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Abstract

We present a new general upper bound on the number of examples required to estimate all of the

expectations of a set of random variables uniformly well. The quality of the estimates is measured

using a variant of the relative error proposed by Haussler and Pollard. We also show that our

bound is within a constant factor of the best possible. Our upper bound implies improved bounds

on the sample complexity of learning according to Haussler’s decision theoretic model.
∗A preliminary version of this work appeared in the Proceedings of the Eleventh Annual ACM-SIAM Symposium

on Discrete Algorithms, 2000.
†Part of this work was done while this author was at the School of Computing of the National University of

Singapore.
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1 Introduction

Haussler [3], building on the work of Valiant [13], Vapnik [14] and others, introduced an abstract

model of learning that unified the treatment of a variety of problems. In Haussler’s model, “exam-

ples” are drawn independently at random according to some probability distribution and given to

the learning algorithm, whose goal is to output a “hypothesis” that performs nearly as well as the

best hypothesis in some “comparison class”. The number of examples which is sufficient to ensure

that with high probability a relatively accurate hypothesis can be determined, has become known

as the sample complexity in this context.

Haussler reduced the study of sample complexity to a more basic problem. For a real-valued

function f and a probability distribution P over the domain of f , a natural estimate of the expec-

tation of f(x) when x is drawn according to P can be obtained as follows: obtain several samples

x1, ..., xm independently from P , and use 1
m

∑m
i=1 f(xi), the sample average, as the estimated ex-

pectation. Chernoff-Hoeffding bounds can generally be used to show that accurate estimates are

likely to be obtained here if m is large enough. To get good sample complexity bounds in Haussler’s

model, we need a generalization of this setting: for a domain X, a probability distribution P over

X, and a possibly infinite set F of functions defined on X, one wants to use one collection of

independent draws from P to simultaneously estimate the expectations of all the functions in F

(w.r.t. P ).

Let ν > 0 be an adjustable parameter. Haussler proposed using the following measure of

distance between two non-negative reals r and s, to determine how far the estimates are from the

true expectations:

dν(r, s) =
|r − s|
r + s+ ν

.

This can be thought of as a modification of the usual notion of “relative error” to make it well-

behaved around 0 (i.e., when both r and s are non-negative reals that are close to 0) and symmetric

in its arguments r and s. It can be verified that dν is a metric on the set of non-negative reals R+,

and has some good metric properties such as being compatible with the ordering on the reals (if

0 ≤ r < s < t, then dν(r, s) < dν(r, t) and dν(s, t) < dν(r, t)) [3]. Also, as seen below, upper bounds

on this metric yield upper bounds for other familiar distance metrics.
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The pseudo-dimension [10] (defined in Section 2) of a class F of [0, 1]-valued functions is a

generalization of the Vapnik-Chervonenkis dimension [15], and is a measure of the “richness” of

F . Haussler [3] and Pollard [11] showed that, for any class F whose pseudo-dimension is d, if we

sample

O

(
1
α2ν

(
d log

1
α

+ d log
1
ν

+ log
1
δ

))
(1)

times, then with probability 1 − δ, the dν distance between the sample average and the true

expectation will be at most α, for all the functions in F .

In this paper, we prove a bound of

O

(
1
α2ν

(
d log

1
ν

+ log
1
δ

))
examples, which improves on (1) by a logarithmic factor when α is relatively small. Furthermore,

we show that our bound is optimal to within a constant factor.

A line of research culminating in the work of Talagrand [12] studied the analogous problem in

which the absolute value of the difference between the sample average and the true expectation was

used instead of the dν metric: O( 1
α2 (d + log(1/δ))) examples have been shown to suffice here. A

disadvantage of this type of analysis is that, informally, the bottleneck occurs with random variables

whose expectation is close to 1/2. In a learning context, these correspond to hypotheses whose

error is close to that obtained through random guessing. If good hypotheses are available, then

accurate estimates of the quality of poor hypotheses are unnecessary. The dν metric enables one

to take advantage of this observation to prove stronger bounds for learning when good hypotheses

are available, which is often the case in practice. (See [3] for a more detailed discussion of the

advantages of the dν metric.) In any case, our upper bound yields a bound within a constant factor

of Talagrand’s by setting α = ε, ν = 1/2, and the upper bound for PAC learning by setting ν = ε,

α = 1/2.

Our upper bound proof makes use of chaining, a proof technique due to Kolmogorov, which was

first applied to empirical process theory by Dudley.1 Our analysis is the first application we know

of chaining to bound the sample complexity of obtaining small relative error. The proof of our

lower bound generalizes an argument of [5] to the case in which estimates are potentially nonzero.
1See [10] for a discussion of the history of chaining, and [8] for a simple proof of a bound within a constant factor

of Talagrand’s using chaining.
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2 Preliminaries

Fix a countably infinite domain X. (We assume X is countable for convenience, but weaker

assumptions suffice: see [3].) The pseudo-dimension of a set F of functions from X to [0, 1],

denoted by Pdim(F), is the largest d such that there is a sequence x1, ..., xd of domain elements

from X and a sequence r1, ..., rd of real thresholds such that for each b1, ..., bd ∈ {above,below},

there is an f ∈ F such that for all i = 1, ..., d, we have f(xi) ≥ ri ⇔ bi = above. For k ∈ N, the

pseudo-dimension of a subset F of [0, 1]k is defined using the above by viewing the elements of F

as functions from {1, ..., k} to [0, 1]. The VC-dimension is the restriction of the pseudo-dimension

to sets of functions from X to {0, 1}.

We will make use of the usual Hoeffding bound; let exp(x) denote ex.

Lemma 1 ([6]) Let Y1, ..., Ym be independent random variables for which each Yi takes values in

[ai, bi]. Then for any η > 0, we have

Pr (|(
∑m
i=1 Yi)− (

∑m
i=1 E(Yi))| > η) ≤ 2 exp

(
−2η2∑m

i=1
(bi−ai)2

)
.

The following lower bound is a slight modification of Theorem 5 on page 12 of [1], and is proved

similarly.

Lemma 2 Suppose that Y1, . . . , Ym is a sequence of independent random variables taking only the

values 0 and 1, and that for all i, Pr(Yi = 1) = p. Suppose q = 1− p and mq ≥ 1. For any integer

k such that k = mp− h ≥ 1, h > 0, if we define β = 1
12k + 1

12(m−k) , then,

Pr

(
m∑
i=1

Yi = k

)
≥ 1√

2πpqm
exp

(
− h2

2pqm
− h3

2p2m2
− h4

3q3m3
− h

2qm
− β

)
.

Proof: Robbins’ formula (m! =
(
m
e

)m√2πm · eαm , where 1/(12m+ 1) ≤ αm ≤ 1/(12m)) gives

Pr

(
m∑
i=1

Yi = k

)
≥

(
pm

k

)k ( qm

m− k

)m−k ( m

2πk(m− k)

)1/2

e−β

= (2πpqm)−1/2e−β
(
pm

k

)k+1/2 ( qm

m− k

)m−k+1/2

= (2πpqm)−1/2e−β
(

1− h

pm

)−k−1/2 (
1 +

h

qm

)−m+k−1/2

.

Since, for t > 0, ln(1 + t) < t− 1
2 t

2 + 1
3 t

3 and ln(1− t) < −t− 1
2 t

2 − 1
3 t

3, we have

Pr

(
m∑
i=1

Yi = k

)
≥ (2πpqm)−1/2e−β exp

(
(pm− h+ 1/2) ·

(
h

pm
+

h2

2p2m2
+

h3

3p3m3

)

−(qm+ h+ 1/2) ·
(
h

qm
− h2

2q2m2
+

h3

3q3m3

))
.
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Expanding this expression and noting that h < mp and mq ≥ 1 completes the proof.

The following correlational result involving a “balls and bins” experiment will be useful.

Lemma 3 ([9, 2]) Suppose we throw m balls independently at random into n bins, each ball having

an arbitrary distribution. Let Bi be the random variable denoting the number of balls in the ith bin.

Then for any t1, ..., tn, Pr (
∧n
i=1Bi ≥ ti) ≤

∏n
i=1 Pr(Bi ≥ ti).

We will also use the following, which has been previously used (see [7]).

Lemma 4 For all x ∈ [0, 1] and all real a ≤ 1,

(1− a)x ≤ 1− ax.

Proof: The LHS is convex in x, and the RHS is linear in x; the LHS and RHS are equal when x

is 0 or 1.

For ~x = (x1, ..., xm) ∈ Xm, and f : X → [0, 1], define Ê~x(f) = 1
m

∑m
i=1 f(xi) to be the sample

average of f w.r.t. ~x. For a probability distribution P over X, and a function f defined on X, let

EP (f) denote the expectation of f(x) when x is drawn according to P .

Recall from the introduction that for ν > 0 and r, s ≥ 0, dν(r, s) = |r−s|
ν+r+s . We will find it useful

in our analysis to extend the domain of dν to pairs r, s for which r + s > −ν.

For a family F of [0, 1]-valued functions defined on X, define opt(F , ν, α, δ) to be the least M

such that for all m ≥M , for any probability distribution P over X, if m examples ~x = (x1, ..., xm)

are drawn independently at random according to P , with probability at least 1− δ, for all f ∈ F ,

dν(Ê~x(f),EP (f)) ≤ α. Let opt(d, ν, α, δ) be the maximum of opt(F , ν, α, δ) over all choices of F

for which Pdim(F) = d. In other words, opt(d, ν, α, δ) is the best possible bound on opt(F , ν, α, δ)

in terms of Pdim(F), ν, α, and δ. The following is the main result of this paper.

Theorem 5 opt(d, ν, α, δ) = Θ
(

1
α2ν

(
d log 1

ν + log 1
δ

))
.

3 Upper bound

For each positive integer m, let Γm denote the set of all permutations of {1, . . . , 2m} that, for each

i ≤ m, either swap i and m+ i, or leave both i and m+ i fixed. For any g ∈ R2m, and σ ∈ Γm, let

µ1(g, σ) = (1/m)
∑m
i=1 gσ(i), and µ2(g, σ) = (1/m)

∑m
i=1 gσ(m+i).

We will make use of the following known lemma, which is proved by first bounding the prob-

ability that a sample gives rise to an inaccurate estimate in terms of the probability that two
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samples give rise to dissimilar estimates, and then applying the fact that any permutation that

swaps corresponding elements of the two samples is equally likely.

Lemma 6 ([15, 10, 3]) Choose a set F of functions from X to [0, 1], a probability distribution P

over X, and ν > 0, 0 < α < 1, and m ≥ 2/(α2ν). Suppose U is the uniform distribution over Γm.

Then,

Pm{~x : ∃f ∈ F , dν(Ê~x(f),EP (f)) > α}

≤ 2 · sup
~x∈X2m

U

{
σ : ∃f ∈ F , dν

(
1
m

m∑
i=1

f(xσ(i)),
1
m

m∑
i=1

f(xσ(m+i))

)
> α/2

}
.

We will use the following lemma due to Haussler.

Lemma 7 ([3]) Choose m ∈ N. Let g ∈ [0, 1]2m, ν > 0, and 0 < α < 1, and let U be the uniform

distribution over Γm. Then U {σ : dν (µ1(g, σ), µ2(g, σ)) > α} ≤ 2e−2α2νm.

Lemma 8 shows that when the L1 norm of g is relatively small, one can get something stronger.

Lemma 8 Choose ν, α > 0. Choose m ∈ N and g ∈ [−1, 1]2m for which
∑2m
i=1 |gi| ≤ cνm for

some c ≤ 2/3. Then if U is the uniform distribution over Γm, U {σ : dν (µ1(g, σ), µ2(g, σ)) > α} ≤

2e−α
2νm/36c.

Proof: Expanding the definition of dν and simplifying, we get

dν (µ1(g, σ), µ2(g, σ)) =

∣∣∣∑m
i=1

(
gσ(i) − gσ(m+i)

)∣∣∣
νm+

∑2m
i=1 gi

.

Also, note that
∑m
i=1(gi − gm+i)2 ≤

∑m
i=1 2|gi − gm+i| ≤ 2cνm. One can sample uniformly from

Γm by independently deciding whether σ swaps i and m + i for i = 1, ...,m. Thus, applying the

Hoeffding bound (Lemma 1) with the fact that −|gσ(i)−gσ(m+i)| ≤ gσ(i)−gσ(m+i) ≤ |gσ(i)−gσ(m+i)|,

we get

U {σ : dν(µ1(g, σ), µ2(g, σ)) > α} = U

{
σ :

∣∣∣∣∣
m∑
i=1

(gσ(i) − gσ(m+i))

∣∣∣∣∣ > α

(
νm+

2m∑
i=1

gi

)}

≤ 2 exp

(
−α2(νm+

∑2m
i=1 gi)

2

4cνm

)
.

Since −cνm ≤
∑2m
i=1 gi ≤ cνm and c ≤ 2/3, the term (νm +

∑2m
i=1 gi)

2 takes its minimal value at∑2m
i=1 gi = −cνm. Therefore

U {σ : dν(µ1(g, σ), µ2(g, σ)) > α} ≤ 2 exp
(
−α2(νm−cνm)2

4cνm

)
.
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Since c ≤ 2/3, the lemma follows.

For ~v, ~w ∈ Rk, let `1(~v, ~w) = 1
k

∑k
i=1 |vi − wi|. For F ⊆ Rk, ~v ∈ Rk, define `1(~v, F ) =

min{`(~v, ~f) : ~f ∈ F}; if F = ∅, then `1(~v, F ) =∞. The following result of [4] bounds the size of a

“well-separated” set of a certain pseudo-dimension:

Lemma 9 ([4]) For all k ∈ N, for all 0 < ε ≤ 1, if each pair f, g of distinct elements of some

F ⊆ [0, 1]k has `1(f, g) > ε, then |F | ≤ (41/ε)Pdim(F ).

The following is the key lemma in our analysis, and is a new application of chaining.

Lemma 10 Choose d ∈ N. Choose an integer m ≥ 125(2d+1)
α2ν

and F ⊆ [0, 1]2m for which Pdim(F ) =

d. Then if U is the uniform distribution over Γm, for any α > 0, ν > 0,

U {σ : ∃f ∈ F, dν (µ1(f, σ), µ2(f, σ)) > α} ≤ 6 · (2624/ν)de−α
2νm/90.

Proof: Let F−1 = ∅. For each nonnegative integer j, construct Fj by initializing it to Fj−1,

and as long as there is a f ∈ F for which `1(f, Fj) > ν/22j+4, choosing such an f and adding

it to Fj . For each f ∈ F and each j ≥ 0 choose an element ψj(f) of Fj such that `1(f, ψj(f))

is minimized. (Since `1(~v, ~w) > ν/22j+4 for distinct ~v, ~w ∈ Fj , Fj is finite by Lemma 9. So

this minimum is well-defined.) We have `1(f, ψj(f)) ≤ ν/22j+4, as otherwise f would have been

added to Fj . Let G0 = F0, and for each j > 0, define Gj to be {f − ψj−1(f) : f ∈ Fj}. Since

`1(f, ψj−1(f)) ≤ ν/22j+2, we have for all g ∈ Gj that
∑2m
i=1 |gi| ≤ νm/22j+1. By induction, for each

k, each f ∈ Fk has gf,0 ∈ G0, · · · , gf,k ∈ Gk such that f =
∑k
j=0 gf,j . Let F∗ = ∪kFk. Since for all

f ∈ F , for all k we have `1(f, ψk(f)) ≤ ν/22k+4, F∗ is dense in F w.r.t. `1. Define

p = U {σ : ∃f ∈ F, dν (µ1(f, σ), µ2(f, σ)) > α} .

Since F∗ is dense in F ,

p = U {σ : ∃f ∈ F∗, dν (µ1(f, σ), µ2(f, σ)) > α}

and thus,

p = U

σ : ∃f ∈ F∗,
∣∣∣∣∣
m∑
i=1

(
fσ(i) − fσ(m+i)

)∣∣∣∣∣ > α

(
νm+

2m∑
i=1

fi

)}
.

For each f ∈ F∗, there are gf,0 ∈ G0, gf,1 ∈ G1, ... such that f =
∑∞
j=0 gf,j (only a finite number of

the gf,j ’s are nonzero). Applying the triangle inequality, we see that

p ≤ U

σ : ∃f ∈ F∗,
∞∑
j=0

∣∣∣∣∣
m∑
i=1

(
(gf,j)σ(i) − (gf,j)σ(m+i)

)∣∣∣∣∣ > α

νm+
∞∑
j=0

2m∑
i=1

(gf,j)i

 .
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Let ν0 = ν/3, and for each j ∈ N, let νj = ν
√
j + 1/(3 · 2j). Then

∑∞
j=0 νj ≤ ν, and hence,

p ≤ U

σ : ∃f ∈ F∗,
∞∑
j=0

∣∣∣∣∣
m∑
i=1

(
(gf,j)σ(i) − (gf,j)σ(m+i)

)∣∣∣∣∣ >
∞∑
j=0

α

(
νjm+

2m∑
i=1

(gf,j)i

)
≤

∞∑
j=0

U

σ : ∃f ∈ F∗,
∣∣∣∣∣
m∑
i=1

(
(gf,j)σ(i) − (gf,j)σ(m+i)

)∣∣∣∣∣ > α

(
νjm+

2m∑
i=1

(gf,j)i

)}

≤
∞∑
j=0

U

{
σ : ∃g ∈ Gj ,

∣∣∣∣∣
m∑
i=1

(
gσ(i) − gσ(m+i)

)∣∣∣∣∣ > α

(
νjm+

2m∑
i=1

gi

)}
, (2)

since each gf,j ∈ Gj .

Choose j > 0. For each g ∈ Gj ,
∑2m
i=1 |gi| ≤ νm/22j+1, and νjm = νm

3

√
j + 1/2j . By applying

Lemma 8 with cj = 3/(
√
j + 12j+1), we see that

U

{
σ : ∃g ∈ Gj ,

∣∣∣∣∣
m∑
i=1

(
gσ(i) − gσ(m+i)

)∣∣∣∣∣ > α

(
νjm+

2m∑
i=1

gi

)}
≤ 2|Gj | exp

(
−α2νjm

36cj

)
.

Plugging in the values of νj and cj , we get

U

{
σ : ∃g ∈ Gj ,

∣∣∣∣∣
m∑
i=1

(
gσ(i) − gσ(m+i)

)∣∣∣∣∣ > α

νjm+
2m∑
i=1

gi

 ≤ 2|Gj | exp
(
−α2νm(j + 1)/180

)
.

Distinct elements ~v and ~w of Fj have `1(~v, ~w) > ν/22j+4; so by Lemma 9, |Gj | ≤ (164 · 4j+1/ν)d.

Thus

∞∑
j=1

U

{
σ : ∃g ∈ Gj ,

∣∣∣∣∣
m∑
i=1

(
gσ(i) − gσ(m+i)

)∣∣∣∣∣ > α

(
νjm+

2m∑
i=1

gi

)}

≤
∞∑
j=1

2(164 · 4j+1/ν)de−α
2νm(j+1)/180

≤ 4(164 · 16/ν)de−α
2νm/90. (3)

Note that G0 = F0, and therefore the elements of G0 are in [0, 1]2m. Thus, we can apply

Lemma 7 to get

U

{
σ : ∃g ∈ G0,

∣∣∣∣∣
m∑
i=1

(
gσ(i) − gσ(m+i)

)∣∣∣∣∣ > α

(
ν0m+

2m∑
i=1

gi

)}
≤ 2|G0| exp(−2α2ν0m).

Substituting the value of ν0, upper bounding the size of |G0| using Lemma 9, and combining with

(2) and (3) completes the proof.

Combining Lemma 10 with Lemma 6, and solving for m proves the upper bound of Theorem 5.
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4 Lower bound

In this section, we establish the lower bound side of Theorem 5. For positive integers d and n, we

define Xd,n to be an arbitrary set of nd elements of X. We view Xd,n as the union of d disjoint

subsets, which we will call types; there will be n elements of each type. We refer to the jth element

in type i as ai,j . Let Pd,n be the uniform distribution on Xd,n. The function class Fd consists of all

functions mapping X to {0, 1} that take the value 1 on at most one point in each type, and take

the value 0 outside of Xd,n. It is easy to check that the pseudo-dimension of Fd is d.

We begin by establishing the first term of the lower bound.

Theorem 11 For any real 0 < ν ≤ 1/100, 0 < α ≤ 1/100, 0 < δ ≤ 1/5 and any integer d ≥ 1,

opt(Fd, ν, α, δ) > d
30α2ν

ln 1
3ν .

Proof: Suppose d, α and ν are given. Set n = b 1
ν c and P = Pd,n. We will show that if m =⌊

d ln(1/(3ν))/(30α2ν)
⌋
, then

Pm
{
~x : ∃f ∈ Fd, dν

(
Ê~x(f),EP (f)

)
> α

}
> 1/5,

proving the theorem. For a sample ~x, for each type i, and each j ∈ {1, ..., n}, let Bi,j(~x) denote the

number of times that ai,j appears in ~x. If

p = Pm
{
~x : ∃f ∈ Fd, dν

(
Ê~x(f),EP (f)

)
> α

}
we have

p ≥ Pm
{
~x : ∃f ∈ Fd, dν

(
Ê~x(f),EP (f)

)
> α, Ê~x(f) < EP (f)

}
= Pm

{
~x : ∃f ∈ Fd,

EP (f)− Ê~x(f)
EP (f) + Ê~x(f) + ν

> α

}

= Pm {~x : ∃f ∈ Fd, Ê~x(f) < EP (f)
1− α
1 + α

− αν

1 + α

}
≥ Pm {~x : ∃f ∈ Fd, Ê~x(f) < EP (f)

1− α
1 + α

− αν

1 + α
,EP (f) ≥ 1

2n

}
≥ Pm

{
~x : ∃f ∈ Fd, Ê~x(f) < EP (f)

1− 3α
1 + α

, EP (f) ≥ 1
2n

}
≥ Pm

{
~x : ∃f ∈ Fd, Ê~x(f) < EP (f)(1− 4α), EP (f) ≥ 1

2n

}
≥ Pm {~x : ∃I ⊆ {1, ..., d}, |I| = dd/2e, ∀i ∈ I, ∃j, Bi,j(~x) <

m

nd
(1− 4α)

}
.
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Let φi be the indicator function for the event that there exists j ∈ {1, ..., n} for which Bi,j(~x) <
m
nd(1− 4α). Then,

p ≥ Pm
{
~x :

d∑
i=1

φi(~x) ≥ dd/2e
}
. (4)

Fix i, j, and let r = 1/(nd). Since EPm [Bi,j(~x)] = mr, a simple calculation with binomial

coefficients shows that

Pm {~x : Bi,j(~x) = y} ≤ Pm {~x : Bi,j(~x) = y + 1}

for y = 0, 1, . . . , bmrc − 1. Thus,

Pm {~x : Bi,j(~x) < mr(1− 4α)} ≥ d
√
mre · Pm

{
~x : Bi,j(~x) = dmr(1− 4α)e − d

√
mre

}
.

If we put h = mr − (dmr(1− 4α)e − d
√
mre), p = r, q = 1− r and apply Lemma 2, we obtain

Pm
{
~x : Bi,j(~x) < mr(1− 4α)

}
≥
√
mr

√
1

2πmrq
× exp

(
− h2

2rqm
− h3

2r2m2
− h4

3q3m3
− h

2qm

)

× exp
(
− 1

12
(

1
mr − h

+
1

mq + h
)
)
.

Because r ≤ 1/100, q = 1 − r ≥ 1 − 1/100, α ≤ 1/100, m ≥ b ln(100/3)
30α2r

c and mr − h ≥ 1, a simple

calculation shows that

Pm {~x : Bi,j(~x) < mr(1− 4α)} > (e−29α2rm)/3.

Crucially, by Lemma 3,

Pm{~x : φi(~x) = 1} = 1− Pm{~x : ∀j, Bi,j(~x) ≥ mr(1− 4α)}

≥ 1− (1− Pm{~x : Bi,j(~x) < mr(1− 4α)})n

> 1− (1− 1
3
e−29α2rm)n

> 1− e−0.99.

Let z = Pm{~x :
∑d
i=1 φi(~x) ≤ dd/2e − 1}. Then

(
1− e−0.99

)
d < E(

d∑
i=1

φi(~x)) ≤ dz/2 + (1− z)d.

Solving the above inequality, we have z < 2/e0.99 < 4/5. This implies that Pm{~x :
∑d
i=1 φi(~x) ≥

dd/2e} > 1/5, which, since p ≥ Pm{~x :
∑d
i=1 φi(~x) ≥ dd/2e} by (4), completes the proof.

A similar proof establishes the second term in the lower bound:
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Theorem 12 For any real 0 < ν ≤ 1/100, 0 < α ≤ 1/100, 0 < δ ≤ 1/5 and any integer d ≥ 1,

opt(Fd, ν, α, δ) > 1
30α2ν

ln 1
6δν .

Proof: Choose d ∈ N and 0 < α, ν ≤ 1/100. Set n = b 1
ν c. Let P be the distribution that allocates

probability 1/n to each of a1,1, ..., a1,n.

Here, we will show that if m =
⌊

1
30α2ν

ln 1
6δν

⌋
, then

Pm
{
~x : ∃f ∈ Fd, dν

(
Ê~x(f),EP (f)

)
> α

}
> δ

which will prove the theorem.

For some sample ~x, for each j ∈ {1, ..., n}, let Bj(~x) denote the number of times that a1,j

appears in ~x. If

p = Pm
{
~x : ∃f ∈ Fd, dν

(
Ê~x(f),EP (f)

)
> α

}
is the quantity we wish to lower bound, arguing as in the proof of Theorem 11, we have

p ≥ Pm
{
~x : ∃f ∈ Fd, Ê~x(f) < EP (f)

1− 2α
1 + α

,EP (f) =
1
n

}

≥ Pm
{
~x : ∃f ∈ Fd, Ê~x(f) < EP (f)(1− 3α), EP (f) =

1
n

}
.

Thus

p ≥ Pm
{
~x : ∃j ∈ {1, ..., n} Bj(~x) <

m

n
(1− 3α)

}
. (5)

Choose j ∈ {1, ..., n}. If r = 1/n, we have

Pm {~x : Bj(~x) < mr(1− 3α)} = Pm {~x : Bj(~x) ≤ dmr(1− 3α)e − 1}

≥ d
√
mrePm

{
~x : Bj(~x) = dmr(1− 3α)e − d

√
mre

}
.

Let h = mr − (dmr(1− 3α)e − d
√
mre), p = r, and q = 1− r. As before, application of Lemma 2

yields

Pm
{
~x : Bj(~x) < mr(1− 3α)

}
≥
√
mr

√
1

2πmrq
× exp

(
− h2

2rqm
− h3

2r2m2
− h4

3q3m3
− h

2qm

)

× exp
(
− 1

12
(

1
mr − h

+
1

mq + h
)
)

Because r ≤ 0.01, q = 1− r ≥ 0.99, α ≤ 0.01, and m ≥ b ln(500/6)
30α2r

c, mr−h ≥ 1, a simple calculation

shows that

Pm {~x : Bj(~x) < mr(1− 3α)} > 1
3
e−29α2rm.

11



Applying (5),

p ≥ Pm {~x : ∃j, Bj(~x) < mr(1− 3α)}

= 1− Pm{~x : ∀j, Bj(~x) ≥ mr(1− 3α)}

≥ 1−
n∏
j=1

Pm{~x : Bj(~x) ≥ mr(1− 3α)} (by Lemma 3)

= 1− (1− Pm{~x : Bj(~x) < mr(1− 3α)})n

> 1− (1− 1
3
e−29α2rm)n

≥ 1− (1− 1
3
e−

29
30

1
nν

ln 1
6δν )n (since m =

⌊
1

30α2ν
ln 1

6δν

⌋
)

> 1− (1− 1
3
e− ln 1

6δν )n (since 29
30

1
nν <

29
30

1
1−ν < 1 )

= 1− (1− 2δν)n

> 1− (1− 2δ
1

n+ 1
)n

> δ,

by Lemma 4, since n ≥ 100.
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