 
ai� bi�� and uses the above approach to show that
if E
X � � �� then for � � ��

min
t��

E
etX �

et������
� G	�� ���a��b


�
� exp

�
� � ����P

i�	n
	bi � ai
�

�
�	�


The bounds 	�
 and 	�
 will be used in our proofs� Henceforth� we refer to these
bounds of Cherno� and Hoe�ding as the CH�bounds� If � is a �xed positive quantity
no greater than � 	which will be true in all our applications
� then F 	�� �
 � e��

�����
Hence� if � � �	log��� n
� then F 	�� �
 is the inverse of a superpolynomial function

of n� for any �xed � � � 	similar considerations apply to G	�� ���a��b

� This fact
makes the CH�bounds a powerful tool for deriving strong performance guarantees for
randomized algorithms and will be used repeatedly in this paper�

���� The General Case� We now introduce 	�correlation and prove the general
extension of the CH�bounds� Section ��� will then discuss an important special case
of the results of this section�

Our proof is based on the observation that if we can upper bound each term E
Xk�
of the Maclaurin expansion of E
etX � by 	 E
 "Xk� where "X is the sum of independent
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random variables� and if E
et
�X � � B� then E
etX � � 	B� We start with the following

de�nition�
Definition ���� Let X�� X�� � � � � Xn be bounded random variables such that

Xi � 
ai� bi� and let X �
P

i�	n
Xi� The Xi�s are 	�correlated if there exists a

collection of independent twin random variables "Xi � 
ai� bi� such that�
	i
 E
X � � E
 "X�� where "X �

P
i�	n


"Xi� and

	ii
 for all I � 
n� and positive integers si� i � I �

E

Y
i�I

Xsi
i � � 	

Y
i�I

E
 "Xsi
i ��

The main theorem now is
Theorem ���� Let X be the sum of 	�correlated random variables X�� X�� � � � � Xn

where Xi � 
ai� bi�� and let "X be the sum of the n twin variables "Xi� Then�

Pr	X � 	� � �
 E
 "X�
 � 	 G	E
 "X �� ���a��b
�

Proof� Let � � E
 "X�� As in the classical proof� we start by introducing a positive
parameter t and by applying Markov�s inequality to the variable etX �

Pr	X � 	� � �
�
 � Pr	etX � et������


� E
etX �

et������
�

By the hypotheses of the boundedness of X � we may apply linearity of expectation to
an in�nite series�

E
etX � � E

�
�X
k��

tkXk

k#

�
�

�X
k��

tkE
Xk�

k#
�

Now� Xk � 	
Pn

i��Xi

k is a sum of terms of the form

Q
i�I X

si
i for some I � 
n�

and positive integers si� Hence by linearity of expectation and the assumption of
	�correlation�

E
Xk� � 	E
 "Xk��

Thus�

E
etX � � 	

�X
k��

tkE
 "Xk�

k#
� 	 E
et

�X ��

By the already discussed result of Hoe�ding 
!�� when "X is the sum of n independent
bounded random variables "Xi � 
ai� bi��

min
t��

E
et
�X �

et������
� G	�� ���a��b
�

In this paper we will use the special case of Theorem ��� where Xi � 
�� ��� i � 
n��
In this case� F 	�� �
 is also an upper bound for the upper tail of X �
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Corollary ���� Let X be the sum of n 	�correlated random variables Xi � 
�� ���
Then�

Pr	X � 	� � �
E
 "X�
 � 	 F 	�� �
�

Proof� Let E
 "X � � �� When "X is the sum of n independent random variables
"Xi � 
�� ��� Hoe�ding 	cf� Theorem � of 
!�
 shows that if t � 	�� ����n
 and � � nt���
then

Pr

�
"X � �

n
� t

�
� min

s��

E
es
�X �

es������
�
�

�

�� nt

	��nt�
� �

n t

n� �� nt

	n���nt
�

By the proof of Theorem ���� we see that E
esX � � 	E
es
�X �� for any s � �� Thus by

applying the standard approximation � � x � ex for x � nt�	n� �� nt
� we get

Pr	X � 	� � �
�
 � 	

�
e�

	� � �
�����

	�
� 	F 	�� �
�

���� Binary Random Variables� An important special case of De�nition ���
is when Xi � f�� �g� In this case� the condition on the expectations simpli�es consid�
erably to become

Pr

�

i�I

Xi � �

�
� 	

Y
i�I

Pr	 "Xi � �


for all I � 
n��� This special case is interesting in its own right and hence we record
it as

Theorem ���� Let X�� X�� � � � � Xn be given ��� random variables with X �P
iXi� If there exist independent random variables "X�� "X�� � � � � "Xn with "X �

P
i
"Xi

and E
X � � E
 "X � such that for all I � 
n��

Pr

�

i�I

Xi � �

�
� 	

Y
i�I

Pr	 "Xi � �
�

then

Pr	X � 	� � �
E
 "X �
 � 	 F 	E
 "X �� �
�

The statement follows immediately from Corollary ���� Notice that 	�correlation
follows if the Xi�s are �negatively correlated� in the following sense�

Pr

�

i�I

Xi � �

�
�
Y
i�I

Pr	Xi � �


for all I � 
n�� We now present an example where precisely this kind of situation
arises� and which will also be used later in this paper�

� This was de�ned as �self�weakening with parameter �� in �����
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Suppose we have n balls that are thrown uniformly and independently at random
into n bins� and that we want to estimate the number B of empty 	missed
 bins� Let
Bi be an indicator random variable that is � if bin i is empty and � otherwise� For
any i � 
n��

Pr	Bi � �
 �

�
�� �

n

	n
� �

e
�

It follows that E
B� � E

P

i Bi� � n�e� The Bi�s are ��correlated� To see this�
consider a subset J � 
n� and any i � 
n�� J � Then�

Pr	Bi � � j


j�J

Bj � �
 �

�
�� �

n� jJ j
	n

�
�
�� �

n

	n
� Pr	Bi � �
�

By straightforward induction� this implies that for all I � 
n��

Pr

�

i�I

Bi � �

�
�
Y
i�I

Pr	Bi � �
�

Thus the Bi are ��correlated� where we may take the twin variables "Bi to be
i�i�d� ��� random variables with Pr	Bi � �
 � ��e for each i� Hence� not only is
E
B� � n�e but� by Theorem �� �

Pr	B � 	� � �
n�e
 � F 	n�e� �
�

Remarks� The above fact can also be given a completely di�erent 	and simple

proof via the theory of martingales using Azuma�s inequality 	see� for example� Alon�
Spencer � Erd$os 
�� or McDiarmid 
� ��
 We have presented this proof to illustrate
our techniques� Also� S� Jain has proved the following lemma 
���� Let a�� a�� � � � � an
be n random trials 	not necessarily independent
 such that the probability that trial ai
�succeeds� is bounded above by p regardless of the outcomes of the other trials� Then
if X is the random variable that represents the number of �successes� in these n trials�
and Y is a binomial variable with parameters 	n� p
� then� Pr
X � k� � Pr
Y �
k�� � � k � n�

The assumptions of Jain�s lemma are strictly stronger than those of ��correlation�
For instance� in the balls and bins example�

Pr	Bn � �j



i�	n��


B� � �
 �
n� �

n� �
�

which� for n � �� is greater than Pr	Bn � �
 		 ��e
� Note� however� that our result
does not subsume Jain�s lemma� since his result upper bounds Pr	X � k
 by the true
binomial upper bound� while we only upper bound it by the CH bound�
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�� The Edge Coloring Algorithm� We now present our randomized distributed
edge coloring algorithm� The algorithm uses an idea of Karlo� � Shmoys to reduce
the problem of edge coloring general graphs to that of edge coloring a special class
of bipartite graphs 
���� The Karlo� � Shmoys scheme uses the fact that bipartite
graphs can be edge colored optimally in the PRAM model of computation� which
is provably impossible in our distributed model 
���� Instead� we use a distributed
subroutine that computes a �good� coloring� Also di�erent is the handling of the
�leftover� graphs at the end of the recursion which we color by making use of Luby�s
vertex coloring algorithm�

The input to the algorithm is a distributed network G � 	V�E
� and some �xed
�� � � �� In addition� each node knows upper bounds n and � on jV j and the maximum
degree �	G
 of G� respectively� This information is not necessary but yields better
multiplicative constants� The case where � and n are unknown is sketched towards
the end of x����

The algorithm is recursive and computes an edge coloring of G using at most
���� � O	log��� n
 colors and runs in O	logn
 time� both these bounds hold w�h�p�

Let threshold � log��� n� and new	�
 � ����

q
� log����� n� the algorithm is as

follows�
If � � �� threshold then edge�color G with ��� � colors using
Luby�s algorithm and exit�� else execute the following�

�� Compute a random partition of V 	G
 into black and white
vertices 	all vertices %ip a fair coin independently and in parallel
�
Let G
B� be the subgraph induced by the black vertices� G
W � be
the subgraph induced by the white vertices� and G
B�W � be the
bipartite subgraph formed by the edges having endpoints of di�erent
colors�

�� Edge color G
B�W � using our bipartite edge�coloring algo�
rithm described below� with the parameters new	�
� � and ��

�� Set � �� new	�
 and recurse on G
B� and G
W � using the
same set of fresh new colors on both graphs� with the same param�
eters � and � as before� 	Remark� though the bipartite algorithm
modi�es its �rst parameter new	�
 in the course of its execution� we
assume that it is passed �by value�� i�e�� that the value of new	�

referred to here and in step � above is the same�


Remark� new	�
 is meant to be an upper bound on G
B�� G
W � and G
B�W �� It is
easily seen via the standard CH bounds that it is indeed so w�h�p� � if � � threshold
and hence if � � �� threshold 
����

We now present our main algorithm�a distributed algorithm to color the bipartite
graphs produced above�

���� Distributed Edge Coloring of Bipartite Graphs� Given a bipartite
graph G � 	A�B�E
 we assume that each vertex knows whether it belongs to A or B�
This is an important assumption because such information cannot be computed fast
distributively as mentioned in x�� but it is veri�ed for the bipartite graphs generated
by the Karlo� � Shmoys scheme� From now on� we will refer to vertices in A as the

� When � � O	polylog	n

 we can compute a ��� � coloring deterministically in O	polylog	n


time using an algorithm based on the idea of removing maximal matchings� We prefer to use Luby�s
algorithm here for conciseness�
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top vertices and to the vertices in B as the bottom vertices�
Given parameters �C � � and � such that �C is an upper bound on the degree of

G� the algorithm takes O	logn
 time and colors the bipartite graph G with at most
����C � O	log��� n
 colors w�h�p�� as long as � � � is any constant 	� is used in the
algorithm
� During any iteration of the algorithm� �C is meant to be an upper bound
on the degree of the current graph� we will prove later that this holds w�h�p� as long
as �C � log��� n � threshold� From the remark in x � we can assume that this
is valid when the bipartite algorithm is called �rst� As we will brie%y discuss in x���
this is not needed� but gives better constants� The algorithm is as follows�

�� Part I� While �C � threshold do�
Let GC be the current graph� Pick a set 
 of �C fresh new colors�

	i
 	Random proposal of bottom vertices
 In parallel and independently of the
other vertices in B� each vertex v � B assigns a temporary color to each edge in �	v

with uniform probability without replacement� i�e� edge e� is assigned color � � 

with probability ���C � e� is assigned � � 
 � f�g with probability ��	�C � �
 and
so on�

	ii
 	Lottery of top vertices
 	Remark� The coloring so far is consistent around
any vertex v � B but can be inconsistent around a vertex u � A�
 For each u � A� let
Cu	�
 be the set of edges in �	u
 with temporary color �� Each vertex u � A selects
a winner uniformly at random in Cu	�
� for each nonempty Cu	�
� All other edges�
the losers� are decolored and assigned 
�

	iii
 Set �C �� �C	���
�e� G�� the subgraph of GC induced by the losers 	i�e��
by the 
�edges
� becomes the new current graph�

�� Part II� Let Gr be the remaining graph� Edge color Gr with at most
��	Gr
� � colors by executing Luby�s vertex coloring algorithm on the line graph of
Gr�

Since we use new colors in each iteration� it is clear that when the algorithm
terminates� G has been edge�colored legally� It is also apparent that the algorithm
works based on local information alone� We now turn to placing bounds on the number
of colors used� and the running time�

	� Analysis of the Algorithm� Since the analysis is fairly involved� we �rst
present a higher�level description of it�

	��� The Basic Structure of the Analysis� Our key claim will be that in
every iteration of part 	I
 of the bipartite edge coloring algorithm� the maximum
degree of the graph shrinks by a factor of at least 	� � �
�e w�h�p�� as long as �C �
threshold� That is�

�	G�
 � 	� � �

�	GC


e

with high probability� for any �xed � � �� The condition �C � threshold ensures
that the failure probability given by the extension of the CH�bounds is the inverse of a
superpolynomial function� Hence� w�h�p�� no vertex will violate the degree condition�
The reason for setting threshold � log��� n will be apparent from the probabilistic
analysis�

Once the key claim is established� we can bound both the total number of colors
used and the running time of the algorithm� To bound the number of colors used
observe that if the degree of the graph shrinks at every iteration by at least a 	���
�e
factor w�h�p� then the maximum degree of Gr is at most log��� n w�h�p�
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Hence� if �C � threshold� then w�h�p�� the number of colors used by the
bipartite algorithm is at most

BC	�C
 � �C �
�C

e
	� � �
 � � � ��

�C

ek
	� � �
k � � log��� n�

where k is the smallest integer such that �C	� � �
k�ek � log��� n� Thus� for a
suitable �� � � which depends on � and which can be made arbitrarily small� BC	�C

is at most

BC	�C
 �
�

e

e� �
� ��

	
�C �

�
�� e

e� �
� ��

	
log��� n

� ���!� �C � �� log��� n

� ���� �C

when �C � ! log��� n� The running time of the algorithm is O	logn
 because part 	I

takes O	log�C
 time� and part 	II
� i�e�� Luby�s algorithm� takes O	logn
 time�

Note that if � � �� threshold in the main algorithm� then �C � ! log��� n is
true for the bipartite algorithm and hence the above analysis is valid� also note that
if � � �� log��� n� then we use Luby�s subroutine directly in our main algorithm�

Thus if � � �� threshold in the main algorithm� then the recurrence for the
total number of colors used is

TC	�
 � BC

�
�

�
�

q
� log����� n

	
� TC

�
�

�
�

q
� log����� n

	
� ���� � � o	�


� ��� � �

If � � �� log��� n� then the main algorithm uses Luby�s subroutine directly to get a
�� � � � �� log��� n edge coloring� Hence� the total number of colors to color any
graph is at most ��� � � �� log��� n for any �xed � � �� w�h�p�

A Truly Distributed Algorithm� We now sketch the modi�cations needed to
handle the case when both � and n are unknown� Each node u initially computes the
value �u � maxv�N�u� deg	v
� The recursion of the Karlo� � Shmoys scheme and the
loop of part 	I
 of the bipartite subroutine are then repeated for c log�u times� for a
constant c � � chosen large enough� A vertex u is said to be active as long as no more
than c log�u rounds have elapsed� it is inactive otherwise� An edge incident on an
inactive node is inactive� It is convenient to think of Luby�s algorithm as run directly
by the edges� An inactive and yet uncolored edge f will wait until all its neighboring
edges are either colored or inactive� at which point it starts running Luby�s algorithm
with a palette of deg	f
�� fresh colors� where deg	f
 denotes the number of inactive
edges incident upon f � There are two main observations to prove the correctness
and the bounds on the number of colors used by this modi�ed algorithm� First� all
the neighbors of a vertex u will stay active for at least c log deg	u
 rounds� Hence�
all vertices such that deg	u
 � �	log��� n
 will be able 	w�h�p�
 to color enough
edges to reduce their degree until it drops to O	log��� n
� Second� as discussed in x��
Luby�s algorithm still works correctly when vertices 	in our case� edges
 are added
dynamically�
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The high probability analysis carries through with these modi�cations� Simple
calculations show that with these modi�cations the total number of colors used in�
creases to at most ���� � ��� log��� n� We omit the calculations for this modi�ed
algorithm� which are similar to those presented here for the case where n and � are
known�

We now return to the case where n and � are known� and turn to the task of
proving the key claim� We wish to show that given a graph G and � such that
� � �	G
 and � � threshold then� after one iteration of Part 	I
 of the bipartite
algorithm� the maximum degree of the new graph� �	G�
� is at most 	� � �
��e
w�h�p�� for any �xed � � �� It turns out that the analysis is considerably easier for
the top vertices than for the bottom vertices� We begin with the easy part�

	��� Analysis of Top Vertices� Let u be a generic top vertex with incident
edges i � 	u� vi
� Recall that a loser is an edge which� after having got a tentative
color in the random proposal� lost the lottery and got decolored� So� the new degree
of u is given by the number of losers incident with it�

From the point of view of a top vertex� the random proposal and the lottery
are equivalent to the following random experiment� For each edge i incident on u
we introduce a ball i� and for each color k we introduce a bin k� the assignment
of a tentative color to an edge by the algorithm is equivalent to throwing each ball
into one of the � bins independently and uniformly at random� since the bottom
vertices assign tentative colors with uniform probability and independently of the
other bottom vertices� Recalling that we have at most � balls and exactly � bins�

�losers � �balls � �winners

� �bins� �nonempty bins

� �empty bins�

Let X be a random variable denoting the number of losers� To estimate X and its tail
distribution we will study the random variable B � �empty bins� For this purpose�
we introduce � many indicator random variables Bi� where Bi � � if bin i is empty�
and � otherwise� hence� B �

P
i�	

Bi� Notice that X � B always� The variable

B was studied in x� where it was shown that E
B� � ��e and that the Bi�s are ��
correlated� which implies that Pr	B � 	� � �
��e
 � F 	��e� �
� Since E
X � � E
B�
and Pr	X � 	� � �
��e
 � Pr	B � 	� � �
��e
 we get

Theorem ���� Let u be a top vertex and X be the random variable denoting the
number of losers incident on it� Then� E
X � � ��e and

Pr	X � 	� � �
��e
 � F 	��e� �
�

	��� Analysis of Bottom Vertices� In this section we analyze what happens
to the new degree of a generic bottom vertex vb� This case is considerably harder
to handle than the previous one� because of the way in which the random variables
describing the process are correlated� For a top vertex� the dependency among the
variables was playing for us� given that some edges incident on a top vertex are losers�
the probability of having another loser decreases� For a bottom vertex the situation
is reversed� having some edges lose the lottery might even make the probability of
having another loser increase� The problem can be seen in the following situation�
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Let x� � vb and x� be bottom vertices� and y� and y� be top vertices which induce
a four�cycle� i�e�� there is an edge ei�j � 	xi� yj
 for i� j � �� �� Suppose we are given
that e��� got tentative color � and lost the lottery� and that e��� got tentative color ��
we will argue intuitively that given this� the probability of e��� losing the lottery has
increased� Since e��� lost� the probability of e��� getting tentative color � increases�
which implies that the probability of e��� getting tentative color � also increases� and
this increases the probability of e��� losing the lottery�

For the sake of the analysis we modify the algorithm as follows� instead of per�
forming all random proposals in parallel� suppose that the bottom vertices perform
their random proposals sequentially� in some order� This does not modify the proba�
bility distributions because the choices are still done independently� We want to focus
our attention on the last vertex vb performing the random proposal� We will use the
fact that when vb performs its random proposal� all edges not incident on vb already
have a tentative color� By symmetry� any upper bound on the probabilities we can
�nd for vb will hold for all bottom vertices�

Let i � 
dvb � denote an edge incident with the bottom vertex vb� with the other
endpoint of i being ui� We introduce the indicator random variables

Xi �

�
� i loses the lottery
� otherwise

and want to study the expectation and tail probability distribution ofX �
P

i�	dvb 

Xi�

Computing the expectation is easy�
Lemma ���� E
X � � ��e�
Proof� Let vb be the bottom vertex� It is su&cient to show that Pr	Xi � �
 � ��e�

for all i � 
dvb �� From the analysis of the top vertices� we know that the expected
number of losers incident with ui is at most ��e and hence that

P
j���ui�

Pr	j loses
 �
��e� By symmetry� Pr	j loses
 � ��e for all j � �	ui
� and hence Pr	Xi � �
 � ��e�

We now study the tail probability distribution of X � Our goal is to show that
X � 	� � �
��e w�h�p�� for any �xed � � �� Establishing this claim will take several
lemmas�

We use a method di�erent from the preliminary version of this work 
���� to
present stronger results� We �rst invoke a result of Schmidt� Siegel � Srinivasan

���� which in fact was motivated in part by 
��� and in particular� by the notion of
	�correlation�

De�ne� for z � 	z�� z�� � � � � zn
 � �n� a family of symmetric polynomials qj	z
�
� � j � n� where q�	z
 � �� and for � � j � n�

qj	z

�
�

X
��i��i�����ij�n

zi�zi� 
 
 
 zij �

Theorem ��� 	
���
� Let Y�� Y�� � � � � Yn be arbitrary 	not necessarily independent

��� random variables with Y �

Pn
i�� Yi� Then for any a � � and any positive

probability event Z�

Pr	Y � ajZ
 � min
	���


�a

E
q		Y�� Y�� � � � � Yn
jZ��
a
	


 �

Proof� The actual theorem of 
��� is stated unconditionally without reference to
Z� but the above conditional extension is easily derivable from its proof� as follows�
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Since the Yis are binary� it is easily seen that for any � � a� given that Z occured�
	Y � a
 implies 	q		Y�� Y�� � � � � Yn
 �

�
a
	




� Thus by Markov�s inequality�

Pr	Y � ajZ
 � E
q		Y�� Y�� � � � � Yn
jZ��
a
	


 �

To bound the upper tail of X we will de�ne an event A such that A happens
w�h�p�� and such that for a suitably chosen k�

E
qk	X�� � � � � Xdvb

jA��


�����e��

k


 � e���
����	�


In combination with Theorem ���� this will show that Pr	X � 	���
��e
 almost
surely because�

Pr	X � 	� � �
��e
 � Pr	X � 	� � �
��e j A
 Pr	A
 � Pr	X � 	� � �
��e j Ac
 Pr	Ac


� Pr	X � 	� � �
��e j A
 � Pr	Ac
	 


� min
i�	dvb 


E
qi	X�� � � � � Xdvb

jA��


�����e��

i


 � Pr	Ac


� E
qk	X�� � � � � Xdvb

jA��


�����e��

k


 � Pr	Ac
�

which is small by assumption 	note that A happens w�h�p�
� To prove the upper
bound 	�
� we will focus on a generic term Pr

�V
i�I Xi � �jA
 in

E
qk	X�� � � � � Xdvb

jA� �

X
I		dvb 
�jIj�k

E

Y
i�I

XijA� �
X

I		dvb 
�jIj�k

Pr

�

i�I

Xi � �jA
�
�

which will also suggest to us a suitable choice for the event A�
Consider then a generic subset I � fw�� w�� � � � � wkg � 
dvb � of edges incident on

the bottom vertex vb 	corresponding to the neighbors fuwi
g of vb
� and let us see

how to compute Pr
�V

i�I Xi � �


� Without loss of generality we assume I � 
k��

Recall that we are analyzing the situation where vb is the last vertex to perform its
random proposal� This means that prior to the assignment of a tentative color to
edge i � 	vb� ui
� all other edges incident on ui already have their tentative color�
Using the balls�and�bins language� we can say that prior to throwing ball i at random
into one of the bins at vertex ui� all balls coming from the other neighbors of ui
have been thrown� We will think of i as a red ball and of the other edges at ui as
white balls� Once the red ball is thrown in� say� bin � � 
��� a winner is selected
uniformly at random among all 	i�e�� red and white
 balls in bin �� All other balls� the
losers� are discarded� Notice that the probability of discarding the red ball is itself a
random variable which depends on the particular placement of the white balls prior
to throwing the red ball� 	Hence� we will study the conditional probability that the
red ball loses the lottery� given a placement of white balls�


Given any placement of white balls at ui� we construct a vector of probabilities
Ci as follows� Let a	�i denote the number of white balls in bin � � 
�� of vertex ui�
and let p	�i � a	�i�	� � a	�i
 denote the probability that the red ball loses the lottery
given that it was thrown in bin � 	equivalently� p	�i is the probability that edge i loses�
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given that it got tentative color �
� For each neighbor ui of our bottom vertex vb�
we construct the corresponding vector Ci � 	p��i� p��i� � � � � p
�i
� We then construct a
�� k matrix MI whose i�th column is the vector Ci� The next lemma explains why
this matrix is relevant to us� From now on� let p	m� �


�
� m	m� �
 
 
 
 	m� �� �
�

Lemma ����

Pr

�

i�I

Xi � �

�
�

perm	MI


p	�� k

�

Proof� The random proposal of v restricted to I � is equivalent to choosing a
one�to�one function 
 � I � 
�� uniformly at random among the set P of all such
functions� Recall that the entry Mi�j of MI is the probability pi�j that edge wj loses
given that it is given color i� Hence�

Pr	�i�IXi � �
 �
X
��P

Pr	�i�IXi � � j 
is selected
 Pr	
is selected


�
X
��P

�
M������ M������ � � � M��k��k


 k��Y
i��

�

�� i

�
perm	MI


p	�� k

�

We now want to �nd a good upper bound for perm	MI
� The following lemma
gives a simple upper bound that is su&cient for our purposes�

Lemma ���� Let M be a matrix with c columns and r rows 	c � r
 and non�
negative entries� Let Si denote the sum of the entries of the i�th column of M � Then�
perm	M
 �Qi�	c
 Si�

Proof� Let P � f
 j 
 � 
c�� 
r�� 
 is one�to�oneg� Then�

perm	M
 �
X
��P

M������ M������ � � � M��c��c

� 	M��� � � � ��Mr��
 	M��� � � � ��Mr��
 � � � 	M��c � � � ��Mr�c


�
Y
i�	c


Si�

The next lemma relates the value of Si to that of ��e � Pr	i loses
� i � �	vb
�
It is an application of the general de�nition of 	�correlation� Before the proof of the
lemma� we establish

Proposition ��
� If � � p � �� q � �� p and m is a positive integer� then

mX
r��

�
m
r

	
prqm�r

r

r � �
� �� 	�� qm��


p	m� �

�

Proof� Let

f	p
 �
mX
r��

�
m
r

	
prqm�r

k

k � �

� �� qm �
mX
r��

�
m
r

	
prqm�r

�

k � �
�
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Integrating both sides of the binomial expansion

	x� q
m �

mX
r��

�
m
r

	
xrqm�r

between � and p� we get

�� qm��

m� �
� p 	�� f	p

�

from which the proposition follows�
We now return to our scenario where vb is the last bottom vertex to pick tentative

colors for its edges� Recall that we are focusing on a set I � fw�� w�� � � � � wkg of edges
incident on vb and that we want a good upper bound on Pr

�V
i�I Xi � �



� we had

also assumed that I � 
k� without loss of generality� Combining Lemma �� and
Lemma ��� we get

Pr

�

i�I

Xi � �

�
� perm	MI


p	�� k

� 'k

i��Si
p	�� k


where for each i � 
dvb �� Si is de�ned to be the sum of the entries in Ci� So� a good
upper bound on Si for each i� will hopefully translate into a good upper bound for
Pr
�V

i�I Xi � �


� The next lemma says that Si � �	� � ��
�e w�h�p� for any �xed

�� � �� and for each i� Thus� a good choice for A is
A � �Si � �	� � ��
�e for each i � 
dvb ���

where �� will be �xed later� The next lemma is an application of the general de�nition
of 	�correlation�

Lemma ���� Let i � 	vb� ui
 be any edge in 
dvb �� and Si be the sum of the entries
of Ci� Then� E
Si� � ��e � � and

��� � �� P r	Si � 	� � ��
�
 � F 	�� ��
�

Proof� Let Z	 be the random variable denoting the number of white balls in bin
� of ui� and Y	 � Z	�	Z	 � �
 be the random variable denoting the probability that
the red ball loses the lottery given that it lands in bin �� Then� Si � Y

�
�
P

	 Y	�
Note that the Y	�s are bounded random variables with values in 
�� ��� We will show
that E
Y � � ��e and that the Y	�s are ��correlated 	under the general de�nition of
	�correlation
� which will give our claim�

We may assume that the total number d of white balls equals � � � 	i�e�� that
the degree of ui is �
� Pr	Y � 	� � ��
��e
 is maximized at d � � � �� as d varies
from � to � � �� 	To see this� assume d � � � � � � � � � �� Add � yellow balls
to the white balls� and run two experiments� In one experiment throw the white and
red balls and compute the probability that the red ball loses the lottery� In the other
experiment� throw white� yellow and red balls and again compute the probability
that the red ball loses� In both experiments� let us look at the bin where the red ball
fell� The probability that the red ball loses is b�	b� �
 for the �rst experiment� and
	b�y
�	b�y��
 for the second� where b and y are� respectively� the number of white
and yellow balls in the bin� Since y � �� b�	b � �
 � 	b � y
�	b � y � �
� If Yi	d

indicates the variable Yi when ui has degree d� then Yi	d
 � Yi	�
 for all i � 
�� and
d � 
���
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First� we will show that� for all i� E
Yi� � ��e and then we will show that� for any
set of � indices J � 
�� and strictly positive integers si�

E

Y
i�J

Y si
i � � ��e	�	�


Given this we can apply Corollary ��� by introducing n independent twin ���
random variables "Yi such that E
 "Yi� � Pr	 "Yi � �
 � ��e� Since the "Yi�s are binary�
inequality 	�
 is the same as

E

Y
i�J

Y si
i � �

Y
i�J

E
 "Yi� �
Y
i�J

E
 "Yi
si
��

which is to say that the Yi�s are ��correlated� Noting that � � Yi � �� it su&ces to
show that

E

Y
i�J

Yi� � ��e	�	�


Without loss of generality we can assume J � 
��� We will prove inequality 	�

by induction on � � �� when � � ��

E
Y�� �


��X
r��

�
�� �
r

	�
�

�

	r �
�� �

�

	
���r
r

r � �

� 	�� ���

 � ��e�

where the second equality follows from Proposition ���� Notice that for all j � 
���
E
Yj � � E
Y�� � ��e� When � � �� the law of conditional probabilities gives

E

Y
i�		


Yi� � E
Y�Y� 
 
 
Y	�� E
Y	 j Y�Y� 
 
 
Y	����	�


Suppose we show that for all non�zero ci � 
�� �� with i � 
�� ���

E
Y	 j
	��

i��

Yi � ci� � �

e
�	!


then� since the product Y�Y� 
 
 
Y	�� in equation 	�
 is zero when any ci is zero� we
see by induction on � that

E


	Y
i��

Yi� � E
Y�Y� 
 
 
Y	�� E
Y	 j Y�Y� 
 
 
Y	����

� �

e
E


	��Y
i��

Yi�

� �

e	
�
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Hence� the claim follows if we can show that inequality 	!
 holds�
If ai denotes the number of white balls that fell into bin i� then ci � ai�	ai � �
�

Let a �
P	��

i�� ai � �� �� p � ��	�� �� �
� and q � �� p� Then

E
Y	j
	��

i��

Yi � ci� � E
Y	j
	��

i��

Zi � ai�

�


���aX
r��

t	r� a
�

where

t	r� a

�
�

�
�� �� a

r

	
prq
���a�r

r

r � �
�

It is easy to check that t	r� a
 � t	r� a��
� As a consequence� the maximum value

of E
Y	j
V	��
i�� Yi � ci� is attained at a � �� �� in which case we have


���aX
r��

t	r� a
 �


�	X
r��

t	r� �� �


�


�	X
r��

�
�� �
r

	
prq
�	�r

r

r � �

� q
�	�� � ��e�

by Proposition ����
We remark that a short proof of Lemma ��� can be derived� using the elegant

work of 
���
De�ne ��

�
� ����� Thus� de�ning the event A as �Si � �	� � ��
�e for each

i � 
dvb ��� Lemma ��� gives the bound

Pr	Ac
 � �F 	��e� ��
�	�


Now given that A holds� Lemma ��� shows that perm	MI
 � 	�	�� ��
�e

k and thus

from Lemma �� �

Pr

�

i�I

Xi � �jA
�
� 	�	� � ��
�e


k

p	�� k

�	��


We now turn to de�ning k suitably� to get a good tail bound� Invoking Theorem ���
for

X �
X

i�	dvb 


Xi

in conjunction with 	��
� we see that if a � �	� � �
�e� then

Pr	X � ajA
 � E
qi	X�� � � � � Xdvb

jA��

a
k
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�
�dvb
k



	�	� � ��
�e


k

p	�� k

�
a
k



�

�


k



	�	� � ��
�e


k

p	�� k

�
a
k



�

	�	� � ��
�e

k

p	�	� � �
�e� k

�	��


To lower bound p	�	� � �
�e� k
� we need

Lemma ���� For positive integers t and �� t	�p	t� �
 � e	
��t� if � � t���

Proof� We �rst note that ln	�� x
 � ��x� for � � x � ���� This is true� since if
we de�ne f	x


�
� ln	�� x
 � �x� then f	�
 � � and f �	x
 � 	�� �x
�	�� x
� which

is non�negative for � � x � ���� Now�

p	t� �


t	
�

	��Y
i��

	t� i


t

� exp

�
	��X
i��

ln	�� i

t



�

� exp

�
�

	��X
i��

�i

t

�
	since � � t��


� exp

�
� 	�� �
�

t

	

� e�	
��t�

We now set k � b����ec� Using Lemma ��! and the facts �� � ����� �� � � e��� and
� � �� � e�� � we see� from 	��
� that

Pr	X � �	� � �
�ejA
 � e���
����	��


Applying bounds 	�
 and 	��
 to 	 
� we �nally arrive at

Pr	X � �	� � �
�e
 � e���
����	��


We can now see why the parameter threshold must be �	log��� n
� the failure
probability 	��
 goes to zero superpolynomially fast if � � �	log��� n
� for any �xed
� � �� Using 	��
� we conclude our analysis with

Theorem ��
� The new degree of the graph after one iteration of Part 	I
 of the
bipartite algorithm is at most 	� � �
��e w�h�p�� for any 
xed � � ��


� Extensions and Applications of the Algorithm� Recently� Panconesi and
Dubhashi have improved our bounds by presenting a randomized distributed edge�
coloring algorithm that runs in polylogarithmic time and uses at most �	� � o	�

 �
O	log n
 colors w�h�p�
��� However� we feel that this work has independent interest
owing to the tools developed to analyze the algorithm� We now describe some recent
applications of this work�

Our results on 	�correlation have been used to prove the performance of a ran�
domized rounding technique for multicommodity %ow 	Young 
���
� and to provide an
elementary method to bound the upper tail of the number of prime factors of random
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integers 	Srinivasan 
���
� As mentioned in x���� the work of 
��� which expands the
applicability of CH�type bounds to more non�independent scenarios� was inspired in
part by this work� Our results on upper tail bounds for sums of bounded 	�correlated
random variables� have been generalized in 
����

Our algorithm has also been used and extended in the context of emulating PRAM
algorithms using a limited number of processors 
���
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