
Distributions on level-sets with applications to approximation algorithms

Aravind Srinivasan
Bell Laboratories, Lucent Technologies

600–700 Mountain Avenue
Murray Hill, NJ 07974-0636, USA

Abstract

We consider a family of distributions on fixed-weight
vectors in f�� �gt; these distributions enjoy certain negative
correlation properties and also satisfy pre-specified condi-
tions on their marginal distributions. We show the exis-
tence of such families, and present a linear-time algorithm
to sample from them. This yields improved approximation
algorithms for the following problems: (a) low-congestion
multi-path routing; (b) maximum coverage versions of set
cover; (c) partial vertex cover problems for bounded-degree
graphs; and (d) the Group Steiner Tree problem. For (a)
and (b), the improvement is in the approximation ratio; for
(c), we show how to speedup existing approximation algo-
rithms while preserving the best-known approximation ra-
tio; we also improve the approximation ratio for certain
families of instances of unbounded degree. For (d), we
derive an approximation algorithm whose approximation
guarantee is at least as good as what is known; our algo-
rithm is shown to have a better approximation guarantee
for the worst known input families for existing algorithms.

1. Introduction

We present a new family Ft of distributions on f�� �gt,
and develop a linear-time algorithm to generate a ran-
dom sample from such distributions. This yields im-
proved approximation algorithms for various NP -hard
problems. Our starting point is the following problem.
Given p�� p�� � � � � pt � ��� �� such that � �

P
i pi is an inte-

ger, how do we randomly round the pi to X�� X�� � � � � Xt �
f�� �g such that: (i)

P
iXi � � with probability one,

and (ii) for any given a�� a�� � � � � at � �, there is a
Chernoff-type bound on the probability of

P
i aiXi devi-

ating much from
P

i aipi? A concrete example of this is
provided by application (a) below, where we need to si-
multaneously solve several instances of the following prob-
lem: given t paths in a graph with respective “preferences”
p�� p�� � � � � pt, choose � �

P
i pi paths “judiciously” in a

sense captured by the above large-deviation bound require-
ment. Independently rounding the pi will satisfy (ii); how-
ever, if we must simultaneously solve, say, k such instances,
then the probability of satisfying all requirements of the
form “

P
iXi � �” can be as small as ����k� if we con-

duct independent rounding. Our family Ft provides a solu-
tion to this problem, and has other useful features–alluded
to just before we describe application (b) below–which lead
to certain improved approximation algorithms.

Recall that the weight of a vector x � f�� �gt is the num-
ber of ones in it. Let Wk�t� denote the set of elements
of f�� �gt with weight equal to k, and �s� denote the set
f�� �� � � � � sg. Consider any sequence P � �p�� p�� � � � � pt�
of t reals such that each pi lies in ��� ��, and such that

P
i pi

is an integer. Each such P defines a distribution D�t	P �
that is a member of our family Ft; D�t	P � is defined to
be any distribution1 on f�� �gt such that if �

�
�
P

i pi and
�X�� X�� � � � � Xt� denotes a vector sampled from D�t	P �,
then the following properties hold:

(A1) �i, Pr�Xi � �� � pi;

(A2) Pr�jfi 
 Xi � �gj � �� � � (i.e.,D�t	P � is distributed
on W��t�), and

(A3) the following “negative correlation” properties hold
for all S � �t�:

Pr�
�
i�S

�Xi � ��� �
Y
i�S

Pr�Xi � ��	 (1)

Pr�
�
i�S

�Xi � ��� �
Y
i�S

Pr�Xi � ��� (2)

From (A1), we see that E�jfi 
 Xi � �gj� � �; (A2)
requires that the value jfi 
 Xi � �gj actually be de-
terministic. Also, although the Xi’s are not independent,
(A3) helps show that any non-negative linear combination
of X�� X�� � � � � Xt is sharply concentrated around its mean.
Informally, (A3) is the following type of negative correla-
tion property: if Xi� � Xi� � � � � � Xis � b � f�� �g,

1If there is more than one such distribution, we choose one arbitrarily.



then the conditional probability of Xis�� equaling b cannot
be “too large”. One may expect that (A2), which fixes the
number of Xi that can equal b, will imply a negative cor-
relation property such as (A3). However, we show a large
class of distributions on f�� �gt that satisfy (A1) and (A2),
but not (A3). Thus, extra care is needed in guaranteeing
(A3).

We are not aware of any earlier proof of existence of
distributions such as D�t	P �. We show this existence al-
gorithmically: given P , we present a linear-time algorithm
to generate a random sample from D�t	P �; the algorithm
can be easily converted to a linear-work RNC algorithm
running in O�log t� time. [Several natural candidates for
such an algorithm do not work. For instance, consider gen-
erating the Xi independently with Pr�Xi � �� � pi, and
taking the distribution of �X�� X�� � � � � Xt� conditional on
the event “jfi 
 Xi � �gj � �”. This can be seen to violate
(A1) for P � ������ ����� ����. See [27] for the relation-
ship of such conditioning to some negative correlation–type
results.] If pi � ��t for all i, then one choice for D�t	P � is
the hypergeometric distribution (sampling � elements from
�t� without replacement). This, as well as the case where
� � �, are two instances of our problem (i.e., of show-
ing that D�t	P � exists, and sampling efficiently from it)
with known solutions. Our sampling algorithm, when com-
bined with some other new ideas, leads to a new type of
randomized rounding scheme for linear programming (LP)
relaxations of NP -hard problems, leading to the following
applications.

(a). Low-congestion Multi-path Routing. Here, we are
given a graph G � �V�E� with a capacity cf � � for each
edge f , along with k pairs of vertices �si� ti�. For each
i � �k�, we are also given: (i) a demand �i � �, (ii) a collec-
tion Pi of �si� ti�–paths, and (iii) an integer � � �i � jPij.
The objective is to choose �i paths from Pi for each i, in
order to minimize the relative congestion: the maximum,
over all edges f , of ���cf � times the total demand of the
chosen paths that pass through f . (We make the usual bal-
ance assumption [17]: if edge f lies in a path P � Pi, then
cf � �i.) The case where �i � � for all i is a classical prob-
lem, and is studied in [23, 17]. Our problem with arbitrary
�i, in addition to its intrinsic interest, is motivated by the fol-
lowing optical networking problem. Given their high data
rates (Gigabits/second and Terabits/second), a key require-
ment in optical networks is fast restoration from node/edge
failures [18, 25, 10, 24, 9]. Many restoration strategies have
been studied/deployed. A popular scheme that guarantees
full recovery from single node/edge failures is variously
called 1+1 Dedicated Protection, 1+1 Restoration, etc.: the
same signal is transmitted over an active route and a disjoint
backup route, hence being robust to single node/edge fail-
ures [10, 24, 9]. The obvious extension to protect against
multiple node/edge failures has also been studied. To gen-

erate such paths in practice, min-cost max-flow is used to
generate a large number of disjoint paths for each vertex
pair, and a “suitable” subset of these paths is chosen in some
heuristic way to minimize the congestion of the routing.
Our formulation provides a rigorous approach to selecting
these subsets.

We present an approximation algorithm for our problem
with the same approximation ratio as for the case where
�i � � for all i [23, 17]; see (5) and (6). (In the above optical
routing application, each Pi is a set of node/edge-disjoint
paths; this does not seem to provide any improvement to the
approximability, in our setting as well as in that of [23, 17].)
Briefly, here is how distributions such as D�t	P � help. We
solve a natural LP relaxation of the problem. For each
i � �k�, this gives a vector ri � �pi��� pi��� � � � � pi�ti� of
weights pi�j � ��� �� for the paths in Pi, where ti � jPij;
we have

P
j pi�j � �i for each i. Independently for each

i, we sample from D�ti	 ri�, and select the paths that are
chosen by this process. By (A2), we have with probability
� that �i paths are chosen for each i: if we had sampled the
paths independently, then the probability of this happening
can be as small as ����k�. Also, (A3) guarantees that we
get a Chernoff-type bound on the probability of getting a
“large” relative congestion. We do not know of any other
methods that deliver the approximations we get.

Many randomized rounding schemes, defined say by bi-
nary random variables X�� X�� � � � � Xt, can be analyzed
such that it suffices to have “small” values for several
non-negative linear combinations of terms of the form
Pr�
V
i�S�Xi � b��, where b � f�� �g; see, e.g., (9), (13).

Property (A3) shows that sampling from distributions such
as D�t	P � gives as good results in such cases, as does sam-
pling the Xi independently, say. Moreover, sampling from
D�t	P � gives us extra properties such as (A2). In particu-
lar, one result in application (c) below exploits the “proba-
bility one” aspect of (A2) as follows: all relevant terms in
an analysis become deterministic, except for a random vari-
able W . W takes values in a poly-width integer range, and
we aim to keep it “high”;E�W � � w, butW may have poor
lower-tail behavior, i.e., Pr�W � w� may be “large”. How-
ever, sinceW takes values in a poly-width integer range and
since all other relevant terms are deterministic, we can re-
peat our random process polynomially many times and get
W � bwc with high probability. This would be difficult
with other related techniques which do not have an analog
of (A2) [and hence cannot keep all other relevant terms de-
terministic]. These and other ideas lead to the following
applications.

(b). Maximum Coverage Versions of Set Cover. A natu-
ral variant of set cover that is much-studied especially from
a facility location viewpoint [26, 19, 3, 5, 28, 15, 4, 13, 16],
is as follows. We are given the set X � �n� with a



weight wi � � for each i � �n�; also given is a family
S � fS�� S�� � � � � Smg of subsets of X , with a cost cj
for each Sj . Given a budget L, the problem is to select a
subcollection S � � S of total cost at most L, in order to
maximize the total weight of the elements i covered by S �.
Define �s � �	 ��	 ��s�s; as s increases from �, �s de-
creases, and tends to � 	 ��e as s 
 �. For the unit-cost
case where cj � � for all j, an �L–approximation algo-
rithm follows from the work of [20, 8, 28, 15, 13]. (From
a theoretical perspective, this is essentially an �� 	 ��e�–
approximation, since we can assume that L is “large”: the
problem can be solved exactly in �n 
 m�O��� � mL time
by enumeration.) For the general case with arbitrary cj ,
the first constant-factor approximation algorithm is shown
in [16]: the approximation ratio is � 	 ��e � �����, and
is best-possible unless NP � DTIME�nO�log logn�� [16].
We improve these results as follows, for instances where
each i has at most s sets Sj containing it. For the unit-
cost case, we get an �s–approximation; with further work,
we get an ��s 	 ��–approximation for the case of general
costs, where � � � is any given constant. An important
special case is when s � �: we get the variant of vertex
cover where, given a cost for each vertex and a weight for
each edge, we wish to cover a maximum-weight subset of
the edges subject to a budget on the total cost of the ver-
tices chosen [13]. Motivated by the recent interest in multi-
criteria optimization, we also present constant-factor ap-
proximations for certain “multiple budget” versions of the
problem.

(c). Partial Vertex Cover. A problem complementary to
the above variant of vertex cover is the k-vertex cover prob-
lem: given an undirected graph G � �V�E� and an integer
k � jEj, we wish to select a minimum number of vertices
in V such that at least k edges have at least one end-point
selected. �–approximation algorithms for this problem have
been presented in [6, 14, 2]. As in the case of vertex cover,
it is of interest to determine families of graphs for which
��	�����–approximations are possible. It has been shown
recently in [11] that this is possible for graphs of bounded
maximum degree d: a �� 	 ����d��–approximation algo-
rithm running in time nO�d�� is developed in [11], where
n � jV j. We show how to reduce the running time to a poly-
nomial that is independent of d; we also get a a ��	�����–
approximation for any family of �G� k�–pairs for which the
optimal objective function value is ��k�.

(d). The Group Steiner Tree problem. This problem gen-
eralizes the classical Steiner tree problem [22]; its restric-
tion to trees is a generalization of set cover. Given an undi-
rected graph G � �V�E�, subsets S�� S�� � � � � Sk of V , and
a cost for each edge, we need to construct a minimum-cost
tree in G that intersects each Si. We present an approxima-
tion algorithm whose approximation guarantee is at least as

good as what is known [12]; also, our algorithm has a better
approximation guarantee for the worst known input families
for the algorithm of [12]. Please see x3.4.

We start by showing how to sample from distributions
such as D�t	P � in x2. The four applications discussed
above are then considered in x3.

2. The sampling algorithm

We will call a finite sequence r � �s�� s�� � � �� of reals
valid if si � ��� �� for all i; for an integer a, we will define
r to be a-valid iff r is valid and

P
i si � a. Our problem

is to generate a sample �X�� X�� � � � � Xt� from D�t	P � for
some given �-valid vector P , where � � �.

2.1. The basic recipe

Call Xi fixed if, at some point, we round it to � or �.
Our basic idea is to repeat the following step: fix some yet-
unfixed variable(s) in some probabilistic manner, and suit-
ably alter, for the yet-unfixed variables, their probabilities of
being �. One way of doing this is as follows. We construct
an ��	 ��-valid vector Q� � �q��� q

�
�� � � � � q

�
t� and an �-valid

vectorQ � �q�� q�� � � � � qt� such that pi � p�q
�
i
��	p��qi

for i � �� �� � � � � t. Independently of all random choices
made so far, fix X� at � with probability p�, and at �
with probability � 	 p�. If X� � �, we recursively sam-
ple �X�� X�� � � � � Xt� from D�t 	 �	Q�; else if X� � �,
�X�� X�� � � � � Xt� is recursively sampled fromD�t	�	Q��.
It is easy to prove by induction that this basic scheme satis-
fies (A1) and (A2). Unfortunately, if we are not careful in
choosing Q and Q�, (A3) can be violated. For instance, if
p� � minfpi� �	 pig for all i � �, it can be shown that for
any ��	 ��-valid Q�, there is a feasible choice for Q above.
However, (A3) dictates that q�i � pi for each i. Thus, (A1)
and (A2) do not always imply (A3); such counterexamples
can be shown even if the condition “p� � minfpi� � 	 pig
for all i � �” does not hold.

Our solution, presented in x2.2, is somewhat different; in
particular, when we fix a variable, we will alter the proba-
bility of being � for at most one other variable.

2.2. Algorithm and analysis

We start by describing a procedure called
simplify�X�Y� �� 	�, which is the main subroutine
of our algorithm. The purpose of this procedure is to
randomly fix one of the variables X and Y . More formally,
� and 	, both of which lie in ��� ��, are input parameters
to the procedure; random variables X�Y � f�� �g are
output parameters. [Even if the random variables X and Y
have some existing semantics, these are disregarded by the
procedure; as will be seen below, the output distributions



of X and Y are (random) functions of only � and 	, and
do not depend on how X and Y were defined before we
ran the procedure.] The procedure probabilistically sets
the distributions of X and Y . Therefore, the output values
of Pr�X � �� and Pr�Y � �� are themselves random
variables, and so we can speak of E�Pr�X � ��� and
E�Pr�Y � ���. The two main properties that must hold are:

(B1) E�Pr�X � ��� � � and E�Pr�Y � ��� � 	;

(B2) at least one of X and Y gets fixed.

The procedure simplify�X�Y� �� 	� is as follows. If
� � 	 � �, then X and Y are both fixed at �; else if
� � 	 � �, then X and Y are both fixed at �. Otherwise,
there are three cases.

Case I: � 
 � 
 	 
 �. In this case, with probability
����
	� we fix variableY at � and set Pr�X � �� � �
	;
with the remaining probability of 	���
 	�, we fix X at �
and set Pr�Y � �� � �
 	.

Case II: � 
 	 � �. Here, we fix both variables. With
probability � we fix variable Y at � and variable X at �;
with probability 	 we fix X at � and Y at �.

Case III: � 
 � 
 	 
 �. Here, with probability �� 	
	����	�		� we fixX at � and set Pr�Y � �� � �
		�;
with the remaining probability of ��	 ����� 	 � 	 	� we
fix Y at � and set Pr�X � �� � �
 	 	 �.

It is easy to check that (B1) and (B2) are satisfied by the
above description of simplify. Before specifying our al-
gorithm, we need one more definition. Given a set L of la-
beled nodes, define a pairing tree of L to be any tree whose
leaf-set is L, and in which each internal node has exactly
two children. A short pairing tree of L is any pairing tree
of L constructed as follows. Let U denote the current set of
nodes that have no parent (initially, U � L). If jU j � �,
we are done; else if jU j � �, group U into bjU j��c pairs
plus at most one more element, in an arbitrary way. For
each of the bjU j��c pairs, create a new node, and make the
two elements in the pair be children of this new node. Note
that after this step, the set of nodes with no parent has size
djU j��e. Thus, if we repeat until jU j � �, we get that any
short pairing tree of L has height dlog� jLje.

We now come to our main algorithm. To facilitate ease
of discussion later, we present it in the context of sam-
pling a given sub-sequence of �X�� X�� � � � � Xt�. More pre-
cisely, let Q � �q�� q�� � � � � qk� be an r-valid vector for
some integer r. Suppose we want to generate a random
sample �Xi� � Xi� � � � � � Xik� from D�k	Q�, where the ij
are distinct elements of the set �t�. If k � �, the prob-
lem is trivial, so suppose k � �. Start with the leaf-set
L � f�i�� q��� �i�� q��� � � � � �ik� qk�g, and construct an ar-
bitrary pairing tree T of L. Informally, our algorithm is
as follows. The leaf labeled �ij � qj� corresponds to ran-
dom variable Xij . Each internal node u at height � runs

simplify on the random variables represented by its two
children; one of these random variables gets fixed, and the
other is sent to u’s parent. In general, each internal node
receives one random variable each from its two children; it
fixes one of these, and sends the other to its parent. For-
mally, values propogate up the tree and the random vari-
ables Xi� � Xi� � � � � � Xik get defined as follows. Initially,
each leaf of T sends its label (of the form �ij � qj�) to its
parent. In general, suppose an internal node u gets the
pairs �ia� �� and �ib� 	� from its children. Node u then
runs simplify�Xia � Xib � �� 	�. If this call to simplify
fixes Xia at some � � f�� �g and sets Pr�Xib � �� � � for
some � (possibly � � f�� �g), then Xia gets fixed at �,
and the pair �ib� �� gets sent up to u’s parent. Otherwise
if this call to simplify sets Pr�Xia � �� � � for some
� � ��� �� and fixes Xib at �, then Xib gets fixed at �,
and the pair �ia� �� gets sent up to u’s parent. The random
choices made by the simplify operations at the differ-
ent nodes of T are all independent. It is easy to see that
after any sequence of simplify operations, the sum over
j � �� �� � � � � k of the current probability of Xij being �,
equals r. Thus, when a call simplify�Xia � Xib � �� 	�
is finally made at the root of T , we are guaranteed that
� 
 	 � f�� �� �g, and hence that both Xia and Xib get
fixed at the root.

To use the above for our problem of sampling
�X�� X�� � � � � Xt� from D�t	P �, we use the above with the
label-set L � f��� p��� ��� p��� � � � � �t� pt�g, and use any
short pairing tree T of L. It is easy to see that the above
is a linear-time randomized algorithm. It is also easily im-
plemented as a t� log t processor, O�log t� time RNC al-
gorithm on an EREW PRAM, since T has height dlog� te
and since simplify operations on nodes at the same level
of T can be done in parallel.

Given a set of labels L �
f�i�� q��� �i�� q��� � � � � �ik� qk�g and a pairing tree T
of L as above, let D�L� T � denote the distribution on
�Xi� � Xi� � � � � � Xik � induced by our above algorithm.

Theorem 2.1 Let k be a positive integer. Suppose we are
given any set of labelsL � f�i�� q��� �i�� q��� � � � � �ik� qk�g,
where Q � �q�� q�� � � � � qk� is an r-valid vector for some
integer r. Let T be any pairing tree of L. Then, D�L� T � is
a valid choice for the distribution D�k	Q�.

Proof. We start with some definitions and a useful ob-
servation. Suppose k � � and that �ia� qa� and �ib� qb�
are two leaves of T that have a common parent, say u.
(Since T is a pairing tree, there must exist two leaves with
a common parent.) For x � fa� bg, define T �x� y� to be
the tree obtained by deleting the nodes �ia� qa� and �ib� qb�
from T , and giving the node u (which is now a leaf) the
label �ix� y�. Note that T �x� y� is a pairing tree for the
leaf-set L�x� y�

�
� �L 	 f�ia� qa�� �ib� qb�g� 
 f�ix� y�g.



For x � fa� bg, letting z denote the element of fa� bg
that is not equal to x, define X �x� to be the sequence
�Xi� � Xi� � � � � � Xik � without the elementXiz . A simple and
useful observation is that our sampling from D�L� T � can
be viewed as follows. Run simplify�Xia � Xib � qa� qb�.
Suppose this call to simplify fixes Xiz at � � f�� �g
and sets Pr�Xix � �� � y for some y, where x � fa� bg
and z denotes the element of fa� bg that is not equal to
x. (If both Xia and Xib get fixed, choose x arbitrarily.)
Then, fix Xiz � �, and sample X �x� recursively from
D�L�x� y�� T �x� y��. It is easy to see that this is a valid
way of viewing D�L� T �. Whatever x and y are, L�x� y�
has length one less than L, and this will lead us to a proof
by induction on jLj, i.e., on k, as follows.

The base case k � � is straightforward. Assuming
the theorem to hold for k 	 �, let us establish it now for
k � �: i.e., we will show that D�L� T � is a valid choice for
D�k	Q�. For (A3), we will only prove (1); the proof of (2)
is identical. The proofs of (A1) and (A2) are even simpler:
they follow the same inductive process as below, and fol-
low easily using (B1) and (B2). These simpler proofs are
omitted from this extended abstract.

To prove (1) forD�k	Q�, we need to show the following.
Let S � �k� be arbitrary. Then, we want to show that if
�Xi� � Xi� � � � � � Xik � is sampled from D�L� T �, then

Pr�
�
j�S

�Xij � ��� �
Y
j�S

��	 qj�� (3)

Recall the definitions relating to �ia� qa�, �ib� qb�, T �x� y�
etc. from the first paragraph of this proof. We have three
cases: jfa� bg � Sj being �, �, or �. Suppose both a and b
lie in S. Consider the simplify process run at the par-
ent node u of �ia� qa� and �ib� qb�. If qa 
 qb � �, then
at least one of Xia and Xib gets fixed at � by this call
to simplify, and so the l.h.s. of (3) will be zero. So
suppose qa 
 qb 
 �; we start with the interesting sub-
case where qa 
 qb � �. Then the above-seen random-
ized reduction from D�L� T � to D�L�x� y�� T �x� y�� and the
induction hypothesis about D�L�x� y�� T �x� y�� show that
Pr�
V
j�S�Xij � ��� is at most

qa
qa 
 qb

� ��	 �qa 
 qb�� � �
Y

j�S� j ��fa�bg

��	 qj�� 


qb
qa 
 qb

� ��	 �qa 
 qb�� � �
Y

j�S� j ��fa�bg

��	 qj��	

the two terms in this sum relate to which of Xia and Xib

gets fixed at � by the call to simplify. Thus,

Pr�
�
j�S

�Xij � ��� �
�	 �qa 
 qb�

��	 qa���	 qb�
�
Y
j�S

��	 qj�

�
Y
j�S

��	 qj��

proving (3). Finally, the case where qa � qb � � yields a
similar, even easier proof of (3).

Next, suppose jfa� bg � Sj � �: say a � S but b �� S.
Here we observe that with some probability 
, the call to
simplify at u fixes Xia at �, and with probability �	 
,
the call re-sets the probability of Xia � � to some value �.
The relevant property here which follows from (B1), is that


 
 ��	 
� � ��	 �� � �	 qa� (4)

Now, our reduction from D�L� T � to D�L�x� y�� T �x� y��
and the induction hypothesis about D�L�x� y�� T �x� y��
show that Pr�

V
j�S�Xij � ��� is at most


 � �
Y

j�S� j ��a

��	 qj�� 


��	 
� � ��	 �� � �
Y

j�S� j ��a

��	 qj���

We now use (4) to see that this sum equals
Q

j�S��	 qj�.
The case where neither a nor b lies in S is even simpler:

whatever happens in the simplify process at u, we get
(3) from the induction hypothesis.

3. Applications to approximation algorithms

Before presenting our applications, we first invoke
the results of [21] which show that the negative corre-
lation property (A3) has the following interesting large-
deviations consequence. Suppose P � �p�� p�� � � � � pt� is
�-valid for some integer �, and that we sample a vector
�X�� X�� � � � � Xt� from D�t	P �. Then, the following the-
orem states that for any given sequence a�� a�� � � � � at �
��� ��, the random variable

P
i aiXi is sharply concentrated

around its mean; in fact, the tail bounds on
P

i aiXi are at
least as good as any bound obtainable by a Chernoff-type
approach [21].

Theorem 3.1 ([21]) Let a�� a�� � � � � at be reals in ��� ��,
and X�� X�� � � � � Xt be random variables taking values in
f�� �g.
(i) Suppose (2) holds for all S � �t�; also suppose
E�
P

i aiXi� � ��. Then, for any � � �,

Pr�
X
i

aiXi � ���� 
 ��� �

�
e�

�� 
 ���	�

���
�

(ii) Suppose (1) holds for all S � �t�; also suppose
E�
P

i aiXi� � ��. Then, for any � � ��� ��,

Pr�
X
i

aiXi � ����	 ��� � e����
����



We present the applications (a), (b), (c), and (d) of x1
in the next four subsections. The reader is referred to x1
for the definitions of the applications; we do not re-define
them. We denote input graphs throughout by G � �V�E�,
with jV j � n and jEj � m.

3.1. Low-congestion Multi-path Routing

There is a natural LP relaxation for the problem, as de-
scribed a few sentences below. Letting C� be the optimum
of this relaxation, we get the same bounds on the integral
relative congestionC as are obtained in [23, 17] for the case
where �i � � for all i:

C � O

�
logm

log�� logm�C��

�
if C� � logm	 (5)

C � C� 
O�
p
C� logm� if C� � logm. (6)

Suppose Pi � fPi��� Pi��� � � �g. There is a natural inte-
ger linear programming formulation for the problem, with
a variable zi�j for each �i� j�: zi�j � � if Pi�j is chosen,
and is � otherwise. The LP relaxation lets each zi�j lie in
��� ��. Let the variable C denote the optimal fractional rela-
tive congestion. We have the constraints:

�i�
X
j

zi�j � �i	 �f � E�
X

�i�j�� f�Pi�j

�izi�j � cfC�

(7)
Let jPij � ti. We solve the LP, and suppose ri �
�z�i�j 
 j � �ti�� is the vector of values for the zi�j in this op-
timal solution, with C� being the optimal fractional relative
congestion. Independently for each i � �k�, we sample from
D�ti	 ri�, and select the paths that are chosen (i.e., rounded
to �) by this process. By the first family of constraints in
(7) and (A2), we have with probability � that �i paths are
chosen for each i. Next, by (A1) and the second family of
constraints in (7), the expected relative congestion on any
given edge f is at most C�. Suppose the constants implicit
in the O��� notation of (5) and (6) are large enough. Then,
(A3) and Theorem 3.1(i) can be used to show that for any
given edge f , the probability that it gets relative congestion
more than C is at most ����m�. Adding over all edges, we
get a relative congestion of at most C, with probability at
least ���.

We are not aware of any other approach that will yield
(5) and (6). In particular, if we try to bin-pack the z�i�j for
each given i and round independently from each bin, the
approximation ratio can be about twice our approximation
ratio (e.g., if most of the z�i�j are just above ���, the optimal
bin-packing will need roughly ��i bins). Note from (6) that
we get �� 
 o����–approximations for families of instances
where C� grows faster than logm; it appears difficult to get
such results from any other approach (e.g., the above bin-
packing) that we are aware of.

3.2. Maximum Coverage Versions of Set Cover

We will work with a natural LP relaxation of the prob-
lem. This relaxation has variables xi � ��� �� for i � �n�,
and zj � ��� �� for j � �m�; it seeks to maximize

P
i wixi

subject to: (i)
P

j cjzj � L, and (ii) �i, xi �
P

j�i�Sj
zj .

For all of x3.2, let s denote the maximum number of sets in
which an element i lies. We assume that s � �, since the
case s � � is just a knapsack problem.

Definition of D�. As in the setting of x1, suppose we
have a vector of reals P � �p�� p�� � � � � pt� where pi �
��� ��, but where � �

P
i pi may not be an integer. Let

P � � �p�� p�� � � � � pt� d�e 	 ��, and define D��t	P � to be
the joint distribution of the first t co-ordinates of the dis-
tribution D�t 
 �	P ��. Note that D��t	P � satisfies (A1)
and (A3); instead of (A2), we have with probability � that
jfi � �t� 
 Xi � �gj � fb�c� d�eg.

We first focus on the case where all the set-costs cj are
�. Here we can assume that L is an integer (the prob-
lem remains unchanged if we replace L by bLc). Let
fx�i � z

�
j g be the set of values in an optimal LP solution,

and let y� denote the optimal LP value. Our randomized
rounding scheme here is to sample �z�� z�� � � � � zm� from
D��m	 �z�� � z

�
� � � � � � z

�
m�� and then to define xi naturally to

be maxfzj 
 i � Sjg. The properties of D� ensure that
at most L sets are chosen. What is the expected objective
function value? Recall that �s � � 	 ��	 ��s�s. We next
prove that the following inequality holds:

Pr�xi � �� � �	 Pr�
�

j�i�Sj

�zj � ���

� �	
Y

j�i�Sj

Pr�zj � �� (8)

� �	
Y

j�i�Sj

��	 z�j �

� �s � x
�
i � (9)

Inequality (8) follows from (A3). Since x�i �
minf��

P
j�i�Sj

zjg and since jfj 
 i � Sjgj � s, it can
be verified that

Q
j�i�Sj

��	 z�j � � ��	x�i �s�
s; since x�i �

��� ��, elementary calculus shows that � 	 �� 	 x�i �s�
s �

�s � x�i . Thus we get (9); so, the expected value of the
objective function is at least �s � y�. This improved ap-
proximation for the unit-cost case can be generalized fur-
ther. Suppose we are given several pairwise-disjoint fami-
lies S��S�� � � � �Su, where each Sj is a collection of subsets
ofX and with its own integer budgetLj ; we aim to choose a
collection of sets from S�
S�
� � � Su (at unit cost for each
set) to maximize the total weight of the elements covered,
while respecting the budget of each Sj . Essentially the same
approach carries over here: we just need to independently



sample from a distribution of the form D��jSj j� �� for each
j. Here again, we get an �s-approximation: in particular, a
constant-factor approximation.

We now move on to the general-cost case of the problem,
which needs more work; we start with a useful lemma.

Lemma 3.1 Suppose we are given: (i) a sequence P �
�p�� p�� � � � � pt� with pi � ��� ��, (ii) a sequence �a �
�a�� a�� � � � � at� with ai � �, and (iii) a real � � �. Then,
there is an efficient random process g��a� P� �� to generate
a vector of binary random variables �X�� X�� � � � � Xt� for
which (A1) and (A3) holds, and such that with probability
one,
P

i aiXi � ��
���� ��maxi ai�
��
�� ��
P

i aipi�.

Proof. Let A � maxi ai. For s � �, define an index set
Is � �t� to be fi 
 �� 
 ���s��A 
 ai � �� 
 ���sAg.
Let Ps be the restriction of P to Is. Independently run
D��jIsj	Ps� for each s with a non-empty Is, and re-arrange
the outputs in the “correct” order �� �� � � � � t, to get a vector
�X�� X�� � � � � Xt�. It is simple to check that (A1) and (A3)
hold. Also, for each s, we have with probability � that

jfi � �Is� 
 Xi � �gj � � 

X
i�Is

pi�

Thus,
X
i�Is

aiXi � �� 
 ���sA
 �� 
 �� �
X
i�Is

aipi�

Adding over all s completes the proof.

Returning to the general-cost case, recall that we are
given a constant � 
 � 
 �s, and want an ��s 	 ��–
approximation for the given instance. Define � � ������ 

�� � ��
 �
 ����, and 	 � ��s	 �����s	�s��. Since � is a
constant in ��� �s� and �	 ��e 
 �s � ���, 	 � 	��� is a
constant in ��� ��. Define � to be the smallest positive inte-
ger such that 	� � �	 �s; we can verify that � � O�����.
We can assume that � 
 cj � L for all j. Given our collec-
tion of sets S, let S�a� b� denote the subcollection of S that
has sets with cost in the range �a� b�. Fix some optimal so-
lution S � � S. Let the actual budget used by S � be L
 � L,
and the total weight of the elements covered by S �—i.e., the
optimal solution value for the given instance—be W
. (We
do not know these values, but will shortly “guess” these
and some related values.) We now define some real val-
ues L��� L�� L�� � � � � L� and W��W�� � � � �W�, as well as
pairwise-disjoint families S
�S�� � � � �S� (with Si � S for
each i); all of these quantities are completely determined by
S �. Define L�� � L
��, and S
 � �. For � � i � � 	 �,
Li	�, Si	�, and Wi	� are defined inductively as follows.
Si	� � S � �S�Li�� Li����; Li	� is L
 minus the total cost
of the sets in S�
S�
� � �
Si	�, andWi	� is W
 minus the
total weight of the elements covered by S�
S�
� � �
Si	�.

We guess the values of W
 and L
. We also guess the
families S��S�� � � � �S�; this way, all the Li, Wi and Si
above are seen to be determined. We now argue that this
guessing can be implemented efficiently. First of all, W


and L
 can be guessed to an arbitrary desired accuracy by
a two-dimensional bisection search. Second, we claim that
jSi	�j 
 ��� for � � i � � 	 �; if true, this implies
that there are most ���� � O��� choices for the tuple
�S��S�� � � � �S��, which can all be enumerated in mO���

time. To see why jSi	�j 
 ���, let F � S � 	
S
i�� Si.

We can see from the above definition of Li that the total
cost of the sets in Si	��Si	�� � � � �S��F is Li. However,
each set in Si	� has cost more than Li�; so jSi	�j 
 ���.

Theorem 3.2 Suppose W� � 	W��� for some �, � � � �
�. Then, we can efficiently compute a solution of value at
least ��s 	 ��W
.

Proof Sketch. Construct a modified instance of our prob-
lem in which: (i) the collection of sets is S��� L�����, and
(ii) each element i � �n� gets a modified weight: all ele-
ments covered by

S
i�� Si have a modified weight of �, and

all other elements have a modified weight that is the same
as their original weight wi. We will construct a collection
T � S��� L����� such that:

(R1): the total cost of T is at most L���, and
(R2): the elements covered by T have total modified weight
at least ��s 	 ��W���.

Then, the (disjoint) union of T and
S
i���� Si has:

(a) a total cost of at most L��� 
 L
 	 L��� � L
,
and (b) covers a set of elements of total weight at least
��s 	 ��W��� 
 �W
 	 W���� � ��s 	 ��W
. In this
calculation (b), “weight” refers to the original weight wi of
each element. The sum in this calculation is justified be-
cause the elements covered by

S
i���� Si are not double-

counted: their weights were taken to be zero in the re-
quirement (R2). We now show how to construct such a
T . We solve the LP relaxation (sketched earlier in x3.2)
for our modified instance with budget L�, and solve it to
optimality. Let fx�i � z

�
j g be the set of values in an optimal

LP solution, and let W �
� denote the optimal LP value. We

claim that W �
� � W�; this is true because the collection

S ��S��� L����� has a total cost of L�, and has an objective
function value of W� for our modified instance. For nota-
tional simplicity, suppose S��� L����� � fS�� S�� � � � � Srg
for some r. Recall the process g��� �� �� guaranteed by
Lemma 3.1. For a parameter 
 � ��� �� to be chosen later,
we run g��c�� c�� � � � � cr�� �
z

�
� � 
z

�
� � � � � � 
z

�
r �� ��. By es-

sentially the same reasoning as for (9), we now get

Pr�xi � �� � �	
Y

j��r�� i�Sj

��	 
z�j �

� �	 ��	 
x�i �s�
s

� 
 � �s � x
�
i � (10)



Thus, the expected modified weight of the elements chosen
is at least


 � �s �W
�
� � 
 � �s �W�

� 
 � �s � 	 �W���

� 
 � ��s 	 �� �W������	 ��� (11)

where the second inequality follows from the hypothesis
“W� � 	W���” of the theorem. By Lemma 3.1, the to-
tal cost of the chosen family of sets T � S��� L����� is at
most

�� 
 ���� � L��� � � 
 �� 
 �� � 
 � L�� (12)

If L� 
 L������ 
 � 
 ��� we use 
 � �; else we use

 � � 	 �. In either case, the bounds (12) and (11), along
with the bound L� � L���, can be used to show that (R1)
and (R2) are fulfilled.

The remaining case is where W� 
 	W��� for all �,
� � � � �: i.e., W� 
 	�W
 � �� 	 �s�W
. This
means that the total weight of the elements covered by S� 

S� 
 � � � 
 S� is at least �sW
. In this case, we just choose
S� 
 S� 
 � � � 
 S� as our solution. This completes the
description of our algorithm.

We are currently studying distributions with some neg-
ative correlation properties that are stronger than (A3), in
order to see if we can develop certain multi-criteria approx-
imations for such maximum coverage versions of set cover.

3.3. Partial Vertex Cover

We first present the relevant approximation algorithm of
[11], and show how to modify it. An LP relaxation of
the problem has variables xj � zi�j � ��� ��, for each ver-
tex j � V and each edge zi�j � E. It is simple to verify
that the following is a valid relaxation: minimize

P
j��n� xj

subject to: (i) xi 
 xj � zi�j for all �i� j� � E; and (ii)P
�i�j��E zi�j � k. The rounding approach of [11] is as fol-

lows. Let fx�i g, fz�i�jg denote an optimal LP solution, and
let � � ��� 	 ��, where � � ��� ��. Let S� � fvj 
 x�j �
���g, and S� � V 	 S�. Choose all vertices in S�. Next,
independently for each j � S�, round xj to � or �: the
probability of rounding to � is �x�j . Thus, we have chosen
the vertices of S� 
 S�� for some S �� � S�. Let W denote
the number of covered edges now. If W 
 k, we augment
our solution: choose any k	W uncovered edges and cover
them by arbitrarily choosing one end-point for each. A case
analysis and suitable choice of � is then shown to yield a
�� 	 ����d��–approximation in nO�d�� time for graphs of
bounded maximum degree d, in [11]. Recall the definition
of the distributionD� from x3.2. Now, as in [11], we choose
all vertices in S�. Then, instead of independently choos-
ing the vertices in S�, we set P � ��x�j 
 j � S��, and
sample from D��jS�j	P � to choose a subset of S� (i.e., the

elements of S� that get rounded to � in the sampling). Let
y� be the LP optimum. With probability one, the number of
vertices chosen so far is at most dy��e � ���	��y�
�. Fi-
nally, in the augment step, we add at most maxfk 	W� �g
vertices. Let Xi be the binary random variable indicating
whether vertex i was chosen or not before our augmenta-
tion. (Pr�Xi � �� � � if i � S�.) Note that E�W � equals
X

�i�j��E

�Pr�Xi � �� 
 Pr�Xj � ��	 Pr�Xi � Xj � ����

(13)
Now, it is shown in [11] that for the rounding scheme there,
E�W � � k��	���. Usage of (13), (A1) and (A3) shows that
E�W � � k�� 	 ��� for our scheme also! Furthermore, we
have deterministically that: the number of edges covered is
k, and the number of vertices chosen by our sampling from
D��jS�j	P � is at most ���	��y�
�. Finally, sinceW takes
values in f�� �� � � � �mg, the bound E�W � � k�� 	 ��� can
be used to show that Pr�W � k��	���	�� � �	����m�.
Thus, if we repeat the above scheme Cm times for a large
enough constant C, with high probability at least one of
the iterations will give us a solution of value at most ���	
��y� 
 � 
 k��. Choosing � � y��k, we get the following
theorem. (We had earlier restricted � to be smaller than �,
but it is possible that y� � k. However, if y� � k, then
choosing one end-point each of any k edges is an optimal
solution; so we can assume that y� 
 k.)

Theorem 3.3 Our scheme constructs a feasible solution of
value at most y��� 	 y��k� 
 � with high probability. In
particular, we get a ��	�����–approximation for families
of instances where y� � ��k�: e.g., for bounded-degree
graphs.

3.4. Group Steiner Trees

Recall the problem definition from x1. The work of [12]
shows that by invoking the approach of [1], we can re-
duce the problem to the case where the given graph is a
rooted tree, and where we need to pick the root; this re-
duction involves a multiplicative O�log n log logn� loss in
the approximation ratio. By presenting a novel random-
ized rounding scheme for the problem on trees, the work
of [12] developed the first polylogarithmic approximation
algorithm for the problem. Letting N � maxi jSij, the ap-
proximation ratio of [12] for trees is O�logN log k�. The
log k factor is apparently necessary since the problem gen-
eralizes set cover: it has been an interesting open question
whether the logN factor is necessary. We make progress on
this by presenting a new rounding scheme with worst-case
approximation ratio at most O�logN log k�; however, for
families of instances such as one shown in [12] for which
the approximation ratio of [12] is ��logN log k�, our ap-
proximation ratio is O�log k�.



We first sketch the rounding scheme of [12] for a tree
T with root r. We may assume w.l.o.g. that all nodes inS
i Si are leaves in T . An integer linear programming for-

mulation for the problem is as follows. We have a variable
xf � f�� �g for each edge f : this is � if f is chosen and is
zero otherwise. The spanning constraints are that if we in-
terpret xf as the “capacity” of f , then for each i � �k�, these
capacities can support a unit flow from r to Si. (The capac-
ities do not need to support a unit flow simultaneously for
all the Si.) The objective function is to minimize

P
f cfxf ,

where cf is the given cost of edge f . Relaxing each xf to
lie in ��� �� gives an LP relaxation.

Let fx��f� 
 f � Eg be an optimal solution to the LP
relaxation, with objective function value y�. The rounding
approach of [12] is as follows; we describe it in a level-by-
level manner. Each edge f incident with the root r is inde-
pendently chosen with probability p�f�

�
� x��f�; this is the

rounding scheme for the edges in the first level of the tree.
Suppose we have rounded the edges in the first i levels, and
need to round the �i
��st level. For each vertex u at a dis-
tance of i from the root that is reachable from the root in the
subtree obtained by the rounding so far, and for each edge f
connectingu to some child of u, edge f is chosen with prob-
ability p�f�

�
� x��f��x��g�, where g is the “parent edge”

of f . All these choices are made independently. It is not
hard to see that the expected cost of the subtree chosen is
y�. More interestingly, it is shown in [12] that any given Si
is hit with probability at least ���� logN�. Thus, if we re-
peat this process a logN log k times for a sufficiently large
constant a and take the union of all the subtrees chosen, we
will hit all the Si with high probability. Also, by Markov’s
inequality, the total cost of the final tree will be at most
��a logN log k� � y� with probability at least ���. Thus we
have an O�logN log k�–approximation. However, it is also
shown in [12] that there are families of examples where the
basic scheme does need to be run ��logN log k� times as
above, to have a reasonable probability of hitting all the Si.
We now sketch a new rounding scheme which has an ap-
proximation ratio of at most O�logN log k�, but which is
an O�log k�–approximation for families of potentially “dif-
ficult” examples such as the one mentioned above.

The new rounding scheme is best described as a level-
by-level rounding scheme. Recall the definition of D� from
x3.2. Let the probabilities p�f� be the same as above. Sup-
pose there are t edges incident on the root. Then, instead
of rounding them independently as above, we round them
using D��t	 �p�� p�� � � � � pt��, where the pi are the values
p�f� for the t edges. In general, suppose we now need
to round the edges in the �i 
 ��st level. For each ver-
tex u at a distance of i from the root that is reachable
from the root in the subtree rounded so far, we proceed
as follows, independently of all other vertices. Suppose
there are tu edges f connecting u to some child of u; de-

note their probabilities (the same “p�f�
�
� x��f��x��g�”

as in [12]) by p�� p�� � � � � ptu . Instead of rounding these
tu edges independently as in [12], we round them using
D��tu	 �p�� p�� � � � � ptu��.

This is our new rounding scheme. It is easy to show us-
ing (A1) that the expected cost of the subtree chosen is y�.
More interestingly, we can show that the correlations im-
plicit in our usage of D� only help, once again via (A3): we
are able to show again that any given Si is hit with proba-
bility at least ���� logN�. Thus, our approximation ratio
is again at most O�logN log k�. However, for the hard ex-
amples shown in [12], we can show that our approximation
ratio is at most O�log k�. (In this context, the following ex-
ample is provided in [12]. Consider a binary tree, where the
values x�f are ��� in the first level, ��� in the second level,
and so on; we take k such disjoint trees, each reaching down
separately to some Si, and merge their roots [12].) Further
details are deferred to the full version.

Acknowledgments. This work evolved over a period of
time, and benefited much from discussions with several
people. We thank Moses Charikar, Chandra Chekuri, Ra-
jiv Gandhi, Sanjeev Khanna, Samir Khuller, Seffi Naor, Iraj
Saniee, Peter Winkler, and Leonid Zosin for helpful discus-
sions.

References

[1] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proc. ACM Symposium on Theory of Com-
puting, pages 161–168, 1998.

[2] R. Bar-Yehuda. Using homogeneous weights for ap-
proximating the partial cover problem. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages 71–
75, 1999.

[3] S. Belardo, J. Harrald, W. Wallace, and J. Ward. A
partial covering approach to siting response resources
for major maritime oil spills. Management Science,
30:1184–1196, 1984.

[4] O. Berman, D. Bertsimas, and R. C. Larson. Locating
discretionary service facilities, II: maximizing mar-
ket size, minimizing inconvenience. Operations Re-
search, 43:623–632, 1995.

[5] O. Berman, R. C. Larson, and N. Fouska. Optimal lo-
cation of discretionary service facilities. Transporta-
tion Science, 26:201–211, 1992.

[6] N. Bshouty and L. Burroughs. Massaging a linear pro-
gramming solution to give a 2-approximation for a
generalization of the vertex cover problem. In Proc.
Symposium on the Theoretical Aspects of Computer
Science, pages 298–308, 1998.



[7] M. Charikar, C. Chekuri, A. Goel, and S. Guha.
Rounding via trees: deterministic approximation algo-
rithms for Group Steiner trees and k-median. In Proc.
ACM Symposium on Theory of Computing, pages
114–123, 1998.

[8] M. Conforti and G. Cornuéjols. Submodular set func-
tions, matroids and the greedy algorithm: tight worst-
case bounds and some generalizations of the Rado-
Edmonds theorem. Discrete Applied Math., 7:257–
274, 1984.

[9] R. D. Davis, K. Kumaran, G. Liu, and I. Saniee. SPI-
DER: a simple and flexible tool for design and pro-
visioning of protected lightpaths in optical networks.
Bell Labs Technical Journal, Vol. 6, January–June
2001.

[10] B. T. Doshi, S. Dravida, P. Harshavardhana, O.
Hauser, and Y. Wang. Optical network design and
restoration. Bell Labs Technical Journal, Issue on Op-
tical Networking, Vol. 4, January-March 1999.

[11] R. Gandhi, S. Khuller, and A. Srinivasan. Approxima-
tion algorithms for partial covering problems. In Proc.
International Colloquium on Automata, Languages,
and Programming, pages 225–236, 2001.

[12] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic
approximation algorithm for the Group Steiner Tree
problem. In Proc. ACM-SIAM Symposium on Discrete
Algorithms, pages 253–259, 1998.

[13] D. S. Hochbaum. Approximating covering and pack-
ing problems: set cover, vertex cover, independent set,
and related problems. In Approximation Algorithms
for NP-Hard Problems, D. S. Hochbaum, ed., PWS
Publishing Company, Boston, pages 94–143, 1997.

[14] D. S. Hochbaum. The t-vertex cover problem: Extend-
ing the half integrality framework with budget con-
straints. In Proc. International Workshop on Approx-
imation Algorithms for Combinatorial Optimization
Problems, pages 111–122, 1998.

[15] D. S. Hochbaum and A. Pathria. Analysis of the
greedy approach in covering problems. Unpublished
manuscript, 1994.

[16] S. Khuller, A. Moss, and J. (Seffi) Naor. The budgeted
maximum coverage problem. Information Processing
Letters, 70(1):39–45, 1999.

[17] J. Kleinberg. Approximation algorithms for disjoint
paths problems. Ph.D. Thesis, Department of Electri-
cal Engineering and Computer Science, MIT, 1996.

[18] D. Logothetis and K. Trivedi. The effect of detection
and restoration times for error recovery in commu-
nication networks. Journal of Network and Systems
Management, 5:173–195, 1997.

[19] N. Megiddo, E. Zemel, and S. L. Hakimi. The maxi-
mum covering location problem. SIAM Journal on Al-
gebraic and Discrete Methods, 4:253–261, 1983.

[20] G. L. Nemhauser and L. Wolsey. Maximizing sub-
modular set functions: formulations and studies of
algorithms. In Studies on Graphs and Discrete Pro-
gramming, North-Holland, Amsterdam, pages 279–
301, 1981.

[21] A. Panconesi and A. Srinivasan. Randomized
distributed edge coloring via an extension of the
Chernoff-Hoeffding bounds. SIAM J. Comput.,
26:350–368, 1997.

[22] G. Reich and P. Widmayer. Beyond Steiner’s problem:
a VLSI oriented generalization. In Proc. Graph Theo-
retic Concepts of Computer Science, Lecture Notes in
Computer Science 411, Springer-Verlag, pages 196–
210, 1990.

[23] P. Raghavan and C. D. Thompson. Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7:365–374,
1987.

[24] SDH Frequently Asked Questions. See
http://www1.biz.biglobe.ne.jp/�worldnet/faq/sdh.html

[25] T. E. Stern and K. Bala. Multiwavelength optical net-
works: a layered approach. Prentice Hall, 1999.

[26] C. Toregas, R. Swain, C. Revelle, and L. Bergman.
The location of emergency facilities. Operations Re-
search, 19:1363–1373, 1971.

[27] W. T. Trotter and P. Winkler. Ramsey theory and se-
quences of random variables. Combinatorics, Proba-
bility and Computing, 7:221–238, 1998.

[28] R. V. Vohra and N. G. Hall. A probabilistic analysis
of the maximal covering location problem. Discrete
Applied Math., 43:175–183, 1993.


