The purpose of this project is to illustrate the usefulness of the QR decomposition in two applications: the solution of underdetermined systems and constrained least squares.

Underdetermined systems.

Let \(A \) be an \(m \times n \) matrix of rank \(m \) with \(m \leq n \) and consider the linear system

\[
Ax = b.
\]

(1)

If \(m > n \), elementary linear algebra considerations show that \(A \) has nonzero null vectors \(v \) satisfying \(Av = 0 \). In particular, if \(x \) is a solution of (1), so is \(x + v \). Thus the underdetermined system (1) does not have a unique solution.

There are many kinds restrictions we can put on the solution \(x \) to make it unique.\(^1\) But perhaps the most common one is to require that of all solutions \(\|x\| \) is minimal. Here \(\| \cdot \| \) is the vector 2-norm. We will now show how to use the QR decomposition to compute such a solution.

Let \(U = (U_1 \ U_2) \) be an orthogonal matrix such that

\[
U^T A^T = \begin{pmatrix} U_1^T \\ U_2^T \end{pmatrix} A^T = \begin{pmatrix} R \\ 0 \end{pmatrix}.
\]

Here \(R \) is an \(m \times m \) upper triangular matrix, which is necessarily nonsingular. If we set

\[
y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} U_1^T x \\ U_2^T x \end{pmatrix} = U^T x,
\]

then

\[
Ax = (AU)(U^T x) = (R^T 0) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = R^T y_1 = b.
\]

Thus we must have \(R^T y_1 = b \) and \(y_2 \) can be anything, i.e., whatever the value of \(y_2 \), \(x = Uy \) is a solution of (1).

a. Show that the choice \(y_2 = 0 \) gives the minimum norm solution. [Hint: Because \(U \) is orthogonal, \(\|x\| = \|y\| \).]

Answer: There is a 1-1 correspondence between solutions in the \(y \) form and in the \(x \) form given by \(x = Uy \). Because \(U \) is orthogonal, the norms of corresponding solutions are the same. But the solution \(y_* \) in which \(y_2 = 0 \) has minimal norm among all other solutions \(y \). It follows that \(x_* = Uy_* \) has minimal norm among all other solutions \(x \).

You are to write a Matlab function

\footnote{For example the Matlab backslash operator chooses (don’t ask how) \(m - n \) components of \(x \) and requires that they be zero. This leads to a system of order \(n \) for the remaining components.}
that returns the minimum norm solution of (1). It should handle the case where \(m = n \) and give an error return if \(m > n \). You do not need to check to see if \(A \) is of rank \(m \), or equivalently if \(R \) is nonsingular. You should take advantage of the fact that if \(y_2 \) is zero, you do not need to compute \(U_2 \) — only \(U_1 \). (Executing the command

```
>> help qr
```

will give you the skinny on how to compute only \(U_1 \).)

An important problem is how to generate test cases to see if your function is working. Here is one way.

b. Show that if the rows of \(A \) are orthonormal, then \(x = A^Tb \) is the minimal norm solution.

Thus you can generate \(A \) using the Matlab function \(qr \) and for any \(b \) you can compare \(A^Tb \) with the solution from your \texttt{MinNormSolve}.

\textbf{Answer:} If \(A \) has orthonormal rows, \(AA^T = I \) is upper triangular; i.e., we can take \(U_1 = A^T \) and \(R = I \) as the QR factorization of \(A \). It follows that the equation \(R^T y_1 = b \) becomes \(y_1 = b \) and \(x = U_1 y_1 \) becomes \(x = A^T b \).

\section*{Constrained least squares}

Let \(A \) be an \(m \times n \) matrix of rank \(n \) (so that \(m \geq n \)). We will be concerned with solving the following constrained least squares problem.

\[
\begin{align*}
\text{minimize} & \quad \rho = \|b - Ax\| \\
\text{subject to} & \quad Cx = d.
\end{align*}
\]

(2)

Here \(C \) is a \(k \times n \) matrix with \(k \leq n \).

To solve this problem we begin as above by finding \(U \) so that

\[
U^T C^T = \begin{pmatrix} U_1^T \\ U_2^T \end{pmatrix} = \begin{pmatrix} R \\ 0 \end{pmatrix}.
\]

and setting

\[
y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} U_1^T x \\ U_2^T x \end{pmatrix} = U^T x.
\]

Then as above \(R^T y_1 = d \) and \(y_2 \) is undetermined.
We now write
\[\| b - Ax \| = \left\| b - A(U_1 \ U_2) \begin{pmatrix} U_1^T \\ U_2^T \end{pmatrix} x \right\| \]
\[= \left\| b - (AU_1 \ AU_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\| \]
\[= \|(b - B_1y_1) - B_2y_2\|, \]
where \(B_i = AU_i \) (\(i = 1, 2 \)). Since \(y_1 \) is known, we can choose \(y_2 \) to
\[\text{minimize} \quad \|(b - B_1y_1) - B_2y_2\|, \tag{3} \]
which is an unconstrained least squares problem. After \(y_1 \) and \(y_2 \) have been determined, we calculate \(x = Uy \).

To solve the least squares problem (3) one can use the fact that if
\[(B_2 \ b - B_1y_1) = (Q, q) \begin{pmatrix} S & s \\ 0 & \sigma \end{pmatrix} \]
is the QR decomposition of \((B_2 \ b - B_1y_1)\), then \(y_2 = S^{-1}s \) and \(|\sigma|\) is the norm at the minimum.

Write a Matlab function
\[[x, \rho] = \text{ConstrLsq}(A, b, C, d) \]
that solves the constrained least squares problem (2). Here \(A, b, C, d \) are as above and \(x \) and \(\rho \) are the values of \(x \) and \(\rho \) at the minimum. The function should treat the case \(k = n \) and should give an error return for inconsistencies among the matrices \(A \) and \(C \). Do not compute \(\rho \) in the form \(\|b - Ax\| \). Rather use (4) as described above.

Test cases with known answers are harder to find for this problem. However, there is only one \(x \) that produces the minimum value of \(\rho \). Consequently, If you have followed instructions and used (4) to compute \(\rho \) you can compare the value with \(\|b - Ax\| \). If they are different, you have problems. It is remotely possible that the two could agree when \(x \) is not the solution. But if you use \(\text{randn} \) to generate several random test cases and \(\|b - Ax\| = \rho \) for all of them, you can be reasonable confident that your algorithm is working. You should also check that \(Cx = d \) to working accuracy.

A couple of days before the project is due, you will be furnished with a script to run with your functions. Turn in your functions, your answers to problems a and b, and the results of running the script.