
New Approaches to Covering and Packing Problems

Aravind Srinivasan∗

Abstract

Covering and packing integer programs model a large family

of combinatorial optimization problems. The current-best

approximation algorithms for these are an instance of the

basic probabilistic method: showing that a certain random-

ized approach produces a good approximation with positive

probability. This approach seems inherently sequential; by

employing the method of alteration we present the first RNC

and NC approximation algorithms that match the best se-

quential guarantees. Extending our approach, we get the

first RNC and NC approximation algorithms for certain

multi-criteria versions of these problems. We also present

the first NC algorithms for two packing and covering prob-

lems that are not subsumed by the above result: finding

large independent sets in graphs, and rounding fractional

Group Steiner solutions on trees.

1 Introduction.

One way of viewing the covering and packing prob-
lems, which occupy a central place in combinatorial op-
timization, is as follows. Let Z+ denote the set of non-
negative integers. Given a monotone increasing1 func-
tion f : Zn+ → {0, 1} and a non-negative n-dimensional
vector ~w, a covering problem is about minimizing ~w · ~x
subject to f(~x) = 1. Similarly, given ~w and a mono-
tone decreasing f : Zn+ → {0, 1}, a packing problem
is to maximize ~w · ~x subject to f(~x) = 1. Specialized
to various “combinatorial” functions f , this framework
models many NP-hard problems related to set cover,
Steiner trees, hypergraph matching etc. In this work,
we present the first NC-approximation algorithms for a
few classes of these problems, matching the best-known
sequential guarantees to within constant or (1 + o(1))
factors. Some of these ideas also lead to the first NC-
approximation algorithms for certain multi-criteria cov-
ering and packing problems.

(a). NC-approximation algorithms for cover-
ing and packing integer programs. Our first fam-

∗Bell Laboratories, Lucent Technologies, 600–
700 Mountain Avenue, Murray Hill, NJ 07974-0636,

USA. E-mail: srin@research.bell-labs.com. URL:
http://cm.bell-labs.com/cm/ms/who/srin/index.html

1i.e., if f(~x) = 1, then f(~y) = 1 for any ~y ∈ Zn+ that coordinate-

wise dominates ~x

ily are results are for the covering and packing inte-
ger programs: we present the first RNC- and NC-
approximation algorithms for these that match the
current-best sequential approximation guarantees [38]
to within a constant factor.

For a vector z, let zi denote its ith component.

Definition 1.1. ([38]) Given A ∈ [0, 1]m×n, b ∈
[1,∞)m and w ∈ [0, 1]n with maxj wj = 1, a packing
(resp. covering) integer program PIP (resp. CIP) seeks
to maximize (resp. minimize) w · x subject to x ∈ Zn+
and Ax ≤ b (resp. Ax ≥ b). If A ∈ {0, 1}m×n, we
assume that each entry of b is integral; a PIP may also
have constraints of the form “xj ≤ dj”. We define
B = mini bi.

As is well-known and explained in [38], although
there are usually no restrictions on A, b and c beyond
non-negativity, the above restrictions are without loss
of generality.

The current-best approximation guarantees (de-
scribed in §2) for general PIPs and CIPs are due to
[38]. They are based on starting with a linear program-
ming (LP) relaxation of the problem wherein the xj
are allowed to be reals instead of integers; appropriate
randomized rounding [32, 31] is then shown to work.
Concretely, suppose we have a PIP, say, with each xj
required to lie in {0, 1}. Let the optimal solution to
the LP relaxation be {x∗1, x∗2, . . . , x∗n}, and the optimal
LP objective function value be y∗ =

∑
j wjx

∗
j . For a

certain λ ≥ 1, round each xj independently: to 1 with
probability x∗j/λ and to 0 with probability 1− x∗j/λ. It
is shown in [38] that a suitable choice of λ ensures, with
positive probability, that: (i) all constraints are obeyed,
and (ii) the objective function is at least as large as,
say, one-third its expected value y∗/λ. (Modifications
of this basic idea work for CIPs. We will mainly only
discuss the case of PIPs in this section.)

The LP relaxation can be solved in NC, losing only
a (1 + (log(m+ n))−C) factor in the objective function
for any desired constant C > 0 [25]. Also, random-
ized rounding schemes almost always have a straight-
forward RNC (if not NC) implementation: just ran-
domly round all the variables in parallel. So what is
the difficulty in at least developing an RNC version
of the above algorithm of [38]? The crux of [38] is in

showing via an analysis of correlations, that λ can be
chosen much smaller than known before (e.g., in [31]),
leading to better approximation guarantees.2 However,
the catch is that the “positive probability” alluded to in
the previous paragraph for this λ, can be exponentially
small in the input size of the problem in the worst case:
an explicit example of this is shown in [38]. Thus, if we
just conduct a randomized rounding, we will produce
a solution guaranteed in [38] with positive probability,
but we are not assured of a (deterministic or random-
ized) polynomial-time algorithm for constructing such
a solution. It is then shown in [38] that the method of
conditional probabilities can be adapted to the situation
and that we can efficiently round the variables one-by-
one, achieving the existential bound. (This is one of the
very few situations known to us where a probabilistic
argument does not yield a good randomized algorithm,
but spurs the development of an efficient deterministic
algorithm.) This approach seems inherently sequential,
and hence the apparent difficulty of even developing an
RNC version of it.

We tackle this problem by appealing to the method
of alteration, a key branch of the probabilistic method:
do a random construction, allow the result to not satisfy
all our requirements, alter the constructed random
structure appropriately, and argue that this achieves our
goal (in expectation or with high probability, hopefully).
We conduct a randomized rounding with parameters
similar to those of [38]; the probability of all constraints
being satisfied is positive, but can be tiny. We then
apply a parallel greedy technique that modifies some
variables to enforce the constraints, and argue that
the objective function does not change much in the
process; our specific greedy approach is critical to
making this argument work. This yields our RNC
algorithm. We then proceed to derandomize this,
by appealing to an “automata-fooling” approach of
[30, 20, 26]. The natural choices for these automata
have superpolynomially many states; we show how
we can work with certain alternative polynomial-sized
automata, and how the methods of [20, 26] can then be
applied.

Similar results hold for CIPs. Specializing to what
is perhaps the most well-known CIP, the set cover prob-
lem, we get the following. Suppose we have a set cover
instance with the ground set having s elements. All
known RNC or NC algorithms for this problem achieve
an approximation of O(log s) [7, 25, 33, 8]. However,
it is shown in [38, 36] that if the LP optimum is y∗

2Recall the parameter B from Definition 1.1. If, say, B = 1

and A ∈ {0, 1}m×n for a given PIP, [31] shows how to construct
an integral solution of value v = Ω(y∗/

√
m); [38] constructs a

solution of value Ω(v2) in this case.

(which is a lower bound on the optimal integral objec-
tive value), then there exists a polynomial-time com-
putable solution of value O(y∗ ln(s/y∗)). Note in partic-
ular that for instances with say, y∗ = Θ(s/polylog(s)),
the approximation ratio is O(log log s). Thus, since we
parallelize the bounds of [38], we get improved NC-
approximations for set cover in situations where y∗ is
“large” as above. Similar remarks of course hold for all
CIPs and PIPs.

(b). Approximating multi-criteria CIPs and
PIPs. Considerable recent research has focused on
multi-criteria (approximation) algorithms in schedul-
ing, network design, routing and other areas: see, e.g.,
[35, 11, 23]. The motivation is to study how to balance
multiple objective functions under a given system of con-
straints, modeling the fact that different participating
individuals/organizations may have differing objectives.
One abstract framework for this is in the setting of CIPs
and PIPs: given the constraints of a CIP/PIP, a set
of non-negative vectors { ~w1, ~w2, . . . , ~w`}, and a feasible
solution ~x∗ to the LP relaxation of the CIP/PIP’s con-
straints, how good integral solutions ~x exist (and can
be computed efficiently) that achieve a “good balance”
among the different weight functions ~wi? For instance,
given a PIP’s constraints, we could ask for (approximat-
ing) the smallest α ≥ 1 such that there exists an integral
feasible ~x with ~wi · ~x ≥ (~wi · ~x∗)/α for all i. We show in
§3 how our alteration method of part (a) helps expand
the set of situations here for which good RNC and NC
approximation algorithms exist; it is crucial that our
greedy algorithm of (a) depends only on the matrix A
and vector b of the constraint system, and not on the
objective function. The concrete benefit of this is that
instead of arguing that all m constraints are satisfied,
we need only show that a single random variable does
not deviate much above its mean. Section 3 shows why
earlier approaches such as ours in [38] cannot achieve
the bounds we get here.

(c). Finding large independent sets in NC. An
independent set (IS) in an undirected graph is a subset
of the vertices such that there is no edge connecting
any two vertices of the subset; an IS S is a maximal
independent set (MIS) if no IS properly contains S.
(Finding a maximum-sized IS is a PIP.) Among the first
major derandomization results that do not rely on any
complexity-theoretic assumptions, is the NC algorithm
of Karp & Wigderson to find an MIS in a given graph
[21]. This breakthrough was followed by further MIS
algorithms (see, e.g., [1, 24, 16]) and related approaches,
that significantly enhanced the derandomization area.
However, since an MIS can be much smaller than a
maximum-cardinality IS (consider, e.g., a star graph),

Goldberg & Spencer studied the problem of finding
ISs of guaranteed size in parallel [17]. Given a graph
G = (V,E), let n = |V | and m = |E|. We will
denote the degree of vertex v by dv. Define T1(G) =∑
v∈V 1/(dv + 1); the convexity of x 7→ 1/(x + 1) for

x ≥ 0, shows that T1(G) ≥ T2(G) .= n2/(2m + n).
Turán’s classical theorem shows that G has an IS of
size at least T1(G) (and hence at least T2(G)) [39]. The
work of [17] presents an NC algorithm to find an IS
of size at least T2(G). But there exist n-vertex graphs
G with T1(G) � T2(G): even “T1(G) = Θ(n) while
T2(G) = Θ(1)” holds for certain graph families. So, the
problem we address is: is there an NC algorithm to find
ISs of cardinality (close to) T1(G)?

We answer this in the affirmative by developing an
NC-derandomization of an algorithm of Spencer [37].
(The sequential derandomization of this algorithm by
the method of conditional probabilities is in fact the
natural greedy algorithm to find a large IS [13].) Our
algorithm finds an IS of size (1 − o(1))T1(G), where
the “o(1)” term is 1/(log n)1/2−ε, with 0 < ε < 1/2
being any given constant. We can also show that if
we wanted an IS of size at least (1 − δ)T1(G) for any
given constant δ > 0, we could use the elegant result of
Indyk on min-wise independence [18]. Indyk’s bounds
do not yield NC algorithms if we want δ to go to zero
as n increases: the work performed by an NC algorithm
here would be nO(log(1/δ)), which is superpolynomial if
δ(n) = o(1). Moreover, the bounds of [18] appear to
imply a work bound of about n12e log(98/δ), 3 which is
large even for moderate constants δ; the work bound for
our (1− o(1))T1(G) result is at most O(n7).

(d). Rounding fractional solutions to Group
Steiner problems. The Group Steiner tree problem
on graphs [34, 15], defined in §5, is a covering problem
that generalizes the Steiner tree problem on graphs. Its
restriction to trees generalizes the set cover problem.
The work of [15] presented the first polylogarithmic ap-
proximation algorithm for the problem: their approach
is to reduce the problem to one on trees, and to then
conduct a suitable randomized rounding of an LP re-
laxation. The work of [9] presented a sequential de-
randomization of this randomized rounding; we modify
the algorithm and develop an NC rounding. A com-
mon theme of our results (c) and (d) is the use of small
sample spaces that approximate product distributions
[29, 12].

Details and proofs omitted here will be presented in
the full version.

3Throughout, e will denote the base of the natural algorithm

2 Randomized rounding augmented with
greedy alteration.

2.1 Preliminaries. Let exp(x) denote ex. We first
recall the Chernoff-Hoeffding bounds [3, 28]. Let
Z1, Z2, . . . , Z` be independent random variables, each
taking values in [0, 1]. Let Z =

∑
i Zi and E[Z] = µ.

Then,

Pr[Z ≥ µ(1 + δ)] ≤ G(µ, δ)
.= (exp(δ)/(1 + δ)(1+δ))µ, ∀δ ≥ 0;(2.1)

Pr[Z ≤ µ(1− δ)] ≤ H(µ, δ)
.= (exp(−δ)/(1− δ)(1−δ))µ

≤ exp(−µδ2/2), ∀δ ∈ (0, 1).(2.2)

Motivated by these bounds, the scaling parameter
λ ≥ 1 for the randomized rounding, is chosen as
follows in [38]. Recall that y∗ =

∑
i wix

∗
i denotes the

optimal LP objective value for a PIP/CIP; also recall
the parameter B from Definition 1.1. For PIPs, [38]
chooses λ to be

K0 ·max{1, (m/y∗)1/B} if A ∈ {0, 1}m×n, and(2.3)
K0 ·max{1, (K1m/y

∗)1/(B−1)} otherwise,(2.4)

where K0 > 1 and K1 ≥ 1 are certain constants.
Doing a correlational analysis via the FKG inequality,
it is shown in [38] that PIPs have integral solutions
of value at least Ω(y∗/λ) where λ is as above; as
mentioned in §1, [38] also shows a constructive version
of this, which seems inherently sequential. Note that
the approximation guarantee of O(λ) here is better for
the case A ∈ {0, 1}m×n than for the general case where
A ∈ [0, 1]m×n. It is shown in [22] that these bounds
for the case A ∈ {0, 1}m×n can also be generalized to
the case of column restricted PIPs, a useful class of
problems related to, e.g., unsplittable flow. (Also note
that the bounds of [38] start getting poor in the case
where A 6∈ {0, 1}m×n, and where B is greater than, but
very close to 1. Better bounds for this case are shown
in [10], which also our approach matches in NC. For
brevity, we defer this case to the full version of this
paper.) For CIPs, [38] chooses λ to be

1 +O(max{ ln(mB/y∗)
B

,

√
ln(2dmB/y∗e)

B
}),(2.5)

and develops an (1+O(λ−1))–approximation algorithm.
Section 2.2 presents our “randomized rounding plus

alteration”; in §2.3, we will show that this algorithm
matches the above-seen approximation bounds of [38]
for PIPs and CIPs, in expectation. The algorithm will
then be derandomized in §2.4.

2.2 The basic algorithm. Suppose we are given a
PIP. For any desired constant C > 0, a feasible solution
{x∗1, x∗2, . . . , x∗n} to the PIP’s LP relaxation with objec-
tive function value at least (1− (log(m+ n))−C) times
the optimal LP objective value, can be found in NC
[25]. (log x denotes log2 x for the rest of this paper.)
Given the x∗j , we choose a suitable λ ≥ 1 (the choice of
which will be the heart of our analysis), and do the fol-
lowing randomized rounding: independently for each j,
round xj to dx∗j/λe with probability x∗j/λ−bx∗j/λc, and
to bx∗j/λc with probability 1−x∗j/λ+bx∗j/λc. This is ba-
sically the same as in [31, 38]. The crucial point is that
we allow the constraints of the PIP to be violated; we
now alter the values xj to fix the violated constraints, as
follows. Let [k] denote the set {1, 2, . . . , k}. In each row
i of the matrix A, let Li be a pre-computed list (per-
mutation of [n]) 〈σ(i, 1), σ(i, 2), . . . , σ(i, n)〉 such that

Ai,σ(i,1) ≥ Ai,σ(i,2) ≥ · · · ≥ Ai,σ(i,n).(2.6)

Ties in the choice of Li are broken arbitrarily. Sup-
pose the ith constraint “(Ax)i ≤ bi” has been violated;
our process Fi of enforcing this constraint is as follows.
We traverse the variables {x1, x2, . . . , xn} in the per-
mutation order given by Li, and keep rounding down
variables that have been rounded up by the randomized
rounding, until the constraint “(Ax)i ≤ bi” is satisfied.
(In particular, variables xj for which x∗j/λ was an inte-
ger, remain unaltered at x∗j/λ.) Note that this is easily
done in NC, by a parallel prefix computation. Also, this
is done in parallel for all constraints i that were violated;
these parallel threads F1, . . . ,Fm do not interact with
each other. (For instance, suppose the ith constraint
is that 0.8x2 + x3 + 0.6x5 + x7 + 0.7x8 ≤ 2, and that
randomized rounding set x3 := 0 and rounded-up each
of x2, x5, x7 and x8 to 1. Then, Fi will reset precisely
x7 and x2 to 0. Now, some Fi′ for i′ 6= i may reset x8

to zero, in which case we could potentially revisit the
ith constraint and try to set, say, x2 back to 1. We
do not analyze such possible optimizations; this is what
we mean by “the different Fi do not interact with each
other”. Also note that the different Fi may round down
the same variable in parallel.) After this alteration, all
constraints will be satisfied; this is the algorithm we will
analyze for PIPs. The alteration is greedy in the sense
that guided by (2.6), the Fi try to alter as few variables
as possible.

The algorithm is basically the same for CIPs, with
the following minor modifications. First, the NC al-
gorithm of [25] produces a solution to the LP relax-
ation with value at most (1 + (log(m + n))−C) times
optimal, for any desired constant C > 0. In the ran-
domized rounding, since all constraints are of the “≥”
type, we scale all variables up by λ ≥ 1. More precisely,

independently for each j, we round xj to dλx∗je with
probability λx∗j − bλx∗jc, and to bλx∗jc with probability
1 − λx∗j + bλx∗jc. Furthermore, in the alteration step,
the Fi keep rounding up rounded-down variables in the
same “Li order” as above, to enforce the constraints.

2.3 Analysis of the algorithm. We start with PIPs.
Fix a PIP conforming to Definition 1.1. Recall the
notation of §2.1 and §2.2. We assume that x∗j ∈ [0, 1]
for each j; as shown in [38], the approximation bounds
only get better if x∗j > 1 for some j. (We will prove this
in the full version of this paper. The intuition is that
rounding, say, 26.3 to 26 or 27 is a much less delicate
choice than rounding, say, 0.3 to 0 or 1.)

Suppose we run the “randomized rounding and
alteration” of §2.2, with λ as in (2.3, 2.4). Let Xi be
the random variable denoting the number of variables
altered in row i, by Fi. (Suppose Fi stops at some index
j in the list Li. Note that Fi′ , for some i′ 6= i, may turn
some variable xj′ from 1 to 0, with j′ appearing after j
in Li. Such variables j′ are not counted in calculating
Xi.)

Notation. (i) For k = 1, 2, . . . , let Li,k be the sub-list
of Li such that for all j ∈ Li,k, Ai,j ∈ (2−k, 2−k+1].
(Note that Li is the concatenation of Li,1, Li,2,) (ii)
Define Mi,k to be the multiset obtained by collecting
together the elements of Li,t, for all t ≥ k. (iii) Let Zi
denote the largest k for which some element of Li,k was
reset from 1 to 0 by Fi; Zi = 0 iff the ith constraint was
not violated. (iv) Call a PIP “Type I” if A ∈ {0, 1}m×n,
and “Type II” otherwise.

For the rest of this subsection, the xj will denote
the outcome of randomized rounding, i.e., the values of
the variables before alteration. Good upper-tail bounds
for the Xi will be crucial to our analysis, as well as
to our derandomization of §2.4: Lemma 2.1 provides
such bounds. Parts (a) and (b) of Lemma 2.1 will
respectively help handle the cases of “large” Zi and
“small” Zi. In the statement of the lemma, the function
G is from (2.1).

Lemma 2.1. Fix a PIP; let i ∈ [m], and k, y ≥ 1 be
integers. Then:
(a) Pr[Zi ≥ k] ≤ G(bi2k−1/λ, λ− 1).
(b) If λ ≥ 3, say, then Pr[(Zi = k) ∧ (Xi ≥ y)] ≤
O((e/λ)bi+0.5(dy/ke−1)).
(c) If the PIP is Type I, then Pr[Xi ≥ y] ≤
G(bi/λ, λ(1 + y/bi)− 1).

Proof. (a) Zi ≥ k implies that
∑
j∈Mi,k

Ai,jxj > bi, i.e.,
that

∑
j∈Mi,k

2k−1Ai,jxj > 2k−1bi, since otherwise we
will have Zi < k. Since E[xj] = x∗j/λ, E[

∑
j Ai,jxj] ≤

bi/λ; so E[
∑
j∈Mi,k

2k−1Ai,jxj] ≤ bi2k−1/λ. Also,

2k−1Ai,j ∈ [0, 1] for all j ∈ Mi,k. Bound (2.1) now
completes the proof.
(b) Let Xi,` denote the number of elements of Li,` that
are altered by Fi. Now, Xi =

∑
`Xi,`; also, if Zi = k,

then Xi,` = 0 for ` > k. So, “(Zi = k) ∧ (Xi ≥ y)”
implies the existence of ` ∈ [k] with Xi,` ≥ dy/ke. This
in turn implies that

∑
j∈Mi,`

Ai,jxj > bi + (dy/ke −
1)2−`, since resetting any element of Li,` from 1 to
0 decreases

∑
j Ai,jxj by more than 2−`. Let θ

.=
(dy/ke − 1) for notational convenience. So, Pr[(Zi =
k) ∧ (Xi ≥ y)] is at most

k∑
`=1

Pr[
∑

j∈Mi,`

2`−1Ai,jxj > bi2`−1 + θ/2].(2.7)

We have that E[
∑
j∈Mi,`

2`−1Ai,jxj] ≤ bi2`−1/λ, and
that 2`−1Ai,j ∈ [0, 1] for all j ∈ Mi,`. Using (2.1) to
bound (2.7), we get the bound

k∑
`=1

G(bi2`−1/λ, λ(1 + θ2−`/bi)− 1) ≤

k∑
`=1

(
e

λ(1 + θ2−`/bi)

)bi2`−1+0.5θ

≤

k∑
`=1

(e/λ)bi2
`−1+0.5θ =

O((e/λ)bi+0.5θ).

(c) Here, Xi ≥ y iff
∑
j Ai,jxj ≥ bi + y; we now employ

(2.1). This concludes the proof of Lemma 2.1.

Remark. Observe how the greedy nature of Fi helps
much in establishing Lemma 2.1.

Theorem 2.1. There are constants K2,K3,K4,K5 >
0 such that the following hold. Fix any PIP and any
i ∈ [m]; suppose λ ≥ 3. Define p = (e/λ)B if the PIP
is Type I, and p = (e/λ)B+1 otherwise. Then:
(a) For any integer y ≥ 2, Pr[Xi ≥ y] ≤ K2p ·
min{1,K3e

−K4y/ log y}.
(b) E[Xi] ≤ K5p.

Proof. We omit showing some straightforward calcula-
tions in this proof.
(a) If the PIP is Type I, (a stronger version of) part (a)
easily follows from part (c) of Lemma 2.1; so suppose
the PIP is Type II. Choose t of the form log y + Θ(1).
We have

Pr[Xi ≥ y] =
∑
k≥1

Pr[(Zi = k) ∧ (Xi ≥ y)]

≤
∑

k∈[t−1]

Pr[(Zi = k) ∧ (Xi ≥ y)] + Pr[Zi ≥ t].

We apply parts (a) and (b) of Lemma 2.1 to respectively
bound the second and first summands in the last
expression, to get the claimed bound.
(b) Pr[Xi ≥ 1] = Pr[(Ax)i > bi] ≤ p, by (2.1); see, e.g.,
[38]. Also, part (a) shows that∑

y≥2

Pr[Xi ≥ y] = O(p).

We now use the equation E[Xi] =
∑
y≥1 Pr[Xi ≥ y] to

complete the proof of Theorem 2.1.

We are now ready to analyze our RNC alteration
algorithm for PIPs. The expected value of the objective
function is y∗/λ; since wj ≤ 1 for all j, the expected re-
duction in the objective value caused by the alteration,
is at most

∑
i∈[m] E[Xi] ≤ K5mp, by part (b) of The-

orem 2.1. (This is an overcount since the same altered
variable xj may get counted by several Xi.) Thus, the
expected final objective value is at least y∗/λ−K5mp,
which is Ω(y∗/λ) if the constants K0 and K1 of (2.3,
2.4) are chosen large enough.

The basic analysis is similar for CIPs. With λ as
in (2.5), we aim to show that E[

∑
iXi] ≤ O(y∗(λ− 1)).

So, the expected objective value after alteration will
be at most y∗λ + O(y∗(λ − 1)) = y∗(1 + O(λ − 1)),
matching the result of [38]. The basic proof idea, as
for PIPs, is to show that Zi being “large” is unlikely,
and to present a good tail bound for the case where
Zi is “small”. (The analog of Theorem 2.1(a) is that
Pr[Xi ≥ y] ≤ O(exp(−Ω(B(λ − 1)2/λ + y/ log y))).)
The proof is deferred to the full version.

2.4 Derandomization. To derandomize the algo-
rithms of §2.2, we will adapt an “automata-fooling”
approach of [20, 26]. Simplifying this for our pur-
poses, we have the following. Suppose we have h finite-
state automata A1,A2, . . . ,Ah with respective state-
sets S1, S2, . . . , Sh, such that Si ∩ Sj = ∅ if i 6= j. Each
Si is partitioned into n+ 1 layers, numbered 0, 1, . . . , n.
Layer 0 has a unique state si, which is also the start-
state of Ai. All transitions are only from one layer to
the layer numbered one higher; there are no transitions
from layer n. Outgoing arcs from a state are numbered
by an integer in the range {0, 1, . . . , 2d − 1}, for some
integer d. Given a word γ1γ2 . . . γn where each γi is a d-
bit string, each Ai moves from its start-state si to some
state in layer n of Si, in the obvious way. Now suppose
we are given a parameter ε ∈ (0, 1). Let R = r+2d+1/ε,
where r =

∑
i |Si|. Then, [20, 26] presents a parallel al-

gorithm to construct a set T ⊆ {0, 1, . . . , 2d−1}n of size
poly(R); this parallel algorithm uses poly(R) processors
and runs in polylog(R) time. The key property of T is as
follows. Given a state t in layer n of Si, let p1(i, t) be the

probability of reaching state t, if we choose γ1γ2 . . . γn
uniformly at random from {0, 1, . . . , 2d−1}n; let p2(i, t)
be this probability if γ1γ2 . . . γn is chosen uniformly at
random from T . Then, T has the useful property that

∀(i, t), |p1(i, t)− p2(i, t)| ≤ ε.(2.8)

We only show here how to adapt the above frame-
work to derandomize our algorithm for PIPs; the case of
CIPs is similar and will be presented in the full version.
The basic idea is as follows. Let N denote the input size
of a PIP; we have max{m,n} ≤ N ≤ O(mn). Round
up all values Ai,j to the nearest non-positive power of
2; a feasible fractional solution is obtained by dividing
all the x∗j by 2. Also, any feasible integral solution for
this new system is also feasible for our original instance.
Note that we now have

∀(i, k) ∀j ∈ Li,k, Ai,j = 2−k+1.(2.9)

Next, since those Ai,j and wj that are very small (say,
less than 1/N3), as well as values x∗j that are, say,
less than 1/N3 can be safely omitted from considera-
tion, simple perturbations ensure that for all i, j, the
values Ai,j , wj and E[xj] are rationals with denomi-
nator 2d, where d = Θ(logN). Note that the values
{x1, x2, . . . , xn} output by the randomized rounding are
the only random variables in our RNC algorithm. We
can construct xj by generating a random d-bit integer
x′j , and setting xj to 1 iff x′j < xj2d. Instead, suppose,
for some explicitly constructed T ⊆ {0, 1, . . . , 2d−1}n of
size poly(N) and for (x1, x2, . . . , xn) chosen at random
from T , we have:
(P1) the expected value of the objective function is α,
and
(P2) for each i ∈ [m], E[Xi] = βi.

Then, the one-paragraph analysis following the
proof of Theorem 2.1 shows that the expected value
of the objective function (for (x1, x2, . . . , xn) chosen
at random from T) is at least α −

∑
i βi. Since T

is polynomial-sized, a parallel exhaustive search over
T will then help construct a solution of value at least
α −

∑
i βi in NC. We aim to use the above automata-

fooling approach to achieve

α = Ω(y∗/λ); ∀i, βi = O(p).(2.10)

We will then get a solution of value Ω(y∗/λ) as desired.
Our m + 1 automata A1,A2, . . . ,Am+1 are as fol-

lows. The invariant for all the Ai is:
(I): The states in each layer ` of each Ai represent some
information after the values of x1, x2, . . . , x` are known;
layer 0 is for no information yet being known.
We first describe Am+1, which is the simplest. Since
all the wj are rationals with denominator 2d = NΘ(1),

there is some poly(N)-sized set Λ such that for each
` and any of the 2` possible values of (x1, x2, . . . , x`),∑
j∈[`] wjxj ∈ Λ. Each layer ` ∈ [n] of Am+1 has the

state-set Λ, with the meaning that Am+1 will be in state
ω ∈ Λ of layer ` iff

∑
j∈[`] wjxj = ω. (Thus, there will

be arcs from state ω in layer ` to state ω+w`+1 in layer
`+1 with labels 0, 1, . . . , 2dE[x`+1]−1; there will also be
arcs from state ω in layer ` to state ω in layer `+1 with
labels 2dE[x`+1], 2dE[x`+1] + 1, . . . , 2d − 1.) So, Am+1

has poly(N) many states, and the value of the objective
function

∑
j∈[n] wjxj can be read off from the state in

layer n that Am+1 reaches. This would help us handle
(P1) above.

The automata Ai, i ∈ [m], help handle (P2); they
are more complicated. Fix i ∈ [m], and recall the invari-
ant (I). Ai is supposed to represent the ith constraint,
i.e., the ith row of matrix A. What states would be of
interest to us? Recall that our analysis crucially uses the
variables Xi; so we would like to be able to read off Xi

from the final state that Ai enters. To this end, define
U(i, k, `) =

∑
j≤`: j∈Li,k xj ; equation (2.9) shows that

the value of the tuple (U(i, 1, n), U(i, 2, n), . . . , U(i, d+
1, n)) determines the value of Xi. (The value of this
tuple does not determine which variables are to be al-
tered, but that is not required by (P2).) So, a natural
idea is to define layer ` of Ai to be the set of possible val-
ues of T (i, `) = (U(i, 1, `), U(i, 2, `), . . . , U(i, d + 1, `));
it is then easy to design the state-transition rules of
Ai. Unfortunately, we can check that T (i, `) takes
values from a set W (i, `) that can have superpoly-
nomial (in N) size. In such a case, the automata-
fooling result cannot be applied directly. How to get
around this? Appendix A does the following to re-
solve this. We first define a random variable T ′(i, `)
that depends only on x1, x2, . . . , x`; T ′(i, `) takes val-
ues in a superpolynomial-sized set W ′(i, `). However,
we will also show in Appendix A that there is an ex-
plicit poly(N)-sized W ′′(i, `) ⊆W ′(i, `) such that:
(P3) if T ′(i, `) 6∈W ′′(i, `), then T ′(i, `+ 1) 6∈W ′′(i, `+
1);
(P4) in our randomized rounding with the xj chosen
independently, Pr[∃` : T ′(i, `) ∈ (W ′(i, `)−W ′′(i, `))] ≤
1/N3; and
(P5) if T ′(i, n) ∈W ′′(i, n), then the value of Xi can be
read off from T ′(i, n).

Thus, we will be able to get away with just one
state “bad`” in layer `, to represent all of W ′(i, `) −
W ′′(i, `). More precisely, define the states in layer
` of Ai to be W ′′(i, `) ∪ {bad`}. If Ai arrives at
state ω ∈ W ′′(i, `) at layer `, the meaning is that
T ′(i, `) = ω [and, from (P3), that Ai never passed
through a “bad” state]; if Ai arrives at bad`, then
T ′(i, `) ∈ (W ′(i, `) −W ′′(i, `)) [and Ai will henceforth

pass through states bad`+1,bad`+2, . . . ,badn]. Finally,
as shown in Appendix A, the state-transitions are
efficiently constructible for these automata. Now, if Ai
ended at a non-bad state in layer n, we can get the value
of Xi from it. But Ai may not; however, in this case
which happens with probability at most N−3, Xi can
be at most n ≤ N , thus negligibly affecting our control
over E[Xi]. So we will be able to choose ε = N−c for
a suitable constant c, and use (2.8) to construct the set
T . Please see Appendix A for the details.

3 Multi-criteria CIPs and PIPs.

As mentioned in application (b) of §1, we will now work
with multi-criteria PIPs and CIPs, generalizing our
results of §2. The basic setting is as follows. Suppose, as
in a PIP, we are given a system of m linear constraints
Ax ≤ b, subject to each xj being an integer in some
given range [0, dj]. Furthermore, instead of just one
objective function, suppose we are given a collection
of non-negative vectors { ~w1, ~w2, . . . , ~w`}. The question
is: given a feasible solution ~x∗ to the LP relaxation of
the constraints, how good integral feasible solutions ~x
exist (and can be computed/approximated efficiently)
that achieve a “good balance” among the different ~wi?
For instance, we focus in this section on the case where
all the ~wi have equal importance; so, we could ask for
approximating the smallest α ≥ 1 such that there exists
an integral feasible ~x with ~wi · ~x ≥ (~wi · ~x∗)/α for all i.
Similar questions can be asked for CIPs.

We now show how our algorithm and analysis of §2
help. For simplicity, we consider here the case where all
the values ~wi ·~x∗ are of the same “order of magnitude”:
say, within a multiplicative factor of 2 of each other. It
will be easy to see how to extend this to arbitrary values
~wi · ~x∗. Basically, Theorem 3.1 says that we can get
essentially the same approximation guarantee of O(λ)
as in §2, even if we have up to exp(C1y

∗/λ) objective
functions ~wi. (See (2.3, 2.4) for the value of λ.)

Theorem 3.1. There are constants C1 > 0, K0 > 1
and K1 ≥ 1 such that the following holds. Suppose we
are given:
(a) a PIP’s constraints Ax ≤ b;
(b) a feasible solution ~x∗ to the LP relaxation of these
constraints, and
(c) a collection of non-negative vectors { ~w1, ~w2, . . . , ~w`}
such that for some y∗, ~wi · ~x∗ ∈ [y∗/2, y∗] for all i.

Let λ be as in (2.3, 2.4), and suppose `, the number
of given ~wi, is at most exp(C1y

∗/λ). Then, there exists
an integral feasible solution ~z to the constraints in (a),
such that ~wi · ~z ≥ ~wi · ~x∗/(2λ) for all i; furthermore, we
can compute such a ~z in NC.

Proof. We first present the RNC version. As in §2, it

can be shown that the worst case is when x∗j ∈ [0, 1]
for all j. As described in §2, the basic algorithm is to
conduct a randomized rounding with Pr[xj = 1] = x∗j/λ
for each j, and then to conduct our alteration. We use
the same notation as in §2. For each i ∈ [`], we have
E[~wi · ~x] = ~wi · ~x∗/λ ≥ y∗(2λ), by assumption (b) of
the theorem. Usage of (2.2) shows that for a certain
absolute constant C ′ > 0,

Pr[~wi · ~x ≤ ~wi · ~x∗/(1.5λ)] ≤ exp(−C ′y∗/λ).

So, the probability of existence of some i ∈ [`] for which
“ ~wi · ~x ≤ ~wi · ~x∗/(1.5λ)” holds, is at most

` · exp(−C ′y∗/λ) ≤ exp(−(C ′ − C1)y∗/λ).(3.11)

We may assume that y∗/λ ≥ (ln 2)/C1, since otherwise
` ≤ exp(C1y

∗/λ) implies that ` = 1, leaving us with the
“one objective function” case, which we have handled
in §2. Therefore we have from (3.11) that

Pr[∃i ∈ [`] : ~wi · ~x ≤ ~wi · ~x∗/(1.5λ)] ≤
exp(−(C ′ − C1) · (ln 2)/C1).(3.12)

Theorem 2.1(b) shows that E[
∑
i∈[m]Xi] ≤ K5mp; by

Markov’s inequality,

Pr[
∑
i∈[m]

Xi ≥ K5C2mp] ≤ C−1
2

for any C2 ≥ 1. Thus if C1 < C ′ and C2 is a large
enough constant such that the sum of C−1

2 and (3.12)
is less than, and bounded away, from 1, then with
positive constant probability, we have: (i) for all i ∈ [`],
~wi ·~x > ~wi ·~x∗/(1.5λ) and (ii) the total number of altered
variables is at most K5C2mp. This implies that for all
i ∈ [`], the value of ~wi · ~x after alteration is at least
~wi · ~x∗/(1.5λ) − K5C2mp, which can be ensured to be
at least ~wi ·~x∗/(2λ) by taking K0 and K1 large enough,
using the definition of p from Theorem 2.1, and using
the fact that ~wi · ~x∗ ≥ y∗/2 for all i.

The derandomization is very similar to that of §2.4;
we now have ` automata, one for each ~wi, instead
of the single automaton Am+1 there. The automata
A1,A2, . . . ,Am remain the same. Thus we have proved
Theorem 3.1.

The primary reason why the above works is that the
tail bound on

∑
i∈[m]Xi works in place of approaches

such as ours in [38] which try to handle the very low (in
some cases exponentially small) probability of satisfying
all the m constraints Ax ≤ b.

Similar results hold for CIPs. We shall also show in
the full version that by using the FKG inequality [14],
we can get somewhat better bounds on ` than the bound
exp(C1y

∗/λ) above, if we only require RNC algorithms.

4 Approaching the Turán bound in NC.

To find a large IS in a given graph, we derandomize the
following algorithm of Spencer [37]: randomly permute
the vertices, and add a vertex v to the IS iff no
neighbor of v precedes v in the random order. It can
be seen that the expected size of an IS produced here is
T1(G). Letting ` = d3 log2 ne, we first observe that this
expectation analysis changes very little if each v picks
a label X(v) uniformly at random and independently
from {0, 1, . . . , 2` − 1}, and gets added to the IS iff
X(v) < X(w) for all neighbors w of v. So we focus
on finding a “good” set of these labels in NC; our basic
approach is as follows. Number the vertices from 1 to n,
and write eachX(v) in binary as xv,1xv,2 · · ·xv,`; for 1 ≤
i ≤ `, define the vector Y (i) = (x1,i, x2,i, . . . , xn,i). We
aim to find “good” choices for Y (1), Y (2), . . . , Y (`) one-
by-one, using an “approximate method of conditional
probabilities” due to [2]. If the maximum degree ∆
of the graph is at most O(log n), we would be able to
show that it suffices to pick each Y (i) from a suitable
polynomial-sized small-bias sample space. (See [29] for
the important notion of small-bias spaces; specifically,
we use O(log n)-wise n−ψ-biased sample spaces for a
large enough constant ψ.) If ∆ � log n, we adapt
certain large-deviation results [5] to the setting of small-
bias spaces, and show how to implement an approximate
method of conditional probabilities here.

5 Rounding Group Steiner solutions.

Group Steiner Tree is a network design problem moti-
vated by VLSI design [34]. Given an undirected graph
G = (V,E), a collection of subsets S1, S2, . . . , Sk of V ,
and a cost cf ≥ 0 for each edge f ∈ E, the problem is to
construct a minimum-cost tree in G that spans at least
one vertex from each Si. The case k = 1 corresponds to
the Steiner tree problem; we can model set cover even
with G being a star graph here.

Let n = |V | and N = maxi |Si|. We start by sketch-
ing the O(log n log log n logN log k)–approximation al-
gorithm of [15] for this problem. First, the results of
Bartal [4] are used to appropriately reduce the problem
to the case where G is a tree G′, with an O((log n) ·
log log n) factor loss in the approximation bound. One
can also specialize to the rooted version, where a partic-
ular vertex r of G′ must be included in the constructed
tree. So we need to construct a min-cost tree T con-
tained in the rooted tree G′, such that r is included and
at least one vertex of each Si is spanned. We can also
assume w.l.o.g. that all nodes in

⋃
i Si are leaves of G′

(please see [15] for the proofs). The problem can be
written as an integer linear program, with an indicator
variable x(f) for including edge f in the tree T ; the ob-
jective is to minimize

∑
f cfx(f). In the LP relaxation,

we allow each x(f) to lie in [0, 1]; interpreting x(f) as
the capacity of edge f , the LP is to choose these ca-
pacities such that for each individual Si, the capacities
can support one unit of flow from r to Si. (It is not
required that the capacities be able to support a unit
flow simultaneously for all the Si.) Let {x∗(f) : f ∈ E}
denote an optimal LP solution; let y∗ =

∑
f cfx

∗(f).
The randomized rounding of [15] is as follows. Each
edge f incident with the root r is chosen with proba-
bility x∗(f). Every other edge f is chosen with prob-
ability x∗(f)/x∗(g), where g is the “parent edge” of f .
(W.l.o.g., x∗(f) ≤ x∗(g) holds.) All these choices are
made independently. Finally, we choose the connected
component of the chosen edges that includes r. Briefly,
the analysis of [15] is as follows. First, the expected cost
of the chosen tree is y∗. Next, it is shown via Janson’s
inequality [19] that for each given i, the probability that
at least one vertex of Si is covered by the above process,
is Ω(1/ logN). With these two properties, it is argued in
[15] that if we repeat our rounding C logN log k times
for a suitably large constant C and include the sub-
graphs chosen in these iterations, we get a desired tree
of cost O(y∗ logN log k) with probability at least 1/2.

This algorithm for trees G′ is given a sequential de-
randomization in [9]. We provide an NC derandom-
ization, as follows. Scale down all x∗(f) for the par-
ent edges f of all leaves, by C ′ logN for a certain con-
stant C ′, and imagine running one iteration of the above
randomized rounding. The scaling down enables us
to prove, by a truncated inclusion-exclusion argument,
that each given Si is hit with probability Ω(1/ logN);
also, the expected cost of the tree chosen is at most y∗.
The truncated inclusion-exclusion argument, as well as
a “depth-shrinking” approach of [15], let us show that
we can choose the random variables for the randomized
rounding from a suitable polynomial-sized space: one
generating almost O(logN)-wise independent random
variables [12]. Thus, we can choose a “good” seed for
the random process in NC, by an exhaustive search of
this space. We then show that repeating this process
O(logN log k) times suitably as above, solves the prob-
lem.

Acknowledgements. We thank Moses Charikar,
Chandra Chekuri, Magnús Halldórsson, Goran Kon-
jevod, Seffi Naor, Jaikumar Radhakrishnan, R. Ravi
and K. V. Subrahmanyam for helpful discussions.

References

[1] N. Alon, L. Babai, and A. Itai, A fast and simple ran-
domized parallel algorithm for the maximal independent
set problem, Journal of Algorithms, 7 (1986), pp. 567–
583.

[2] N. Alon and M. Naor, Derandomization, witnesses for
Boolean matrix multiplication and construction of per-
fect hash functions, Algorithmica, 16 (1996), pp. 434–
449.

[3] N. Alon and J. H. Spencer, The Probabilistic Method,
John Wiley & Sons, Inc., New York, 1992.

[4] Y. Bartal, On approximating arbitrary metrics by tree
metrics, in Proc. ACM Symposium on Theory of
Computing, pp. 161–168, 1998.

[5] M. Bellare and J. Rompel, Randomness-efficient obliv-
ious sampling, in Proc. IEEE Symposium on Founda-
tions of Computer Science, pp. 276–287, 1994.

[6] B. Berger and J. Rompel, Simulating (logc n)-wise
independence in NC, Journal of the ACM, 38 (1991),
pp. 1026–1046.

[7] B. Berger, J. Rompel, and P. W. Shor, Efficient NC al-
gorithms for set cover with applications to learning and
geometry, Journal of Computer and System Sciences,
49 (1994), pp. 454–477.

[8] A. Broder, M. Charikar, and M. Mitzenmacher, A
derandomization using min-wise independent permuta-
tions, in Proc. International Workshop on Randomiza-
tion and Approximation Techniques in Computer Sci-
ence, pp. 15–24, 1998.

[9] M. Charikar, C. Chekuri, A. Goel, and S. Guha,
Rounding via trees: deterministic approximation algo-
rithms for Group Steiner trees and k-median, in Proc.
ACM Symposium on Theory of Computing, pp. 114–
123, 1998.

[10] D. Cook, V. Faber, M. V. Marathe, A. Srinivasan and
Y. J. Sussmann, Low-bandwidth routing and electrical
power networks, in Proc. International Colloquium on
Automata, Languages, and Programming, pp. 604–
615, 1998.

[11] F. Ergün, R. Sinha and L. Zhang, QoS routing with
performance-dependent costs, in Proc. IEEE Confer-
ence on Computer Communications, pp. 137–146,
2000.

[12] G. Even, O. Goldreich, M. Luby, N. Nisan, and
B. Veličković, Efficient approximations for product
distributions, Random Structures & Algorithms, 13
(1998), pp. 1–16.

[13] P. Erdős, On the graph theorem of Turán (in Hungar-
ian), Mat. Lapok., 21 (1970), pp. 249–251.

[14] C. M. Fortuin, J. Ginibre, and P. N. Kasteleyn, Corre-
lational inequalities for partially ordered sets, Commu-
nications of Mathematical Physics, 22 (1971), pp. 89–
103.

[15] N. Garg, G. Konjevod, and R. Ravi, A polylogarithmic
approximation algorithm for the Group Steiner tree
problem, in Proc. ACM-SIAM Symposium on Discrete
Algorithms, pp. 253–259, 1998.

[16] M. Goldberg and T. Spencer, Constructing a maximal
independent set in parallel, SIAM J. Disc. Math., 2
(1989), pp. 322–328.

[17] M. Goldberg and T. Spencer, An efficient parallel
algorithm that finds independent sets of guaranteed size,
SIAM J. Disc. Math., 6 (1993), pp. 443–459.

[18] P. Indyk, A small approximately min-wise independent
family of hash functions, in Proc. ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 454–456, 1999.

[19] S. Janson, T. Luczak, and A. Ruciński, An exponential
bound for the probability of nonexistence of a specified
subgraph in a random graph, in Random Graphs ’87
(M. Karoński, J. Jaworski and A. Ruciński, eds.), John
Wiley & Sons, Chichester, pp. 73–87, 1990.

[20] D. R. Karger and D. Koller, (De)randomized construc-
tion of small sample spaces in NC, Journal of Com-
puter and System Sciences, 55 (1997), pp. 402–413.

[21] R. M. Karp and A. Wigderson, A fast parallel algorithm
for the maximal independent set problem, Journal of
the ACM, 32 (1985), pp. 762–773.

[22] S. G. Kolliopoulos and C. Stein, Approximating
disjoint-path problems using greedy algorithms and
packing integer programs, in Proc. MPS Conference
on Integer Programming and Combinatorial Opti-
mization, Lecture Notes in Computer Science 1412,
Springer-Verlag, pp. 153–168, 1998.

[23] J. Könemann and R. Ravi, A matter of degree: im-
proved approximation algorithms for degree-bounded
minimum spanning trees, in Proc. ACM Symposium
on Theory of Computing, pp. 537–546, 2000.

[24] M. Luby, A simple parallel algorithm for the maximal
independent set problem, SIAM J. Comput., 15 (1986),
pp. 1036–1053.

[25] M. Luby and N. Nisan, A parallel approximation algo-
rithm for positive linear programming, in Proc. ACM
Symposium on Theory of Computing, pp. 448–457,
1993.

[26] S. Mahajan, E. A. Ramos, and K. V. Subrahmanyam,
Solving some discrepancy problems in NC, in Proc. An-
nual Conference on Foundations of Software Technol-
ogy & Theoretical Computer Science, Lecture Notes
in Computer Science 1346, Springer-Verlag, pp. 22–36,
1997.

[27] R. Motwani, J. Naor, and M. Naor, The probabilis-
tic method yields deterministic parallel algorithms, J.
Comput. Syst. Sci., 49 (1994), pp. 478–516.

[28] R. Motwani and P. Raghavan, Randomized Algorithms,
Cambridge University Press, 1995.

[29] J. Naor and M. Naor, Small–bias probability spaces: ef-
ficient constructions and applications, SIAM J. Com-
put., 22 (1993), pp. 838–856.

[30] N. Nisan, Pseudorandom generators for space-bounded
computation, Combinatorica, 12 (1992), pp. 449–461.

[31] P. Raghavan, Probabilistic construction of determin-
istic algorithms: approximating packing integer pro-
grams, Journal of Computer and System Sciences, 37
(1988), pp. 130–143.

[32] P. Raghavan and C. D. Thompson, Randomized round-
ing: a technique for provably good algorithms and algo-
rithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[33] S. Rajagopalan and V. V. Vazirani, Primal-dual RNC
approximation algorithms for (multi)-set (multi)-cover
and covering integer programs, in Proc. IEEE Sympo-
sium on Foundations of Computer Science, pp. 322–

331, 1993.
[34] G. Reich and P. Widmayer, Beyond Steiner’s problem:

a VLSI oriented generalization, in Proc. Graph Theo-
retic Concepts of Computer Science, Lecture Notes in
Computer Science 411, Springer-Verlag, pp. 196–210,
1990.

[35] D. B. Shmoys and É. Tardos, An approximation algo-
rithm for the generalized assignment problem, Math.
Programming A, 62 (1993), pp. 461–474.

[36] P. Slav́ik, A tight analysis of the greedy algorithm for
set cover, in Proc. ACM Symposium on Theory of
Computing, pp. 435–441, 1996.

[37] J. H. Spencer, The probabilistic lens: Sperner, Turán
and Brégman revisited, in A Tribute to Paul Erdős
(A. Baker, B. Bollobás, A. Hajnal, editors), Cambridge
University Press, pp. 391–396, 1990.

[38] A. Srinivasan, Improved approximation guarantees for
packing and covering integer programs, SIAM J. Com-
put., 29 (1999), pp. 648–670.

[39] P. Turán, On the theory of graphs, Colloq. Math., 3
(1954), pp. 19–30.

Appendix

A Shrinking the automata to poly(N) size.

Let C0 > 0 be a sufficiently large constant. We will first
ensure that bi ≤ C0 logN for all i, in the given PIP:
if bi > C0 logN for some i, just divide the constraint
“(Ax)i ≤ bi” by bi/(C0 logN). (This will change
the value of the parameter λ that we choose in our
randomized rounding, iff B was greater than C0 logN
before this step. But even in this case, note from (2.3,
2.4) that we will have λ = Θ(1) before and after this
step; this is because we can assume that y∗ ≥ 1/2
w.l.o.g. by a simple argument that will be shown in
the full version. So, this step of ensuring that bi ≤
C0 logN for all i, changes our approximation guarantee
by at most a multiplicative constant factor.) Define
k0 = dlog(C0 logN)e, and U ′(i, `) =

∑
j≤`: j∈Mi,k0

xj .
Please see §2.3 for the meaning of Mi,k0 , and §2.4 for
the meaning of U(i, k, `). We will work with the tuples
T ′(i, `) defined to be

(U(i, 1, `), U(i, 2, `), . . . , U(i, k0 − 1, `), U ′(i, `)).

As mentioned in §2.4, T ′(i, `) depends only on
x1, x2, . . . , x`, but takes values in a set W ′(i, `) that
could be superpolynomial-sized. The following lemma
will help us define the useful poly(N)-sized W ′′(i, `) ⊆
W ′(i, `) alluded to in §2.4:

Lemma A.1. Suppose the constant C0 is large enough.
Consider our randomized rounding with the xj chosen
independently, and fix any i. Then, the probability of
existence of an ` ∈ [n] for which the event “(Q1)∨(Q2)”
holds is at most 1/N3. Here, (Q1) ≡ (U ′(i, `) > bi), and

(Q2) is the event that there exists k ∈ [k0− 1] such that
U(i, k, `) > bi2k−1 + C02k−1 logN log logN .

Proof. If U ′(i, `) > bi, then U ′(i, n) > bi; i.e., Zi ≥ k0.
Lemma 2.1(a) shows that for large enough C0,

Pr[Zi ≥ k0] ≤ 1/(2N3).(1.13)

Fix k ∈ [k0 − 1]. If U(i, k, `) > bi2k−1 +
C02k−1 logN log logN , then U(i, k, n) > bi2k−1 +
C02k−1 logN log logN , so Xi ≥ C0 logN log logN . If
C0 is large enough, then Theorem 2.1(a) shows that
Pr[Xi ≥ C0 logN log logN] ≤ (2k0N

3)−1. Summing
this over all k ∈ [k0 − 1] and adding with (1.13) com-
pletes the proof of Lemma A.1.

Next, since all the Ai,j are rationals with denom-
inator 2d = NΘ(1), there is some poly(N)-sized set Λ′

such that for all i and `, U ′(i, `) ∈ Λ′. Define W ′′(i, `)
to be the set of all (v1, v2, . . . , vk0−1, v

′) ∈ (Zk0−1
+ × Λ′)

such that

(v′ ≤ bi) ∧ (∀k, vk ≤ bi2k−1 + C02k−1 logN log logN)

holds.
Since all the U(i, k, `) and U ′(i, `) are non-

decreasing when viewed as functions of only `, it is easy
to check that property (P3) of §2.4 holds. (P4) follows
from Lemma A.1. (P5) is true since “U ′(i, n) ≤ bi”
implies that Zi ≤ k0 − 1; hence, the value of Xi can
be inferred just by knowing the values of U(i, k, n)
for all k ∈ [k0 − 1]. Finally, to see why the crucial
bound |W ′′(i, `)| ≤ poly(N) holds, recall from our pre-
processing above that bi ≤ C0 logN ; so, |W ′′(i, `)| is at
most

|Λ′| ·
∏

k∈[k0−1]

(1 + bi2k−1 + C02k−1 logN log logN);

i.e., |W ′′(i, `)| ≤ |Λ′| · (logN)O(log logN) = poly(N).
Thus, we will be able to construct the reduced

polynomial-sized automaton Ai as sketched in §2.4. If
Ai enters a bad state (which happens with probability
at most 1/N3), we simply set all the variables to
0. Suppose we run the automata-fooling algorithm of
[20, 26] on A1,A2, . . . ,Am+1. Recall the parameters
α and βi from (P1) and (P2). Then, the following
three facts: (i) condition (2.8), (ii) for some constant
c′, |Ai| ≤ N c′ for all i, and (iii) even on entering a bad
state in Ai, which happens with probability at most
1/N3, the value of Xi is at most n, together guarantee
that α ≥ y∗/λ − N c′ε and βi ≤ O(p + N c′ε + 1/N2).
Thus, choosing ε = N−c for a large enough constant c
will ensure that (2.10) holds.

