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ABSTRACT

Haussler, Littlestone and Warmuth described a
general-purpose algorithm for learning accord-
ing to the prediction model, and proved an up-
per bound on the probability that their algo-
rithm makes a mistake in terms of the number
of examples seen and the Vapnik-Chervonenkis

dimension of the concept class being learned.
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We show that their bound is within a factor of
1+0(1) of the best possible such bound for any

algorithm.
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I INTRODUCTION

In the prediction model [1], the algorithm is try-
ing to learn a {0,1}-valued function f (called
the target) from a known class F. An ad-
versary chooses the target function f and a
probability distribution D over the domain of

f, and elements zy, ..., xp 11 are independently



chosen according to D. The algorithm is given
(21, f(21))s oy (X, f(2m)) and Ty, 41, and must
predict the value of f(z;,+1). Let p(d,m) be
the best-possible upper bound on the probabil-
ity of a mistake in this model in terms of the
VC-dimension d of F and the number m of ex-

amples; see Section II for a precise definition.

Haussler, Littlestone and Warmuth [1]

showed that =—%—

d
2(m+1) <p(d,m) < a7 The up-

per bound on p(d,m) follows from their One-
Inclusion Graph Algorithm." Here, we show
that p(d,m) > w (the o(1) term goes to
0 as m increases), matching the upper bound
up to lower-order terms. In the case d = 1, the
class F used in our argument consists of indi-
cator functions for paths in trees, instead of the
half-intervals used for proving the lower bound

of [1]. More precisely, given a tree T' = (V, E),

F is the set of functions f : V' — {0,1} that

!Suppose p(F,m) is the worst case probability of
a mistake when the target is chosen from F (again,
see Section II for a formal definition). Note that
to prove p(d,m) > m, it is sufficient to estab-
lish the ezistence of a class F of VC-dimension d for
which p(F,m) > #ﬂ). Vapnik and Chervonenkis [2]
(see [3]) showed that for any set F of VC-dimension
d, p(F,m) > (1 — 1/m)%=L. Haussler et al. [1] fur-
ther showed that for any set F of VC-dimension d,
p(F,m) > L

— 2em’

are indicator functions of root-to-leaf paths. As
has become standard since [4], we first con-
sider the case in which the target is chosen uni-
formly at random (we set the distribution over
the domain to be uniform as well), and lower
bound the probability that the Bayes-optimal
algorithm makes a mistake in this setting. This
implies the same lower bound for any algorithm
for a randomly chosen target, which in turn im-
plies the same lower bound for any algorithm for
a worst-case target. We generalize to the case

d > 1 in a manner similar to [1].

II PRELIMINARIES

Fix a countably infinite domain X. The VC-
dimension of a set F of functions from X to
{0,1}, denoted by VCdim(F), is the largest d
such that there is a sequence z1,...,z4 of do-

main elements from X such that

{(f(z1), .. f(zq)) : f € F} ={0,1}4.

In the prediction model [1], we have a

known family F of functions mapping X to



{0,1}.  For some unknown function f €
F and some unknown distribution D on X,
we get m independent samples x1,x2,...,%Tm

chosen from D, and also get the values of

We will refer to

fla), f(@2), -, f(@m).
T1,%2, .., Ty and f(x1), f(x2),..., f(zm) col-
lectively as a “sample”, and denote it by S.
Then, given z,,;1 drawn from D and indepen-
dently of the previous samples, the learner’s
goal is to guess the value of f(z,,+1) correctly
with as high a probability as possible. Recall
that f and D are unknown. Given a learn-
ing algorithm A, let p'(A,F,m) denote the
supremum, over all choices of f and D, of the
probability that A incorrectly predicts f(zp41).
(This probability is taken over the random
choices of x1, 2, ...,Zm, Tm+1, as well as the in-
ternal coin-flips of A, in case A is a randomized
algorithm.) Define p(F, m) = infy p'(A, F,m);
thus, p(F,m) is the worst-case error probability
of the “best” learning algorithm for F. Finally,
let p(d, m) be the supremum of p(F, m) over all

choices of F whose VC-dimension is d. Thus, if

p(d,m) > q, then for any € > 0, there is a family

F of VC-dimension d such that for any learn-
ing algorithm, there is a choice for f and D so
that the algorithm has an error probability of
at least ¢ — e in predicting the value of f(zn41).
To show that p(d, m) > ¢ for a desired ¢, we will
in fact fix both F and D suitably; the existence
of an appropriate f € F is then shown by the
probabilistic method.

The following correlational result involving a

“balls and bins” experiment will be useful.

Lemma 1 ([5, 6]) Suppose we throw m balls
independently at random into n bins, each ball
having an arbitrary distribution. Let B; be
the random wvariable denoting the number of
balls in the ith bin. Then for any tq,...

atny

Pr(AiLy Bi > t;) <I[;- Pr(B; > t;).

IIT THE LOWER BOUND

The heart of our analysis is the proof of the
following theorem, which concerns the case in
which the VC-dimension is 1. (We denote the
logarithm to the base 2 by “log”, and the log-
arithm to the base e by “In”.) We extend this

result to the case d > 1 in Theorem 3.



Theorem 2

p(1,m) > % (1—0 (mgljgign:l)Q)).

Proof: As in [4], we will fix D, and describe a
distribution over the choice of f such that, for
any algorithm A, the probability, with respect
to the choice of f as well as the random exam-
ples, that A makes a mistake is lower bounded
as in Theorem 2. This will imply the existence
of f for which the probability of making a mis-
take has the same lower bound with respect

only to the random choice of examples.

The concept class F that we use is as follows.
Given m, the number of examples seen so far,
for certain integers b = b(m) and h = h(m), let
T = (V, E) be a rooted full b-ary tree of height
h. Let n = (b"*1 —1)/(b— 1) be the number of
nodes in T'. Recall that the height of a node is
defined to be the height of the subtree rooted at
that node (thus, leaves are at height 0). Let F
consist of indicator functions for all subsets of V'
corresponding to root-to-leaf paths in 7. More

formally, letting ancs(v) denote the set of an-

cestors of a vertex v of T' define f, : V' — {0, 1}
by fy(w) = 1 iff w € ancs(v). (Recall that
v € ancs(v).) Then, F = {f, : v is a leaf of T'}.
It is easy to check that VCdim(F) = 1.

For our proof, we will find it convenient to
prove a lower bound for an artificial learning
model in which the learning algorithm is given
information about the function to be learned
in addition to a random sample of its behav-
ior. Since an algorithm can ignore this extra
information, lower bounds for the revised model
imply lower bounds for the original prediction
model.

Let D be the uniform distribution over V,
and suppose the function f to be learned is
chosen uniformly at random from F. It will
be useful to view this choice as being made via
a random walk from the root to a leaf, by first
choosing 7 uniformly at random from {1, ..., b}",
and then each time we need to decide which of b
children to take, checking the appropriate com-
ponent of 7.

The additional information given to the al-

gorithm depends on the random sample S it



receives and the function f to be learned, as fol-
lows. Define low(S) to be the positive example
in S that lies furthest down the path defining
f if there are any positive examples, and to be
the root otherwise (note that the root is con-
tained in all root-to-leaf paths). In addition to
a sample S, the algorithm receives all the com-
ponents of 7 except the component used to tell
which child of low(.S) to take. If the lowest pos-
itive example is a leaf, no information is given

(nor is it needed). Call this information ¢(S, 7).

If low(S) is not a leaf, the positive examples
in S, together with ¢(S, ), narrow the possibili-
ties for f to one of b paths (see Figure 1). Nega-
tive examples falling on some of these paths can
eliminate them as possibilities (see Figure 2).

As is well-known (see [7]), the probability of
mistake is minimized by any algorithm that,
given (i) a sample S, (ii) 2,41 and (iii) ¢(S, 7),
outputs the prediction for f(z4+1) that mini-
mizes the a posteriori probability of a mistake,
after conditioning on (i), (ii) and (iii). One such
optimal algorithm (let us call it A) predicts 1

if and only if the conditional probability that

f(zm41) = 1 is strictly greater than 1/2. Thus,
if there are at least two possibilities for the func-
tion f to be learned that are consistent with the
information in S and ¢(S, ), algorithm A pre-
dicts 1 for all elements on the path from the root
to low(S), and 0 everywhere else. This is be-
cause, in this case, all possibilities for f remain-
ing are equally likely, and the unknown portions
are disjoint. So for any v not on the path from
the root to low(S), the a posteriori probability
that f(v) =1 is at most 1/2. Of course, if only
one possibility remains for f, then A predicts
f(#m1) correctly. Let deter(S,7) be the predi-

cate that f is determined by S and ¢(S, 7), that

is, that there is only one possibility for f.

Define

For some sample S, denote the positions and
the values of the positive examples in S by
pos(S). Fix an arbitrary value S* for pos(9),
and an arbitrary value I for ¢(S,7) from among

those consistent with ST. Define & to be the



Figure 1: An example of the possibilities for the function to be learned after viewing the positive
examples in a sample S, together with the extra information ¢(S, ). The edges on paths that
could possibly be the target are drawn with dotted lines. The algorithm does not know which
child of the lowest positive example is taken, but it knows which child is taken on every other
step along the path.

Figure 2: Now the negative examples have been seen, and one that fell on a path that was
consistent with the positive examples and ¢(S, 7) has eliminated that path as a possibility.



event “pos(S) = S*7, and & to be the event
“c(S,7) = I”. Our first goal is to show that

A - height(low(S™T))

Pr(mistake | (1 A &2)) >
n

(2)
Here, “mistake” is the event that the optimal
algorithm A predicts f(zy,+1) incorrectly, and
“low(S™)” is the value of low(S) conditional on
&1. (Note that low(S) depends only on the pos-
itive examples of S. So, formally, low(S™) is
the value of low(S) for any sample S for which

pos(S) = ST.)

If height(low(ST)) = 0 (i.e., if low(S™) is a
leaf), then (2) is trivial, so suppose from now

on that height(low(S™*)) > 0. Then,

Pr(mistake | (1 A &2)) >

height(low(5) . pp(not deter(S,7) | (€1 A &))

n

since if f is not determined by S, A will in-
correctly predict 0 for all positive examples on
the path below low(S™). Let alive(St,T) be

the set of b elements of F consistent with the

information in & A &s.

Say that a root-to-leaf path is “hit” if one of
its vertices is a negative example. Note that,
after conditioning on & A &, we can view S as
being filled in by sampling the remaining exam-
ples independently at random uniformly from

V — f71(1). Thus,

Pr(not deter(S,7) | (1 A E2))
Pr(3g € alive(S*,T) — {f} not hit| (&1 A &))

1—Pr(Vg € alive(ST,I) — {f} hit| (1 A &)
height (low(S+)) " b
21_<1_<1_ n— (h+1) > >

by Lemma 1 together with the fact that there

are at most m negative examples. The fact that
height(low(S™1)) < h proves (2). Also, for each

choice of I, it is easy to check that

Pr(mistake| (€1 A &2)) = Pr(mistake | £1).

Thus,

A - E(height(low(S)))

n

Pr(mistake) >

(3)



Let exp(z) = e®. Applying the approximations ceg(m). Now, suppose m is large enough and
exp(—z/(1—z)) <1—z <exp(—z) (for z < 1) that we can define the integers b and h so that

and some manipulations, we get

Inm
h = -1
Ln((ln m) - In lnm)J ’ (6)
E(height(low(5))) b> (Inm) - Inlnm; (7)
§ : - pitl —1
= ZPr(helght(lOW(S)) > ]) n = — — @(m lnm/(lnlnm)Z); (8)
=1 -
Zzh:<1_i>m Inlnm —1 <hm/n <Inlnm. 9)
: n
7j=1
h _im
j=1 1= We have the following two bounds: (i) The
h _im
> z:IGXP (1_—%) bound in (4) is at least % (1 -0 ((k)ilgigxﬁ)).
j= n
(1 — exp (—E)) exp (;%ﬁ) To see this, we first note from (9) and (8) that
- . _m - n—m—h _ n (log log m)?
| exp (1&) moh = o (10 (UBEmE)) Next, (9)
(1 — exp (_ hm) ( — anh) shows that
- (- )
n—m-—h hm hm
TR g exp(=Y). (4 ~exp(— 2 — exp(— -
- (1 — exp( - ). (4) (1 exp( p )> >1—exp(—(Inlnm — 1))
>1—e/lnm,

Similarly,

lower-bounding (4) as desired.

A>1—exp (—(b— 1) exp (%)) .

(5)
O(=L-). To see this, we note from (9) and (8)

logm

(ii) The right-hand-side of (5) is at least 1 —

We recall the standard “©(-)” notation. A that

parameter z is ©(g(m)) for a given function g,

. hm
iff there are positive constants ¢;, co and c3 such t= n—(2h+1)
hm
that for all m > e¢3, we have cig(m) < z < = (1+06(h/n))



— hTm + O((loglog m)?/m)

< Inlnm + ©((log logm)?/m).

Thus, exp(—t) > - (1 — ©((loglogm)?/m)).
This, combined with (7), yields the desired

lower bound on the r.h.s. of (5).

Putting these two bounds together with (3)

proves Theorem 2. Let h be as in (6). We
now show how to set a suitable value for b (and
hence for n) so that (7), (8) and (9) hold. Define
®(x) = hm(z — 1)/(z"** —1). Let y be the
unique real such that y > 2 and ®(y) = Inlnm;
we set b = [y]. For notational convenience,
define @ = In((Inm) - Inlnm). We note two

facts:

e (lnm)/a—2<h<(lnm)/a—1, and

Inm)/a

e ((Inm) - Inlnm)( =m.

These two facts show that for any 8 = y(lnm) -

Inlnm where v > 1, we have

,.Y(lnm)/afl -m

L 1< a1 <A (10
(Inm) - Inlnm <P Syt em. (10)

This implies that if m is large enough, then
®((Inm) - Inlnm) > Inlnm > @(2(lnm) -
Inlnm). (To see the first inequality here, sub-
stitute v = 1 in the second inequality in (10); to
see the second inequality here, substitute v = 2
in the first inequality in (10).) So, since ®(z) is

a decreasing function for = > 0, we get

(Inm)-Inlnm < y < 2(Inm) - Inlnm.

(11)

The first inequality in (11) validates (7).
Next, suppose (Inm) - Inlnm < z < 2(Inm) -

Inlnm for some z. We have

D(z+1) =z 1 —z (4D
D(z)  z—1 (L4 zh)htl — p=(htD)
1 — 5~ (ht1)

= (1 +6(1/2))-

1+ O(hz1) — 2~ (D)’

the second equality follows since z = ©((Inm) -
Inlnm) and h = ©((lnm)/(Inlnm)). (The fact
(14 2711 =14 ©(hz™!) can be verified as
follows. First, we clearly have (1 + z~1)h*! >
1+h/z. Second, (14271 ! < exp((h+1)/z).

Since (h + 1)/z < 1 if m is large enough, we



can use the bound e* < 1 + 2z which holds for
z € [0,1], to get that (14 2z~ 1)"*1 <14+ 2(h +
1)/z < 1+ 3h/z if m is large enough.) Thus
we see that ®(z+1)/®(z) > 1—-0((Inlnm)?).
Now, (11) in conjunction with the facts that:
(i) ®(x) is a decreasing function for z > 0, (ii)

®(y) = Inlnm, and (iii) b = [y], yields

(1—-0((Inlnm)™2)) Inlnm < &(b) < Inlnm.

Since n = hm/®(b), we get that (8) and (9)

O

hold if m is large enough.

Via a more complicated proof, a similar lower
bound on p(1,m) can be shown for the above
learning problem for a complete binary tree
(i.e., b = 2), for an appropriate choice of n =

Finally, we generalize Theorem 2 to the case
d > 1 in a similar manner as in [1]. We recall a
standard case of the Chernoff-Hoeffding large-
deviation bounds; see [8] for more information.
Suppose Y7, Ys,...,Y, are independent random

variables, each taking on values in [0,1]. Let

e € [0,1], the Chernoff-Hoeffding bounds show

that

Pr(Y > p(l +¢)) <exp(—pue?/3).  (12)

Since we are interested in the asymptotics as
m increases, we assume in Theorem 3 that m >

8d.

Theorem 3 For m > 8d, p(d,m) > %
_ O ((oglog(m/d))?

(1-o(“5m™))

Proof Sketch: Define m' = [m/d +

v/ (3m/d) - Inln(m/d)]. The concept class Fy

that we use is as follows. Recall that our

concept class of VC-dimension one involved a

b b(m)-ary tree with n n(m) nodes.
We will now work with a forest F = (V, E),
which contains d pairwise vertex-disjoint trees
T, =(Vi,E;),i=1,2,...,d. Each T} is a rooted
complete b-ary tree with n = n(m’) nodes and
b = b(m'). As before, for each v € V, let
fo : V.= {0,1} be such that f,(w) = 1 iff

w € ancs(v). (Note in particular that if v

Y = 3,Y;, with E(Y) = p. Then, for any and w are from different trees T; and T}, then

10



fu(w) =0.) Our concept class Fy is

d
{qui: u; is a leaf of Tj, forizl,Q,...,d};
i=1

it is not hard to verify that VCdim(F) = d.

The adversary’s strategy is to pick leaves
Y1,Y2, - - -, Yq using random walks independently

from 11,75, ..., T, respectively; the unknown
function is then set to be Y¢_, fy;- The adver-
sary also sets the distribution D of the samples
z;, to be uniform on V. As before, the learner
wishes to maximize the probability of correctly
guessing the value of X% | f,.(211). Note that
if .11 belongs to some tree T;, then this value
(to be guessed) is simply fy, (Zm+1). It is also
easy to check that those samples among the first
m samples that fell in other trees T}, give no
information to the learner. We are thus essen-
tially reduced to our earlier setting of the “sin-
gle tree” problem. Since m > 8d, (12) shows
that with probability at least 1 — 1/1n(m/d),
the number of samples among the first m that

landed in T;, is at most m'. (Briefly, let random

variable Y; be 1 if the jth sample landed in T7,

11

and be 0 otherwise. Y = 377", Yj is the number
of samples among the first m that landed in T5;
we have E(Y) = m/d. Bound (12) shows that
Pr(Y > m') <1/In(m/d).) Thus, since T; has

n(m') nodes, Theorem 2 shows that

p(Fa,m)
d 1 (loglog(m/d))?
oglog(m/d))?

(A minor subtlety that we have glossed over is
that the number of samples falling in 7; may
have been less than m/—it may not have exactly
equaled m'. But this is not a problem, since
it can be seen that for any concept class F,
p(F,m) is non-increasing as a function of m;
indeed, if more samples cannot help, the opti-

mal learner will simply ignore such samples.)

O
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1 An example of the possibilities for the function to be learned after viewing the positive
examples in a sample S, together with the extra information ¢(S, ). The edges on paths that
could possibly be the target are drawn with dotted lines. The algorithm does not know which
child of the lowest positive example is taken, but it knows which child is taken on every other
step along the path.

2 Now the negative examples have been seen, and one that fell on a path that was consistent

with the positive examples and ¢(S, 7) has eliminated that path as a possibility.
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