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Commentary on

FREDHOLM, HILBERT, SCHMIDT

Three Fundamental Papers on
Integral Equations

G. W. Stewart

1. Introduction

An integral equation is one in which an unknown function to be determined appears in
an integrand. The end of the nineteenth century saw an increasing interest in integral
equations, mainly because of their connection with some of the differential equations of
mathematical physics. From this work emerged four general forms of integral equations
now called Volterra and Fredholm equations of the first and second kinds (a third kind
was added to the canon later). Although in principle all four forms can be seen as
special cases of the Fredholm equation of the second kind, in fact they have different
properties and are usually treated separately.

The purpose of this work is to present translations of three papers by Ivar Fredholm
[7, ], David Hilbert [12, ], and Erhard Schmidt [20, ] on the theory of
Fredholm equations of the second kind.1 Although the tenor of Fredholm’s and Hilbert’s
papers had been anticipated in special cases —especially by Carl Neumann and Henri
Poincaré — they were the first to treat the problem in full generality, independent of
special applications. Schmidt derives and extends the results of Fredholm and Hilbert,
but from an entirely different point of view.

A Fredholm equation of the second kind has the form

f(s) = g(s)− λ

∫ 1

0
K(s, t)g(t) dt, s ∈ [0, 1]. (1.1)

Here g(s) is the is the unknown function, f(s) and K(s, t) are known (K is called
the kernel of the equation), and λ is a parameter. Our authors assume that f(s) and
K(s, t) satisfy certain regularity conditions on, say, [0, 1] and [0, 1] × [0, 1].2 They are
all, however, quick to point out that their results apply to more general regions of
integration in higher dimensional spaces. They also show conditions under which their
regularity conditions can be relaxed.

1The publication dates can be misleading. Fredholm presented his work in 1900 in a note to the
Swedish Academy of Science [8, p. 95], and Schmidt’s paper was essentially a reprint of his dissertation,
which appeared in 1905.

2Hilbert and Schmidt assume continuity. Fredholm assumes integrability and finiteness. But this
assumption is not sufficient for his development, at least under the current definition of integrability,
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2 Fredholm, Hilbert, Schmidt

The contents of the three papers do not line up in a simple progression. Both
Fredholm and Hilbert start from the corresponding linear system

f̂ = (I − λK̂)ĝ, (1.2)

where K̂ is a square matrix and f̂ and ĝ are vectors. But Fredholm, who implicitly
takes λ = −1, is concerned with how to solve the system (1.2) in such a way that the
process can be generalized to (1.1). He does not justify his generalization but simply
writes down formulas and then shows, quite rigorously, that they work. In the process
he treats the right-hand side of (1.1) as an operator on functions, thus ensuring his
place among the founders of functional analysis. The crowning glory of his paper is an
elegant theory of what happens when (1.1) is “singular,” i.e., when −1 is an eigenvalue
of arbitrary multiplicity of K(s, t).

Hilbert, on the other hand, takes K̂ to be symmetric and is concerned with gener-
alizing the finite dimensional concept of eigenvalue and eigenvector in such a way that
functions can be expanded in terms of eigenfunctions of the kernel K(s, t). (It was
Hilbert, by the way, who introduced the terms Eigenwert and Eigenfunktion.) Unlike
Fredholm, he first develops a complete theory for linear systems and eigensystems and
then by a limiting process generalizes the theory to (1.1). He is forced to assume that
his eigenvalues are not multiple (although he relaxes this assumption toward the end of
his paper). There is no significant use of operators.

Schmidt covers the territory mapped by Fredholm and Hilbert (and then some), but
with an important difference. Instead of starting with the finite dimensional problem,
he works directly with the integral equations. The result is an enormous simplification
of the theory. In addition, Schmidt introduces what we would now call the singular
value decomposition for unsymmetric kernels and proves an important approximation
theorem associated with the decomposition.

In outline this is the story of these three papers. In the rest of this introduction we
are going to expand the outline into a guided tour of these papers. We will focus on
their major contributions and how they were derived, leaving aside auxiliary matters
such as the relaxation of regularity assumptions. At this point it should be stressed that
the primary goal of all three authors was understanding, not numerical computation,
although occasional comments suggest that the latter was never far from their thoughts.

Bibliographical material on Ivar Fredholm (1866–1927), David Hilbert (1862–1943)
and Erhard Schmidt (1876–1959) may be found in the Dictionary of Scientific Biography
[10] and online in The MacTutor History of Mathematics [17]. In addition, Constance
Reid [19] has written an excellent full-scale biography of Hilbert. The reader may wish
to consult Bernkopf’s paper “The theory of function spaces with partucular reference
to their origins in integral equation theory” [3] as a supplement to this commentary.

A word on the translations. Our authors wrote their papers in the mathematical
prose of the early twentieth century. Fredholm was terse, almost to the point of ob-
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scurity, but allowing for French elaboration, his paper translates easily. Hilbert and
Schmidt were by no means obscure or prolix, but they made unsparing use of German
constructions that have no English equivalents. In these translations I have aimed for
the English mathematical prose of the early twenty-first century. This has required
rearranging or even splitting of sentences. Paragraphs have been largely left as they
stand, even when they are shorter or longer than those of contemporary English. Where
it is not anachronistic, I have substituted terser modern terminology for longer phrases.
Still, I have tried to hew close to the original and not misrepresent the authors content
for the sake of a smooth English style. Bi- or trilingual readers will be able to judge for
themselves how well I have succeeded.

In the translations there are footnotes by both the authors and the translator. The
former are numbered, the latter use symbols; e.g., ∗, †, etc.

Epilogue. Although I looked for other translations before undertaking this project, I
was nervous about Fredholm’s paper. And sure enough, after the first posting Folkmar
Bornemann informed me that a translation had appeared in A Source Book in Classical
Analysis edited by Garrett Birkhoff with the assistance of Uta Merzbach [4]. Although
the identity of the translator is not completely clear, the evidence points to Merzbach.
A line by line comparison of the translations shows that they differ little, mostly in
minor stylistic points. However, I have taken liberty of using the other translation to
improve mine here and there.

2. Fredholm

Fredholm’s 1903 paper, a followup to a communication informally circulated in 1899,3

is concerned with the integral equation

ψ(x) = ϕ(x) +
∫ 1

0
f(x, y)ϕ(y) dy. (2.1)

His approach is to generalize results from the theory of finite linear systems of equation,
but the form in which this theory is stated is not the one found in current linear algebra
books. We will therefore intersperse this discussion with a summary of the theory of
finite dimensional systems of linear equations al la Fredholm. As much as possible we
will preserve Fredholm’s original notation.

In his paper, Fredholm considers two distinct cases. The first and simplest is when
(2.1) always has a unique solution. The second is when (2.1) only has a solution if ψ(x)
satisfies certain conditions relating to the kernel f(x, y). In that case the solution is not
unique, although the set of solutions can be characterized. The two cases exhaust all
possibilities and for that reason are collectively known as the Fredholm alternative.

3In his 1904 paper, Hilbert mentions this paper, saying that it was cited in Fredholm’s 1903 paper.
But no such citation appears there.



4 Fredholm, Hilbert, Schmidt

It will be convenient to treat the two cases separately. We will describe the first
case in the context of finite dimensional spaces — the spaces of matrices and vectors —
followed by a description of how this plays out in his paper. Then we will repeat the
process for the second case. The survey concludes with a brief description of the material
in the rest of the paper.

We begin by writing (1.1) in operator form as

ψ = Sfϕ = ϕ+Kfϕ = (I +Kf )ϕ. (2.2)

Here Kf stands either for the kernel f(x, y) or for a matrix. In the former case, Kfϕ
represents the integral in (1.1); in the latter, a matrix-vector multiplication. When the
concern is the product of operators, say Kf and Kg, the product KfKg is equivalent to∫ 1
0 f(x, t)g(t, y) dt, while KgKf is equivalent to

∫ 1
0 g(x, t)f(t, y) dt.

The operation I+Kf appearing in the right-hand side of (2.2) already shows one of
the difficulties in generalizing results from linear systems. Specifically, the identity op-
erator cannot be realized as an integral operator with a continuous kernel. Nonetheless,
it is an operator, and we can combine it with integral operators, as in (2.2).4

Assuming that Sf has a left inverse Sg = I +Kg, we can write

(I +Kg)(I +Kf ) = I, (2.3)

or
Kf +Kg +KgKf = 0. (2.4)

Note that if Kg satisfies (2.3), then it satisfies (2.4) and vice versa.
Let us now see what the existence of a left inverse buys us. Suppose that Sfϕ = ψ.

Then on multiplying this equation by Sg we get

ϕ = SgSfϕ = Sgψ.

Thus if (2.1) has a solution, it is unique and given by Sgψ.
But this does not show that a solution exists. To do this, we need a right inverse

satisfying SfSg = I, or equivalently

Kf +Kg +KfKg = 0. (2.5)

For then if ϕ = Sgψ, then Sfϕ = SfSgψ = ψ, so that Sgψ is the desired solution.
In finite dimensional spaces the difference between left and right inverses is moot.

If one exists, so does the other; moreover, the inverses are unique and equal to each
4If actual integrals must be used, one can define the identity function I(x, y) as δ(x − y), where

δ(t) is the Dirac delta function, a generalized function that is zero when t 6= 0 and that satisfiesR ∞
−∞ f(x)δ(x) = f(0). We will use this option in motivating one of Hilbert’s definitions (see page 17).
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other. In infinite dimensional spaces, however, things can be different. For example, an
operator may have a left inverse but not a right inverse. Nonetheless, if one can come
up with a function g(x, y) that satisfies both (2.4) and (2.5), then the function Sgψ
solves the integral equation. The function g(x, y) is now known as the resolvent kernel.
Fredholm’s strategy is to develop a formula for the resolvent kernel.

We now turn to how all this works out in Fredholm’s paper. After a brief survey of
the literature, he begins abruptly in §1.15 by defining a “determinant” Df that “plays
the same role with respect to the functional equation (b) [i.e., (2.1)] as the determinant
plays with respect to a system of linear equations.” Specifically, he introduces the
notation

f

(
x1, x2, . . . , xn
y1, y2, . . . , yn

)
=

∣∣∣∣∣∣∣∣
f(x1, y1) f(x1, y2) · · · f(x1, yn)
f(x2, y1) f(x2, y2) · · · f(x2, yn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(xn, y1) f(xn, y2) · · · f(xn, yn)

∣∣∣∣∣∣∣∣ (2.6)

and defines

Df =
∞∑
n=1

1
n!

∫ 1

0
· · ·
∫ 1

0
f

(
x1, x2, . . . , xn
x1, x2, . . . , xn

)
dx1 dx2 · · · dxn. (2.7)

He then uses Hadamard’s theorem to show that the series defining Df converges (§1.2).6

After a discussion of some conditions under which the convergence is better than
might be expected (§1.3), Fredholm (§1.4) defines was he calls the “minors” of Df by

Df

(
ξ1, ξ2, . . . , ξn
η1, η2, . . . , ηn

)
=

∞∑
ν=0

1
ν!

∫ 1

0
· · ·
∫ 1

0
f

(
ξ1 . . . ξn, x1 . . . xν
η1 . . . ηn, x1 . . . xν

)
dx1 · · · dxn.

The minors satisfy two key relations (§1.5). Here we are concerned with the relations
for n = 1:

Df

(
ξ
η

)
+
∫ 1

0
f(ξ, τ)Df

(
τ
η

)
dτ = f(ξ, η)Df (2.8)

and

Df

(
ξ
η

)
+
∫ 1

0
f(τ, η)Df

(
ξ
τ

)
dτ = f(ξ, η)Df . (2.9)

5Fredholm divides his paper into major sections split up into subsections. The subsections are
numbered consecutively in the paper without regard for section boundaries. Thus the first section ends
with subsection 6 and the second section begins with subsection 7.

6Fredholm assumes that “f(x, y) has the property that for α less than one the function (x−y)αf(x, y)
is finite and integrable.” However, Lesbegue integrability over [0, 1] × [0, 1] is not sufficient to ensure
the integrability of f(x, x). For a discussion of this problem see [21, Ch. VI].
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For the moment we will skip §1.6 and move to §§2.7–8, where Fredholm considers
the solution of (1.1) in the case where Df 6= 0. He introduces the operator

Sf = ϕ(x) 7→ ϕ(x) +
∫ 1

0
f(x, s)ϕ(s) ds

and observes that operators of this form constitute a group, by which he means only
that the class of operators is closed under multiplication. They are not required to have
inverses.

Fredholm (§8) now assume that Df 6= 0 and sets

g(x, y) = −
Df

(
x
y

)
Df

,

which corresponds to our Kg in (2.3). It then follows from the fundamental relations
(2.8) and (2.9), thatKf andKg satisfy (2.4) and (2.5). Fredholm goes on to argue, much
as we did above, that Sgψ(x) is the unique solution of the equation ψ(x) = Sfϕ(x).

This theorem is a remarkable achievement. In about six pages, Fredholm gives a
completely rigorous solution to the equation (1.1). Moreover, he does it by treating
the right-hand side of (1.1) as one of a class of operators on functions that can be
manipulated in their own right. In doing this, Fredholm made a key step toward abstract
functional analysis.

The question remains of how Fredholm derived his formulas. We cannot know for
sure, since he does not tell us in his paper. However, in an address to the Swedish
Congress of Mathematics (1909) [8, p.95] he said, “. . . the works of my colleague von
Koch on infinite determinants greatly facilitated my research . . . .” Toward the end
of this section we will try to assess what von Koch’s work may have contributed to
Fredholm’s thinking. But for now, we will give an informal derivation of the Fredholm
determinant that may be found in books by Lovitt [15, p. 23, ff.], Tricomi [23, §2.5], and
others.

Consider first the Fredholm determinant Df . We begin with an equally spaced mesh
on [0,1] consisting of the n points 0 < x1 < x2 < · · · < xn = 1. Set h = xi+1 − xi,
fij = f(xi, xj) and

Dn = det


1 + hf11 hf12 · · · hf1n

hf21 1 + hf22 · · · hf2n
...

...
...

hfn1 hfn2 · · · 1 + hfnn

 (2.10)
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Now this determinant can be expanded in the form (see [23, p.66–68])

Dn = 1 +
n∑
i=1

hfii +
1
2!

n∑
i,j=1

h2 det
(
fii fij
fji fjj

)
+ · · ·

+
1
n!

∑
i,j,...,k=1,n

hn det


fii fij · · · fik
fji fjj · · · fjk
...

...
...

fk1 fkj · · · fkk

 .

(2.11)

But as n→∞ the kth term in this expansion approaches

1
k!

∫ 1

0

∫ 1

0
· · · · · ·

∫ 1

0
f

(
x1, x2, . . . , xk
x1, x2, . . . , xk

)
dx1 dx2 · · · dxk,

in which we have used Fredholm’s abbreviated terminology (2.6). Thus taking a formal
limit of the sum (2.11), we get the expression (2.7), which is now seen as a generalization
of the matrix determinant to the operator Sf .

The function D
(
x
y

)
is closely related to the adjugate of a matrix. To see this, note

that the adjugate Aadj of a matrix A is the transpose of the matrix whose (i, j)-element
is the cofactor of aij (that is, (−1)i+j times the determinant of the matrix obtained by
striking row i and column j of A). It is well known that

AadjA = AAadj = det(A)I. (2.12)

It follows that if det(A) 6= 0, then A−1 = Aadj/det(A). In particular, since Aadj is a
continuous function of the elements of A, if A approaches the singular matrix A0, then
det(A)A−1 approaches Aadj

0 .
Returning to our operator I +Kf , we have seen that its inverse is

I +Kg = I −
Df

(
x
y

)
Df

.

Thus, formally,

(I +Kf )adj = DfI −Df

(
x
y

)
.

When Df is zero,

(I +Kf )adj = −Df

(
x
y

)
. (2.13)
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There is a minor conundrum in Fredholm’s terminology. He calls Df

(
x
y

)
a minor.

Yet we have seen that it represents the adjugate, which is properly called a compound

determinant. The problem is resolved by observing that regarded as an operatorDf

(
x
y

)
is indeed the adjugate. But its value for a particular value of x and y represents an
element of the adjugate, which, as we saw above, is a minor.

Another property of the adjugate matrix relates to the case where Df = 0. It is
known that if A is singular and has rank one less than the order of A then Aadj has
rank one, and its nonzero columns are nontrivial solutions of the equation Ax = 0. If
we generalize this fact to the operator Sf , then (2.13) suggests that if Df = 0 and

Df

(
x
y

)
is not identically zero, then for some η the function ϕ(x) = Df

(
x
η

)
satisfies

Sfϕ(x) = 0. This fact and its generalizations to the cases where Df

(
x
y

)
are identically

zero is at the heart of Fredholm’s treatment of the case Df = 0, to which we now turn.
Once again, it will be informative to consider the finite dimensional case. We will

work with the operator Sf , which is now a matrix with determinant Df .
If Df = 0, then Sf has right and left null spaces Φ and Ψ of common dimension n.

Suppose we can find a pseudo-inverse Sg satisfying the following two conditions.7

1.
SgSf = I − ΦX∗, (2.14)

where the columns of Φ form a basis for Φ and X∗Φ = I.

2.
SfSg = I − YΨ∗, (2.15)

where the columns of Ψ form a basis for Ψ and Φ∗Y = I.

Then we can draw the following conclusion.

1. If ϕ is a solution of the equation Sfϕ = ψ, then Ψ∗ψ = Ψ∗Sfϕ = 0. Hence a
necessary condition for the equation Sfϕ = ψ to have a solution is that Ψ∗ψ = 0.

2. If ϕ = Sgψ, where ψ satisfies the necessary conditions Ψ∗ψ = 0, then Sfϕ =
SfSgψ = (I−YΨ∗)ψ = ψ, so that ϕ is a solution of Sfϕ = ψ. Thus the condition
that Ψ∗ψ = 0 is a sufficient condition for a solution to exist.

3. If ϕ is a solution of Sfϕ = ψ, then, since SfΦ = 0, Sf (ϕ+ Φu) is also a solution
of the equation for any u. Thus the set of all solutions is an affine subspace.

7The term pseudo-inverse is Fredholm’s.
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Turning now to Fredholm’s solution of the equation Sfϕ = ψ when Df = 0, he
begins (back in §1.6) by introducing the function fλ(x, y) = λf(x, y) and showing that
the function Dλf is an entire function of λ. Consequently, if for some λ we have Dλf = 0,
then only a finite number of the derivatives of Dλf can vanish at λ. But it can be shown
that

λn
dnDλf

dλn
=
∫ 1

0
· · ·
∫ 1

0
Dλf

(
x1 . . . xn
x1 . . . xn

)
dx1 dx2 . . . dxn,

and it follows that not all of the minors Dλf

(
ξ1 . . . ξn
η1 . . . ηn

)
can vanish. In particular for

λ = 1, if Df = 0, then there is a least integer n > 1 such that

Df

(
ξ1 . . . ξn
η1 . . . ηn

)

is not identically zero.

The story now jumps to §2.9, where Fredholm considers the solution of Sfϕ = ψ
when Df = 0. He takes n as in the last paragraph. Making use of the relations among
the minors, he first shows that the function

Df

(
x , ξ2, . . . , ξn
η1, η3, . . . , ηn

)

is a solution of the homogeneous equation Dfϕ = 0.

He then introduces what he calls the pseudo-inverse Sg defined by

g(x, y) = −
Df

(
x, ξ1 . . . ξn
y, η1 . . . ηn

)
Df

(
ξ1 . . . ξn
η1 . . . ηn

) ,

where the ξi and ηi are chosen to make the denominator nonzero. Writing SgSf = I+F ,
he shows that

F (x, y) = −
n∑
ν=1

f(ξν , y)Φν(x),
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where the functions

Φ1(x) = −
Df

(
x , ξ2, . . . , ξn
η1, η2, . . . , ηn

)
Df

(
ξ1, ξ2, . . . , ξn
η1, η2, . . . , ηn

)

Φ2(x) = +
Df

(
ξ1, x, . . . , ξn
η1, η2, . . . , ηn

)
Df

(
ξ1, ξ2, . . . , ξn
η1, η2, . . . , ηn

)
etc.

satisfy SfΦi = 0 (i = 1, . . . , n). He then shows that any solution of the homogeneous
equation is a linear combination of the Φi. Moreover,∫ 1

0
f(ξλ, x)Φµ(x) dx =

{
0 if λ 6= 0,
1 if λ = ν,

which implies that the Φi are independent and biorthogonal to the function f(ξi, x).
If we set Φ(x) = (Φ1(x) · · · Φn(x)) and X(y)∗ = (f(ξ1, y), · · · , f(ξn, y)) , then

F (x, y) = −Φ(x)X(y)∗,

which establishes (2.14). Thus Fredholm is halfway to a proof of his theorem.
This is a good point to pause and ask if the introduction of the equation (2.14) in

this commentary is anachronistic. In one sense it is, since the matrix-like operations it
implies were unknown to Fredholm. But in another sense it is merely a compact rep-
resentation of the equations already in Fredholm’s paper, a notational device designed
to allow the modern reader to easily grasp what Fredholm proved. Taken in this sense,
equation (2.14) is just a useful expository tool.

Fredholm also writes down the equation (2.15) (less the biorthogonality condition
which he does not need). However, there is a small surprise here. It is evident that
(2.15) transposed is the same as (2.14) for the adjoint equation

ψ(x) = ϕ(x) +
∫ 1

0
f(y, x)ϕ(y) dy.

Yet Fredholm does not take advantage of this fact. Instead he derives the results he
needs piecemeal without direct reference to the adjoint operator, even though he uses it
later in the paper. One can only wonder why Fredholm, having discovered the adjoint
operator, did not go back to his treatment of the case Df = 0 and clean things up.
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Fredholm calls the operator Sg a pseudo-inverse of Sf , and it is of interest to see how
they relate to the various generalized inverses that have been introduced since his time.
It is easy to show from either (2.15) or (2.14) that SfSgSf = Sf . This relations are the
first of the four Penrose conditions for the Moore–Penrose generalized inverse of a matrix
(see, for example, the preface in [16]). An operator Sg satisfying this condition is called
a (1)-generalized inverse. An immediate consequence of this fact is that SgSf and SfSg
are idempotent — that is they are projectors, as (2.14) and (2.15) show. Although there
appears to be no direct link between Fredholm’s work and later work on generalized
inverses, he should be given credit for exhibiting and naming one of the first examples.

The rest of the paper consists of a potpourri of miscellaneous results. In §3 Fredholm
derives an expression for the logarithmic derivative of Df with respect to the kernel
f(x, y). In §4 he uses this result to establish the following product theorem. Let f and
g be kernels and let SF = SfSg. Then DF = DfDg. Here he again introduces the
adjoint operator to aid in the proof.

In §5 Fredholm considers some series expansions. Given the resolvent kernel ϕ(x, y),
he shows that it can be formally expanded in the form

ϕ(ξ, η) = ϕ1(ξ, η)− ϕ2(ξ, η) + ϕ3(ξ, η)− · · · ,

where
ϕ1(ξ, η) = f(ξ, η)

ϕn(ξ, η) =
∫ 1

0
f(ξ, τ)ϕn−1(τ, η) dτ (n = 2, 3, . . .).

(2.16)

He points out that this expansion converges provided f is sufficiently small. This is, of
course, the Neumann expansion mentioned above.

Some kernels arising in practice have infinite singularities along the line x = y. In §6
Fredholm considers how to solve such equations with kernel i(x, y) where (x−y)αi(x, y)
(0 < α < 1) is finite and integrable. His approach relies on the smoothing power of
integration. Specifically, he shows that for n large enough, the iterated kernel in(x, y)
defined in analogy with (2.16) is finite. He then poses an equation associated with in and
shows how its solution, in some cases, can provide a solution of the original equation.
Once again he makes explicit use of the adjoint kernel in his development.

Before concluding this section it is necessary to assess the influence of von Koch,
whose paper “On infinite determinants and linear differential equations” [24] was pub-
lished in 1892. As mentioned above, Fredholm acknowledged a debt to von Koch, but
not in his original paper.

Von Koch’s paper is in two parts, the first of which concerns determinants of matrices
of infinite order and the solution of linear systems involving such matrices. In the first
section of the first part, he gives conditions on his infinite matrices under which the
determinant and its minors are well defined as limits of finite subdeterminants. In the
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second section he gives formulas involving minors for the solutions of the homogeneous
system, showing in the process that the space of such solutions must be of finite rank.
However, he dismisses the inhomogeneous system by writing, “For the case of an infinite
system of linear inhomogeneous equations, . . . one can easily establish a corresponding
theorem by similar considerations.”

Although all of von Koch’s results have finite-dimensional versions, it is nonetheless
clear that Fredholm’s development owes much to von Koch’s especially in his treatment
of the inhomogeneous equation. Fredholm’s notation is clearly derived from von Koch’s
as are his formulas for the Ψ’s. Fredholm’s approach to establishing the finiteness of
the space of solutions is analogous to von Koch’s: namely, start with the existence of a
least minor that is in some sense nonzero. On the other hand, there is no trace of the
Fredholm alternative in von Koch.

Although Fredholm’s determinants and minors are analogous to von Koch’s in that
they both satisfy a number of analogous relations, their constructions are quite differ-
ent — a little like constructions in `2 and L2 or, for that matter, Heissenberg’s matrix
mechanics and Schröinger’s equation. It is true that von Koch gives a series for the
determinant that is analogous to Fredholm’s formula (and which was already known
in a finite-dimensional) setting. But it von Koch’s series is not a springboard to the
Fredholm formula. This inclines me to believe that Fredholm must have used techniques
resembling those described on page 6.

All this granted, Fredholm’s achievement is nothing less than impressive, and what
impresses most is its completeness. He took the problem of solving a nonsymmetric
integral equation of the second kind and by his alternative not only showed when so-
lutions exist but also characterized their nonuniqueness. In the process he showed the
finiteness of independent solutions of the homogeneous equation and introduced oper-
ators into the analysis. He also has a claim to be one of the founding fathers of the
subject of generalized inverses. But his equation was just that— a single equation. By
parameterizing the equation, Hilbert would show that there was more to be said on the
subject, at least when the kernel is symmetric.

3. Hilbert

Hilbert’s paper appeared in 1904 just a year after Fredholm’s paper, seemingly too short
a time for the latter to have much influenced the former. But, as Hilbert notes, Fredholm
communicated his results in 1899, and, as we have seen, Fredholm says he presented the
results to the Swedish Academy of Science in 1900. Moreover, according to Hermann
Weyl [25] E. Holmgrem gave “a lecture in 1901 in Hilbert’s seminar dealing with the
now classical paper of Fredholm’s on integral equations, then but recently published.”
Thus Hilbert had ample time to assimilate Fredholm’s work. Although Hilbert’s debt to
Fredholm is evident, Hilbert was concerned not so much with solving integral equations
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of the second kind as with developing a theory of eigenvalues and eigenfunctions, and
especially of the expansion of other functions in series of eigenfunctions. In this respect,
Hilbert’s contribution was broader than Fredholm’s. But in other respects, it was more
circumscribed. In particular, Hilbert was forced to assume that his kernel was symmetric
and that its eigenvalues were simple.

There is also a difference in the way they treat the original finite-dimensional linear
system. By the time Fredholm started his paper, the original system had vanished,
leaving only the names “determinant” and “minor” to suggest the origins of his con-
structions. Hilbert, on the other hand, develops the algebraic problem — that is the
finite-dimensional theory of linear equations and eigensystems — in such a way that one
can pass directly to the infinite dimensional case by taking limits. Hilbert writes his
integral equation in the form

f(s) = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt, (3.1)

a notation that hints, at least to the present-day reader, of the eigenvalues and eigen-
functions to come. The kernel K is assumed to be continuous and symmetric [i.e.,
K(s, t) = K(t, s)]. Hilbert variously takes the interval of integration to be [a, b] or [0, 1].
For uniformity we will use the latter.

Hilbert immediately discretizes this problem by introducing the following notation

Kpq = K
( p
n
,
q

n

)
(p, q = 1, 2, . . . , n)

Kxy = K11x1y1 +K12x1y2 +K21x2y1 + · · ·+Knnxnyn

=
∑
pq

Kpqxpyq, (Kpq = Kqp),

ϕp = ϕ
( p
n

)
, fp = f

( p
n

)
, (p = 1, 2, . . . , n),

Kx1 = K11x1 +K12x2 + · · ·+K1nxn,
Kx2 = K21x1 +K22x2 + · · ·+K2nxn,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kxn = Kn1x1 +Kn2x2 + · · ·+Knnxn,

[x, y] = x1y1 + x2y2 + · · ·+ xnyn.

Thus the algebraic problem approximating (3.1) is

f1 = ϕ1 − `Kϕ1,
. . . . . . . . . . . . . .

fn = ϕn − `Kϕn,
(3.2)
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where ` the equivalent of λ in (3.1).
Hilbert now introduces the two determinants

d(`) =

∣∣∣∣∣∣∣∣
1− `K11 −`K12 · · · −`K1n

−`K21 1− `K22 · · · −`K2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−`Kn1 −`Kn2 · · · 1− `Knn

∣∣∣∣∣∣∣∣
and

D

(
`,
x

y

)
=

∣∣∣∣∣∣∣∣∣∣
0 x1 x2 · · · xn
y1 1− `K11 −`K12 · · · −`K1n

y2 −`K21 1− `K22 · · · −`K2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yn −`Kn1 −`Kn2 · · · 1− `Knn

∣∣∣∣∣∣∣∣∣∣
. (3.3)

Note that D
(
`, xy

)
is a bilinear function of x and y. These two determinants satisfy

the relation

d(`)[x, y] +D

(
`,
x

y

)
− `D

(
`,

x

Ky

)
= 0,

which is analogous the two Fredholm relations (2.8) and (2.9). But because of symmetry
Hilbert requires only one relation to Fredholm’s two.

Hilbert now shows by elementary manipulations that if d(`) 6= 0 then the solution
ϕ of (3.2) satisfies

[ϕ, y] = −
D
(
`, fy

)
d(`)

. (3.4)

In other words, ϕ is the vector of coefficients of y in the bilinear form on the right-hand
side of (3.4).

Hilbert’s derivation of (3.4) requires only thirteen lines of text and equations, and
each step in the argument is clear. Yet to modern eyes it is unsatisfying because it gives
no insight into why (3.4) solves the algebraic problem. Here we will give a different and
perhaps more enlightening derivation.

The key observation is that

D

(
`,
x

y

)
= −y∗(I − `K)adjx, (3.5)

where (I − `K)adj is the adjugate matrix of I − `K. This can easily be verified by
expanding (3.3) along the first row and column. Now supposing d(`) 6= 0, we have
d(`)−1(I − `K)adj = (I − `K)−1. Hence

−D
(
`,
f

y

)
/d(`) = y∗(I − `K)−1f = [y, ϕ],
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which is equivalent to (3.4).
Having solved the algebraic problem, Hilbert turns to the case where d(`) = 0. Since

d(`) is a polynomial of degree n in `, the equation d(`) = 0 has n roots

`(1), `(2), . . . , `(n),

which by the symmetry of the defining determinant are all real. Hilbert now makes the
assumption that all the `(h) are distinct, so that d′(`(h)) 6= 0. Denoting by dhh(`) the
hth minor of d(`) with respect to its hth diagonal element, Hilbert uses the relation

d11(`) + · · ·+ dnn(`) = nd(`)− `d′(`)

to show that the homogeneous system

ϕ
(h)
1 − `(h)Kϕ

(h)
1 = 0

. . . . . . . . . . . . . .

ϕ
(h)
n − `(h)Kϕ

(h)
n = 0

has a nontrivial solution that is unique up to a common multiple of the ϕ(h)
i . He goes

on to show that

D
(
`(h), xy

)
`(h)d′(`(h))

=
[ϕ(h), x][ϕ(h), y]

[ϕ(h), ϕ(h)]
(h = 1, 2, . . . , n)

and that for h 6= k

[ϕ(h), ϕ(k)] = 0.

Finally, Hilbert uses a partial fraction expansion of
D

“
`(h), xy

”
`(h)d′(`(h))

to show that

[x, y] =
[ϕ(1), x][ϕ(1), y]

[ϕ(1), ϕ(1)]
+ · · ·+ [ϕ(n), x][ϕ(n), y]

[ϕ(n), ϕ(n)]
(3.6)

and

[Kx, y] = [x,Ky] =
[ϕ(1), x][ϕ(1), y]
`(1)[ϕ(1), ϕ(1)]

+ · · ·+ [ϕ(n), x][ϕ(n), y]
`(n)[ϕ(n), ϕ(n)]

. (3.7)

In the standard terminology of today, `(h) is an eigenvalue of K and ϕ(h) is its
corresponding eigenvector. (Hilbert will later introduce the terms eigenvalue and eigen-
function for the limiting transcendental problem.) The eigenvalues are real, and the
eigenvectors are pairwise orthogonal. The formulas (3.6) shows that x∗y can be written
as a sum of products of two sets of linear forms, one in x and the other in y. More
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significantly, (3.7) shows that x∗Ky can be written as the same sum with its terms
weighted by the reciprocals 1/`(h).

The word “reciprocals” in the last sentence reveals an ongoing problem of termi-
nology. The usual definition of eigenvalue µ and the corresponding eigenvector x is
a nontrivial solution of the system Ax = µx. In Hilbert’s development they are the
solution of λAx = x. Thus provided µ 6= 0 we have µ = 1/λ, and the two eigenvalues
are reciprocals of one another. In both linear algebra and operator theory the former
is dominant, but in integral equations both conventions vie with one another (see, e.g.,
[18, pp. 95–96]).

The fact that zero eigenvalues cannot occur in Hilbert’s formulation corresponds
to the fact that K can have fewer than n eigenvalues. Hilbert ignores this fact in the
above development of the finite-dimensional theory. This oversight can be patched up
and does not seem to interfere with the passage to the transcendental problem — i.e.,
the solution of the integral equation (3.1) and related matters — to which Hilbert now
turns.

The passage to the limit from the algebraic problem to the transcendental problem
is highly technical, and we will focus on the final results. Hilbert’s exposition is divided
into two parts. First is the treatment of the integral equation itself— essentially the first
half of Fredholm’s theory. Second is the generalization of eigenvalues and eigenvectors.

The first part largely follows Fredholm. First Hilbert treats the limit of the deter-
minant d(λ) by introducing the Fredholm series

δ(λ) = 1− δ1λ+ δ2λ
2 − δ3λ

3 + · · · ,

where

δh =
1
h!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣∣∣
K(s1, s1) K(s1, s2) · · · K(s1, sh)
K(s2, s1) K(s2, s2) · · · K(s2, sh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K(sh, s1) K(sh, s2) · · · K(sh, sh)

∣∣∣∣∣∣∣∣ ds1 · · · dsh,
and shows that

d

(
λ

n

)
→ δ(λ) and

1
n
d′
(
λ

n

)
→ δ′(λ),

noting that the “convergence is uniform for all values of λ whose absolute value lies
below an arbitrarily chosen positive bound Λ.”

Hilbert next tackles D
(
λ, xy

)
. He defines a function ∆

(
λ, xy

)
by an everywhere

convergent power series and shows that

1
n
D

(
λ

n
,
x

y

)
→ ∆

(
λ,

x

y

)
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with the same uniform convergence as above. He then sets

∆(λ; s, t) = λ

{
∆
(
λ,

x

y

)}
x(r)=K(r,s)
y(r)=K(r,t)

− δ(λ)K(s, t), (3.8)

and shows that

δ(λ)K(s, t) + ∆(λ; s, t)− λ

∫ 1

0
∆(λ; s, r)K(t, r) dr = 0.

Finally, assuming that δ(λ) 6= 0, he defines

K(s, t) = −∆(λ; s, t)
δ(λ)

, (3.9)

from which it follows that

K(s, t) = K(s, t)− λ

∫ 1

0
K(s, r)K(t, r) dr.

In particular, if ϕ(x) satisfies the Fredholm integral equation (3.1), then

ϕ(s) = f(s) + λ

∫ 1

0
K(s, t)f(t) dt.

Hilbert calls K(s, t) the solution function (die lösende Funktion) for the kernelK(s, t)
because it solves the equation (3.1). Today it is known as the resolvent kernel and
is widely used in functional analysis. Later in the paper, Hilbert will establish the
important resolvent identity

K(µ; s, t)− K(λ+ µ; s, t) = λ

∫ 1

0
K(λ+ µ; r, s)K(µ; r, t) dr.

Hilbert provides little motivation for his definition of ∆(λ; s, t) in (3.8), and it is
instructive to see, informally, how it might be derived. Hilbert is looking for an operator
K such that

(I − λK)−1 = I + λK.

If we formally expand (I − λK)−1 in a Neumann series we find that

K = K1 + λK2 + λ2K3 + · · · , (3.10)

where Ki is the iterated kernel defined as in (2.16).
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Now from (3.5) one might expect that in the limit

∆
(
λ,

p(x)
q(y)

)
= −δ(λ)

(∫ 1

0

∫ 1

0
q(y)[I − λK(x, y)]−1p(x) dx dy

)
.

Once again taking the Neumann expansion of the inverse

∆
(
λ,

p(x)
q(y)

)
= −δ(λ)

(∫ 1

0

∫ 1

0
q(y)[K0(x, y) + λK1(x, y)

+ λ2K2(x, y) + · · · ]p(x) dx dy
)
.

(3.11)

Here we take K0(x, y) to be d(x−y), where d is the Dirac delta function (see footnote 4
on page 4). If we now set p(x) = K(x, s) and q(y) = K(y, t) in (3.11), we get

∆
(
λ,

K(x, s)
K(y, t)

)
= −δ(λ)

(∫ 1

0

∫ 1

0
[K(x, s)K0(x, y)K(y, t)

+ λK1(x, s)K(x, y)K(y, t) + λK(x, s)K2(x, y)K(y, t) + · · · ] dx dy
)
.

But
∫ 1
0

∫ 1
0 K(x, s)Ki(x, y)K(y, t) dx dy = Ki+2(s, t). It follows that

∆
(
λ,

K(x, s)
K(y, t)

)
− δ(λ)K(s, t) = −δ(λ)(K1(s, t) + λK2(s, t) + λ2K3(s, t) + · · · ).

Thus if we define ∆(λ; s, t) by (3.8) and K(s, t) by (3.9), the expansion of the latter
agrees with (3.10).

Hilbert concludes this part with an expression for the derivative of δ′(λ):

δ′(λ) =
∫ 1

0
∆(λ; s, s) ds. (3.12)

The second part of the passage to the limit concerns the spectrum of K(s, t). As
it turns out, the wherewithal to define eigenvalues and eigenfunctions has already been
developed in the first part. This is not as surprising as it might at first seem. Recall that

in Fredholm’s theory if Df = 0 then ϕ(x) = Df

(
x
η

)
is a solution of the homogeneous

equation Sgϕ(x) = 0. But this means that ϕ(x) is an eigenfunction of K(x, y) with
eigenvalue −1. Since Hilbert has just recapitulated part of Fredholm’s theory, he should
also be able to define eigenvalues and eigenfunctions straightaway.

Hilbert begins by showing that δ(λ) has no complex zeros. He then shows that if
the zeros `(h) of d(`) are suitably ordered and the zeros λ(h) of δ(λ) are ordered in the
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same way, then limn=∞ n`(h) = λ(h). He quickly points out that this theorem does not
imply that δ(λ) has any zeros, since the `(h) may diverge.

Hilbert then defines the eigenvalues of K(s, t) to be the zeros of δ(λ). He also
assumes that any eigenvalue λ is of multiplicity one and hence that δ′(λ) 6= 0.

Hilbert now turns to the definition of the eigenfunction corresponding to an eigen-
value λ(h). From (3.12) and the fact that λ(h) is a simple eigenvalue, we get∫ 1

0
∆(λ; s, s) ds 6= 0.

Since ∆(λ; s, s) is continuous, there must be a value s∗ such that ∆(λ; s∗, s∗) 6= 0.
Hilbert then defines

ϕ(h)(s) =

∣∣∣∣∣
√

λ(h)

∆(λ(h); s∗, s∗)

∣∣∣∣∣ ∆(λ(h); s, s∗),

and shows that ϕ(h)(s) has the properties of an eigenfunction corresponding to λ(h).
These properties simplify if we work with the normalized eigenfunctions

ψ(h)(s) =
ϕ(h)(s)∣∣∣∣√∫ 1

0 (ϕ(h)(s))2 ds
∣∣∣∣ .

Specifically,

∆
(
λ(h),

x

y

)
λ(h)δ′(λ(h) )

=
∫ 1

0
ψ(h)(s)x(s) ds ·

∫ 1

0
ψ(h)(s)y(s) ds∫ 1

0
(ψ(h)(s))2 ds = 1,∫ 1

0
ψ(h)(s)ψ(k)(s) ds = 0 (h 6= k),

ψ(h)(s) = λ(h)

∫ 1

0
K(s, t)ψ(h)(t) dt.

Thus the ψ(h) form an orthonormal system of eigenfunctions for K(s, t).
Finally, Hilbert turns to the generalization of (3.7), and arrives at the following

formula: ∫ 1
0

∫ 1
0 K(s, t)x(s)y(t) ds dt =

1
λ(1)

∫ 1
0 ψ

(1)(s)x(s) ds ·
∫ 1
0 ψ

(1)(s)y(s) ds

+
1
λ(2)

∫ 1
0 ψ

(2)(s)x(s) ds ·
∫ 1
0 ψ

(2)(s)y(s) ds+ · · · .
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The convergence is uniform in the sense that the error in the mth approximation is
bounded by

1
2|λ(m+1)|

(∫ 1
0 (x(s))2 ds+

∫ 1
0 (y(s))2 ds

)
.

Thus if x(s) and y(s) are uniformly bounded, the convergence, whatever x(s) and y(s), is
bounded by a common multiple of 1/|λ(m+1)|, which approaches zero at a rate depending
only on K(s, t).8

In the introduction to his paper, Hilbert asserts that his theory will deliver a simple
proof of the existence of eigenvalues of a symmetric kernel. In the first part of Section IV,
he attempts to justify his claim. He does this by using his theory to prove that K(s, t)
has a finite number, say m, of eigenvalues if and only if K(s, t) can be written in the
form

K(s, t) =
1
λ(1)

ψ(1)(s)ψ(1)(t) + · · ·+ 1
λ(m)

ψ(m)(s)ψ(m)(t). (3.13)

How this implies the existence of eigenvalues is not clear, since the above expression is
established under the hypothesis that eigenvalues exist. Possibly Hilbert means that
if we set m = 0 in (3.13) then we get K(s, t) = 0 by the convention that an empty
sum is zero. This would lead to the conclusion that only a zero kernel can fail to have
eigenvalues. But a convention is just a convention, and in special cases, like this one,
it must be proved that it is applicable — something Hilbert does not do. Although
Schmidt mentions Hilbert’s existence proof in the introduction to his own paper, he
nonetheless finds it necessary to include a different proof in the body of his paper.
Moreover, Courant and Hilbert included an explicit existence proof in their celebrated
Methoden der mathematischen Physik I [5, pp 104–107].

The remainder of Section IV is devoted the expansion of arbitrary [wilkürlich] func-
tions in terms of eigenfunctions. By arbitrary Hilbert does not mean just any function;
rather he seeks conditions which a function must satisfy to be expandable. The material
in this section is straightforward, and we will simply summarize the results.

As usual, Hilbert begins with a kernel K(s, t) whose normalized eigenfunctions are
ψ(1)(s), ψ(2)(s), . . . . He first shows that any function that can be represented in the
form

f(s) =
∫ 1

0

∫ 1

0
K(r, t)K(s, t)h(r) dr dt (3.14)

has the expansion
f(s) = c1ψ

(1)(s) + c2ψ
(2)(s) + · · · ,

cm =
∫ 1
0 f(s)ψ(m)(s) ds,

(3.15)

where the convergence is absolute and uniform.
8Here Hilbert assumes that the number of eigenvalues is infinite. Since δ(λ) is an entire function,

this implies that the eigenvalues cannot have an upper bound; i.e., they must increase to infinity.
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Seeking more general conditions, Hilbert proves two more theorems, both of which
depend on the result (3.14) and (3.15). First, he defines K(s, t) to be closed if for any
function g(s) that is not identically zero there is a t such that

∫ 1
0 K(s, t)g(s)ds 6= 0. He

then shows that if h(s) is closed and∫ 1

0
h(s)ψ(m)(s) ds = 0, m = 1, 2, . . .

then h(s) is identically zero. He then goes on to show that if K(s, t) is closed and f(s)
is such that the series

c1ψ
(1)(s) + c2ψ

(2)(s) + · · · ,

cm =
∫ 1

0
f(s)ψ(m)(s) ds,

converges uniformly, then it converges to f(s).
Finally, Hilbert introduces the notion of a general kernel. Specifically, a kernel is

general if for any function g(s) and any ε > 0 there is a function h(t) such that∫ 1

0

(
g(s)−

∫ 1

0
K(s, t)h(t) dt

)2

ds < ε.

He then shows that if K(s, t) is general and f(s) can be represented in the form f(s) =∫ 1
0 K(s, t)h(t) dt, then

f(s) = c1ψ
(1)(s) + c2ψ

(2)(s) + · · · ,

cm =
∫ 1

0
f(s)ψ(m)(s) ds,

and the series converges absolutely and uniformly. Schmidt will show later that the
condition that the kernel be general is unnecessary for this result.

The remainder of the paper is devoted to an application and to extensions of the
theory. The application is to the constrained minimization or maximization of the form

J(x) =
∫ 1

0

∫ 1

0
K(s, t)x(s)x(t) ds dt

subject to certain constraints.
There are two extensions. The first shows that the continuity restrictions can be

relaxed to permit restricted discontinuities of order less than 1
2 — loosely speaking, dis-

continuities at which the growth of K(s, t) is bounded by a multiple of 1/dα (α < 1
2),

where d is the distance to the discontinuity. The technique is to patch the discontinuities
on strips of width ε in such a way that the earlier proofs remain valid and then take the
limit as ε→ 0.
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The second extension removes the restriction that the eigenvalues of K(s, t) be sim-
ple. Hilbert starts with a single multiple eigenvalue, and once again his approach is to
modify the kernel, this time to split the multiple eigenvalue into n distinct eigenval-
ues, where n is the multiplicity of the original eigenvalues. The modification is then
allowed to go to zero in such a way that the modified eigenfunctions remain orthonor-
mal. Repeating the process for each multiple eigenvalue, he obtains a full system of
eigenfunctions for the original kernel.

Hilbert’s contribution to the theory of integral equations was not just a matter of
introducing eigenvalues and eigenfunctions. After all, they had already appeared in the
study of differential equations, though not by those names. Hilbert also recognized their
connection with expansions of “arbitrary” functions, a far reaching extension of Fourier
series. The cost of this extension was the requirement that the kernel be symmetric.
Moreover, his results are not as general as they might be — as is true of much pioneering
work. His student Schmidt would have something to say about that.

4. Schmidt

Reading Erhard Schmidt after reading Fredholm and Hilbert is like walking into a
familiar room through a new door. The same furniture is there in the same places; but
the viewpoint is different, and one sees things in a fresh light. Schmidt’s approach is
to dispense with the relation between integral equations and finite-dimensional linear
systems and to treat the integral equation on its own terms. The result is a striking
simplification of the the Fredholm–Hilbert theory. The style of Schmidt’s paper is also
different. Fredholm, who distilled a great deal of technical detail into a small set of
formulas, writes as if to put the results down as fast as his pen will permit. Hilbert
often appears to be doing the research at the same time as the writing. His it-is-easy-to-
see’s are not all that easy, and one suspects he would have had some difficulty explaining
them to a class a year later. Schmidt is all order and clarity, and his paper has the
conciseness of someone who knows exactly what he is doing.

Schmidt’s paper is divided into five chapters preceded by an introduction. Like
Fredholm, Schmidt subdivides his paper into sections which are numbered consecutively
regardless of chapter boundaries. Unless otherwise noted, all functions and kernels are
continuous on [a, b] and [a, b]×[a, b].

The first chapter consists of preliminary results. Schmidt introduces a (possibly
infinite) set of functions ψ1, ψ2, . . . that are orthogonal and normalized in the sense that∫ b

a
ψµ(x)ψν(x) dx =

{
1 if µ = ν,
0 if µ 6= ν.

(Following current terminology we will call such a sequence orthonormal.) He states
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Bessel’s identity∫ b

a

(
f(x)−

ν=n∑
ν=1

ψν(x)
∫ b

a

f(y)ψν(y) dy
)2 =

∫ b

a

(f(x))2 dx−
ν=n∑
ν=1

(∫ b

a

f(y)ψν(y) dy
)2
,

and the resulting inequality

ν=n∑
ν=1

(∫ b

a
f(y)ψν(y) dy

)2 ≤ ∫ b

a
(f(x))2 dx,

noting that the latter implies that the sum
∑ν=∞

ν=1

(∫ b
a f(y)ψν(y) dy

)2 converges. Fi-
nally he uses Bessel’s inequality to derive the Schwarz inequality

(∫ b
a f(x)ϕ(x) dx

)2 ≤∫ b
a (f(x))2 dx ·

∫ b
a (ϕ(x))2 dx. This inequality is also associated with the names Cauchy

and Bunyakovsky.
In §2, Schmidt establishes a convergence result that will be used later in proving the

convergence of the expansion of a function in terms of eigenfunctions. Suppose Q(z, x)
is a function that is integrable with respect to x and such that for some constant A we
have

∫ b
a (Q(z, x))2 dx ≤ A, for all z ∈ [a, b]. Then if the continuous functions ψν(x) are

orthonormal, f(x) is integrable, and
∫ b
a (f(x))2 is finite, then the series

ν=∞∑
ν=1

∫ b

a
f(y)ψν(y) dy ·

∫ b

a
Q(z, x)ψν(x) dx =

ν=∞∑
ν=1

Uν(z) (4.1)

converges absolutely and uniformly for z ∈ [a, b].
This result is remarkable for its generality, requiring, instead of continuity, only the

integrability Q(z, x) with respect to x and the integrability of f(x).9

In §3, Schmidt turns to the orthogonalization of sequences of independent functions.
The method is constructive, and Schmidt proves that the method breaks down at step
m if and only if the first m functions are linearly dependent.

The method has a discrete analogue for vectors, and both methods are called the
Gram–Schmidt algorithm. It has an interesting history. Formulas that were equivalent
to the discrete Gram–Schmidt algorithm were first given by Laplace [14] in a supple-
ment to his Théorie Analytique des Probabilités. However, Laplace, who was concerned
with estimating the variability of least squares parameters, had no notion of orthogonal-
ity, and, in fact, discarded the orthogonalized vectors as soon as they were computed.
J. P. Gram [11, ] certainly had the general concept of orthogonal functions and
their relation to least squares approximation, but he did not use the formulas of the
Gram–Schmidt algorithm. Instead he gave determinantal expressions for his orthogonal

9However, the proof uses the Schwarz inequality, which Schmidt has stated only for continuous f(x).
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functions. Schmidt, as we have seen, knew what orthogonality was and produced the
orthogonalization formulas that we now call the Gram–Schmidt algorithm. In §3, he
makes a gracious nod to Gram, saying, “In essence, J. P. Gram presented the same
formulas . . . .” Presumably he meant that each of their formulas produced the same
polynomials. One might sum up by saying: Laplace had the formulas but no notion of
orthogonality; Gram had orthogonality but not the formulas; and Schmidt had both.

In Chapter II, entitled On the Linear Symmetric Integral Equation, Schmidt begins
with the homogeneous equation

ϕ(s) = λ

∫ b

a
K(s, t)ϕ(t) dt, (4.2)

where the kernel K(s, t) is symmetric. This reverses the order in Fredholm and Hilbert,
who begin with the inhomogeneous equation, and emphasizes the kernel itself rather
than the integral equation. Schmidt adopts Hilbert’s nomenclature for nontrivial solu-
tions of (4.2), calling ϕ(s) an eigenfunction of K(s, t) corresponding to the eigenvalue
λ. He then shows that two eigenfunctions corresponding to two distinct eigenvalues
are orthogonal and that all eigenvalues must be real. Finally, he shows that for any
eigenvalue there is a corresponding real eigenfunction.

In §5, he treats the system of eigenvalues and eigenfunctions as a whole. He defines
the multiplicity of an eigenvalue as the number of linearly independent eigenfunctions
corresponding to it. Using Bessel’s inequality, he shows that if λ is an eigenvalue of
multiplicity n then

n ≤ λ2

∫ b

a

∫ b

a
(K(s, t))2 ds dt.

Hence any particular eigenvalue has finite multiplicity.
Schmidt now defines a full orthonormal system of a kernel as a set of orthonormal

functions ϕ1(s), ϕ2(s), . . . such that any eigenfunction can be represented as a finite
linear combination of elements of the set. Such a system may be obtained by orthonor-
malizing a set of linearly independent eigenfunctions corresponding to each eigenvalue.
He then shows that ∫ b

a

∫ b

a
(K(s, t))2 ds dt ≥

∑
ρ

1
λ2

ρ
,

where ρ ranges over a finite set of indices. This immediately implies that if K(s, t) has
an infinite number of eigenvalues, then their magnitudes must be unbounded.

In §6 Schmidt introduces the iterated kernels defined by

K1(s, t) = K(s, t),

Ki+1(s, t) =
∫ b

a
K(s, r)Ki(r, t) dr, i = 1, 2, . . . .



Commentary 25

He shows that the iterated kernels are nonzero and that if λ is an eigenvalue of K(s, t)
then λi is an eigenvalue of Ki(s, t). Moreover, he shows that any eigenvalue of Ki(s, t)
must be the ith power of an eigenvalue of K(s, t) and that a full orthonormal system for
K(s, t) is a full orthonormal system for Ki(s, t). It should be noted that the converse of
this last statement is not true, even in finite dimensions, as can be shown by considering
the matrix

„
1 0
0 −1

«
. However, he does show that any eigenfunction of Ki(s, t) is a linear

combination of no more than two eigenfunctions of K1(s, t).
Recall that the iterated kernels were introduced by Fredholm as terms in a Neumann

series for the resolvent kernel. Schmidt has two entirely different reasons for introducing
them. FirstK4(s, t) is particularly well behaved, and second iterated kernels can be used
to prove the existence of eigenfunctions for any nonzero kernel. Schmidt announces this
result in a single statement in §7 —each kernel K(s, t) that does not vanish identically
has at least one eigenfunction— but the proof is deferred to §11.

The expansion results in §§8–9 are the core of this chapter. Throughout, the func-
tions ϕ1(s), ϕ2(s), . . . form a full orthonormal system for the continuous kernel K(s, t),
and λ1, λ2, . . . are the corresponding eigenvalues. Schmidt’s object is to give conditions
on a function g(s) under which

g(s) =
∑
ν

ϕν(s)
∫ b

a
g(t)ϕν(t) dt. (4.3)

Because g(s) is to be expressed as a linear combination of the eigenfunctions of K(s, t),
a good guess for a condition is that there is a function p(t) such that

g(s) =
∫ b

a
K(s, t)p(t) dt. (4.4)

Schmidt first proves that if the series

∑
ν

ϕν(s)ϕν(t)
λν

(4.5)

converges uniformly then it converges to K(s, t). Thus the uniform convergence of (4.5)
implies a spectral representation of K(s, t), which, it turns out, can be used to establish
(4.3) under the condition (4.4). Unfortunately, the desired uniform convergence need
not occur, and Schmidt is forced to take a detour.

The detour consists in proving that

K4(s, t) =
∑
ν

ϕν(s)ϕν(t)
λ4
ν
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and that the series is absolutely and uniformly convergent. He then uses this result to
prove that for any continuous function h(s) if∫ b

a
K(s, t)h(t) dt = 0 (4.6)

then ∫ b

a
h(s)ϕν(s) ds = 0, ν = 1, 2, . . . (4.7)

and conversely.
Schmidt then proves the main expansion theorem.

Let the continuous function g(s) be represented by the equation

g(s) =
∫ b

a

K(s, t)p(t) dt,

where p(t) is a continuous function. Then

g(s) =
∑

ν

ϕν(s)
∫ b

a

g(t)ϕν(t) dt =
∑

ν

ϕν(s)
λν

∫ b

a

p(t)ϕν(t) dt

=
∑

ν

∫ b

a

K(s, t)ϕν(t) dt
∫ b

a

p(t)ϕν(t) dt,

(4.8)

and the series on the right converges absolutely and uniformly.

In proving this theorem, Schmidt points out that the results of §2 [see (4.1)] combined
with the third series in (4.8) imply that the series converges absolutely and uniformly. It
remains only to prove that it converges to g(s), which he does by using the equivalence
of (4.6) and (4.7).

Finally, in a very short paragraph, Schmidt derives Hilbert’s expansion of a quadratic
form ∫ b

a

∫ b

a
K(s, t)q(s)p(t) ds dt =

∑
ν

1
λν

∫ b

a
q(s)ϕν(s) ds

∫ b

a
p(t)ϕν(t) dt. (4.9)

There is a significant reversal in the direction of proof between Hilbert and Schmidt.
Hilbert proves (4.9) as a limiting case of the corresponding theorem for quadratic forms
and then proceeds to prove, at some length, the expansion theorem (4.8). In the process
he must assume that the kernel K(s, t) is “general” in the sense that any continuous
function x(s) can be approximated to arbitrary accuracy in the form

∫ b
a K(s, t)h(t) dt.

This is a very restrictive condition. It leaves out, for example, any kernel with only a
finite number of eigenvalues. Schmidt, on the other hand, proves the expansion theorem
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first, without the assumption of generality, and then derives Hilbert’s expansion of a
quadratic form as an obvious corollary.

Almost as an afterthought, Schmidt turns in §10 to the inhomogeneous integral
equation and derives, for symmetric kernels, Fredholm’s results.

Section 11 is essentially an appendix in which the existence of eigenfunctions of an
operator is established. To exhibit the idea behind the proof, assume that we have the
expansion

K2n(s, t) =
∑
ν

ϕν(s)ϕν(t)
λ2n
ν

and suppose that λ2n
1 = · · · = λ2n

m are the smallest eigenvalues in the above sum.
Multiplying by λ2n

1 , we can write

λ2n
1 K2n(s, t) =

m∑
ν=1

ϕν(s)ϕν(t) +
∑

ν=n+1

ϕν(s)ϕν(t)
(λν/λ1)2n

.

Since |λν/λ1| > 1, the second sum in the above equation goes to zero as n → ∞ and
hence we can write

lim
n→∞

λ2n
1 K2n(s, t) =

m∑
ν=1

ϕν(s)ϕν(t) ≡ u(s, t).

If we now chose t1 so that ϕ(s) = u(s, t1) is nonzero, then ϕ(s) is an eigenfunction of
K2(s, t), which by the results of §6 implies that K(s, t) has an eigenfunction.

Note that the above argument requires that all the eigenvalues of smallest magnitude
have the same sign, which is why one must start with K2(s, t) rather than K(s, t). The
above argument is, of course, not a proof since it assumes what Schmidt is trying to
prove: the existence of eigenfunctions. But Schmidt treats the kernels K2n(s, t) directly
to arrive at the function u(s, t). In the introduction to his paper, Schmidt says that his
proof is “based on a famous proof of H. A. Schwarz, which in the language of Fredholm’s
formula amounts to solving the equation δ(λ) = 0 by Bernoulli’s method.” Today we
call this the power method.

Finally in §12, Schmidt, like Fredholm and Hilbert before him, relaxes the continuity
conditions on which his results were grounded. Specifically, he shows that his results
remain intact if the kernel satisfies two conditions.

I. The point set in the s, t-plane consisting of the points of discontinuity of K(s, t)
(and which is therefore closed) has outer content zero on any line s = const.

II.
∫ b

a

(K(s, t))2 dt is defined and finite for a ≤ s ≤ b and represents a continuous

function of s.
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This is far more general than the conditions of Fredholm and Hilbert, and the use of
outer content points to the nascent theory of measure and integration.

In Chapter III, Schmidt turns his attention to unsymmetric kernels. He begins in
§13 with the nonhomogeneous equation

f(s) = ϕ(s)−
∫ b

a
K(s, t)ϕ(t) dt, (4.10)

with the goal of reproducing Fredholm’s theory. As we have seen in the discussion of
Fredholm’s paper, a key problem is to compute bases for the left and right null spaces of
the right hand side of (4.10). Schmidt shows that they are eigenspaces of the symmetric
kernels K(s, t)+K(t, s)+

∫ b
a K(s, r)K(t, r) dr and K(s, t)+K(t, s)+

∫ b
a K(r, s)K(r, t) dr.

(However, he does not show that the dimensions of these spaces are the same.) He then
goes on to prove Fredholm’s theorems by reducing the solution to that of a symmetric
kernel.

Returning to eigensystems, in §14 Schmidt defines two functions ϕ(s) and ψ(s) to
be an adjoint pair of eigenfunctions of K if they satisfy the relations

ϕ(s) = λ

∫ b

a
K(s, t)ψ(t) dt

and

ψ(s) = λ

∫ b

a
K(t, s)ϕ(t) dt.

The value λ is the corresponding eigenvalue. He shows that ϕ(s) and ψ(s) are eigen-
functions of the symmetric kernels

K(s, t) =
∫ b

a
K(s, r)K(t, r) dr and K(s, t) =

∫ b

a
K(r, s)K(r, t) dr

corresponding to the eigenvalue λ2. He goes on to show that ϕ(s) and ψ(s) can be taken
to be real valued functions and λ to be taken to be positive. He then shows that “The
adjoint functions of a full normalized orthogonal system of the kernel K(s, t) form a full
normalized orthogonal system of the kernel K(s, t), and conversely.”

In §16, Schmidt establishes a generalization of his expansion theorem for symmetric
kernels. Specifically, if g(s) =

∫ b
a K(t, s)h(t) dt for some continuous function h(t), then

g(s) =
∑
ν

ψν(s)
∫ b

a
g(t)ψν(t) dt

=
∑
ν

ψν(s)
λν

∫ b

a
h(t)ϕν(t) dt

=
∑
ν

∫ b

a
K(t, s)ϕν(t) dt

∫ b

a
h(t)ϕν(t) dt.
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He establishes a similar theorem involving the eigenfunctions ψν(s) for a function g(s)
that can be represented in the form g(s) =

∫ b
a K(t, s)h(t) dt. Finally, he shows that∫ b

a
K(s, t)q(t) dt =

∑
ϕν(s)
λν

∫ b

a
q(t)ψν(t) dt,

which “corresponds to the canonical decomposition of a bilinear form.”
This development is a magnificent tour de force, marred only by an unfortunate

choice of nomenclature. For it is clear that Schmidt’s construction amounts to a gen-
eralization of the singular value decomposition of Beltrami [2, ] and Jordan [13,
], as the quote in the last paragraph shows. Today eigenvalues are a part of the
spectrum of an operator, self-adjoint or not. The term singular value was first used by
Bateman [1, ] for the reciprocals of Schmidt’s eigenvalues. The reader is referred
to [22], where these matters are treated in detail.

The climax of the paper is Schmidt’s approximation theorem, which is established
in Chapter IV. Let ϕi(s) and ψi(s) (i = 1, 2, . . .) be a full adjoint system of orthonormal
functions for K(s, t). Consider an approximation to K(s, t) of the form

m∑
i=1

pi(s)qi(t)

and let

Mm =
∫ b

a

∫ b

a

(
K(s, t)−

m∑
i=1

pi(s)qi(t)

)2

ds dt.

Then Mm is minimized by the approximation

ν=m∑
ν=1

ϕν(s)ψν(t)
λν

. (4.11)

The proof of this theorem is tricky, and most people (your translator included) get it
wrong the first time around. The reader of referred to [22] for a paraphrase of Schmidt’s
proof in modern terminology.

In §19, Schmidt shows that the quantity Mm, evaluated at (4.11), approaches zero
as m approaches ∞, an early example of L2 convergence of a sequence of operators.

Schmidt’s approximation theorem in the finite-dimensional case was rediscovered by
C. Eckart and G. Young in 1936 [6] and is sometimes erroneously called the Eckart–
Young theorem.

We will pass by the last chapter, which is devoted to expansion theorems that are
unrelated the material on integral equations.
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With Schmidt’s paper the subject of integral equations came of age. To this day, the
results of Fredholm, Hilbert, and Schmidt occupy a large part of textbooks on integral
equations. There was, of course, much more to come. Just as integral equations had a
large role in the development of functional analysis so did functional analysis enhance
the further development of integral equations. For example, continuous kernels became
compact operators. Hilbert and Schmidt themselves were part of this development.
While Schmidt was transcribing his dissertation, Hilbert launched an investigation of
the theory of infinite systems of linear equations that was motivated by applications
to integral equations. Schmidt picked up Hilbert’s work and developed many of the
fundamental concepts of what are now known as (`2) Hilbert spaces. But that is another
story.
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ON A CLASS OF FUNCTIONAL EQUATIONS

by

IVAR FREDHOLM
Stockholm

In certain works1 Abel was concerned with the problem of determining a function
ϕ(x) in such a way that it satisfies the functional equation∫

f(x, y)ϕ(y) dy = ψ(x), (a)

where f(x, y) and ψ(x) are given functions. Abel solved some special cases of this
functional equation, and he seems to be the first to have recongnized its importance. For
this reason I propose to call the functional equation (a) an Abelian functional equation.

In this note I will be chiefly concerned not with the Abelian equation but with the
functional equation

ϕ(x) +
∫ 1

0
f(x, y)ϕ(y) dy = ψ(x), (b)

which is closely related to the Abelian equation.
In fact, if in place of f(x, y) and ϕ(x) we substitute 1

λf(x, y) and λϕ(x), then equa-
tion (b) becomes

λϕ(x) +
∫ 1

0
f(x, y)ϕ(y) dy = ψ(x), (c)

which can be transformed into equation (a) by setting λ = 0. Thus the solution of (a)
can be regarded as implicitly subsumed by the solution of (b).

Regarding equation (b), it seems to me that it deserves the special attention of
mathematicians because most of the problems of mathematical physics that lead to

1Magazin for Naturvidenskaberne, Kristiania 1823 and Oeuvres complèts
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linear differential equations can be transformed into functional equations of the form
(b) or of the form

ϕ(x1 . . . xn) +
∫
· · ·
∫
f(x1 . . . xn, ξ1 . . . ξn)ϕ(ξ1 . . . ξn)dξ1 · · · dξn

= ψ(x1 . . . xn).

To see this one only has to recall the Dirichlet problem in which one tries to represent
the unknown potential between two plates in terms of the potential on the plates, as
well as analogous problems in the theory of magnetism and the theory of elasticity.

The first attempt to solve an instance of equation (b) was made by Neumann.
Specifically, Neumann’s famous method for the solution of the Dirichlet problem con-
sisted in the expansion of ϕ(x) in increasing powers of the parameter 1

λ . But Neumann’s
expansion, which always converges in the case of Dirichlet’s problem, may not con-
verge in the general case.

In an important work2 M. Volterra successfully applied the method of Neumann
to the functional equation

ϕ(x) +
∫ x

0
f(x, y)ϕ(y) dy = ψ(x). (d)

In the same work M. Volterra also made clear the close connection of equation (d)
with the Abelian equation ∫ x

0
f(x, y)ϕ(y) dy = ψ(x).

The equation I propose to study in the present work includes M. Volterra’s
equation as a special case. For one immediately obtains equation (c) by supposing that
the function f(x, y) in (b) is zero for y > x.

In what follows the function f(x, y) will be subject to a certain condition. I will
assume that f(x, y) is such that for α less than one the function (x − y)αf(x, y) is
bounded and integrable. Thus I am not going to treat equation (b) in full generality.
But the applications of equation (b) to mathematical physics justify the condition I
have imposed on the function. I will return to these applications in another paper.

§ 1. On the construction and properties of the determinant
of the fundamental functional equation.

1. Suppose that f(x, y) is a finite function that is integrable with respect to the
variables x and y, either individually or together. For definiteness we will suppose that
x and y are positive and less than one.

2Annali di Matematica, 1886
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In this case, there exists a quantity Df that plays the same role with respect to
the functional equation (b) as the determinant plays with respect to a system of linear
equations.

To define Df I will introduce the abbreviated notation

f

(
x1, x2, . . . , xn
y1, y2, . . . , yn

)
=

∣∣∣∣∣∣∣∣
f(x1, y1) f(x1, y2) · · · f(x1, yn)
f(x2, y1) f(x2, y2) · · · f(x2, yn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(xn, y1) f(xn, y2) · · · f(xn, yn)

∣∣∣∣∣∣∣∣ (1)

and set

Df = 1 +
∫ 1

0
f(x, x) dx+

1
2!

∫ 1

0

∫ 1

0
f

(
x1, x2

x1, x2

)
dx1 dx2 + · · ·

=
∞∑
n=1

1
n!

∫ 1

0
· · ·
∫ 1

0
f

(
x1, x2, . . . , xn
y1, y2, . . . , yn

)
dx1 dx2 · · · dxn.

(2)

2. To show that this expression is valid we need only invoke a theorem of M.
Hadamard.3

This theorem says that the absolute value of a given determinant is no greater than
the square root of the principal term of the determinant obtained by multiplying the
given determinant with its complex conjugate determinant.∗

Consequently, if F is the upper bound of f(x, y), we have∣∣∣∣f (x1, x2, . . . , xn
x1, x2, . . . , xn

)∣∣∣∣ ≤ √
nnFn.

Thus the series Df converges as the absolutely convergent series

∞∑
n=0

√
nn

n!
Fn.

3. It is not without interest to note that the convergence improves if f(x, y) is
assumed to have a certain kind of continuity.

Specifically, suppose that the values of the quotient

f(x, y)− f(x, z)
(y − z)α

.

3Bulletin des sciences mathématiques, 1893, p. 242.
∗The multiplication here is matrix multiplication, not the multiplication of the values of the two

determinants.
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have a limit superior. Then obviously we can write∣∣∣∣f (x1 . . . xn
x1 . . . xn

)∣∣∣∣ ≤ √
nnAn(x1 − x2)α(x2 − x3)α · · · (xn−1 − xn)α.

But in determining the maximum it is clearly sufficient to consider variables that satisfy
the condition

x1 > x2 > · · · > xn,

since the left-hand side is a symmetric function of the variables x1, . . . , xn.
In this case the maximum value of the product

(x1 − x2)(x2 − x3) · · · (xn−1 − xn)

is equal to
1
nn
.

Consequently,

1
n!

∫ 1

0
· · ·
∫ 1

0
f

(
x1 . . . xn
x1 . . . xn

)
dx1 dx2 · · · dxn <

(nn)
1
2
−α

n!
An.

4. In the same way that we demonstrated the validity of the expression for Df , we
can demonstrate the validity of the following expressions, which I will call the minors
of Df :

Df

(
ξ1, ξ2, . . . , ξn
η1, η2, . . . , ηn

)

= f

(
ξ1, ξ2, . . . , ξn
η1, η2, . . . , ηn

)
+
∫ 1

0
f

(
ξ1 . . . ξn, x
η1 . . . ηn, x

)
dx

+
1
2

∫ 1

0

∫ 1

0
f

(
ξ1 . . . ξn, x1, x2

η1 . . . ηn, x1, x2

)
dx1 dx2 + · · ·

=
∞∑
ν=0

1
ν!

∫ 1

0
· · ·
∫ 1

0
f

(
ξ1 . . . ξn, x1 . . . xν
η1 . . . ηn, x1 . . . xν

)
dx1 · · · dxν .

(3)

5. The minors satisfy some important relations, which we will now derive.
On expanding the determinant

f

(
ξ1, ξ2, . . . ξn, x1 . . . xν
η1, η2, . . . ηn, x1 . . . xν

)
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along the elements of its first row we find that

f

(
ξ1, ξ2, . . . , ξn, x1 . . . xν
η1, η2, . . . , ηn, x1 . . . xν

)
= f(ξ1, η1)f

(
ξ2 . . . ξn, x1 . . . xν
η2 . . . ηn, x1 . . . xν

)
− f(ξ1, η2)f

(
ξ2, ξ3 . . . ξn, x1 . . . xν
η1, η3 . . . ηn, x1 . . . xν

)
+ · · ·

− (−1)nf(ξ1, ηn)f
(
ξ2 . . . ξn, x1 . . . xν
η1 . . . ηn−1, x1 . . . xν

)
+ (−1)nf(ξ1, x1)f

(
ξ2 . . . ξn, x1 . . . xν
η1 . . . ηn−1, ηn . . . xν

)
− · · ·

− (−1)n+νf(ξ1, xν)f
(
ξ2 . . . ξn, x1 . . . xν
η1 . . . ηn−1, ηn . . . xν−1

)
.

If we multiply the two sides of this identity by dx1 . . . dxν and integrate between 0
and 1, we get the formula

∫ 1

0
· · ·
∫ 1

0
f

(
ξ1 . . . ξn, x1 . . . xν
η1 . . . ηn, x1 . . . xν

)
dx1 . . . dxν

= f(ξ1, η1)
∫ 1

0
· · ·
∫ 1

0
f

(
ξ2 . . . ξn, x1 . . . xν
η2 . . . ηn, x1 . . . xν

)
dx1 . . . dxν

− f(ξ1, η2)
∫ 1

0
· · ·
∫ 1

0
f

(
ξ2, ξ3 . . . ξn, x1 . . . xν
η1, η3 . . . ηn, x1 . . . xν

)
dx1 . . . dxν + · · ·

− ν

∫ 1

0
· · ·
∫ 1

0
f(ξ1, τ)f

(
τ, ξ2 . . . ξn, x2 . . . xν−1

η1, η2 . . . ηn, x1 . . . xν−1

)
dτ dx1 . . . dxν−1.

If we now multiply by 1
ν! and take the sum for ν = 0 to ν = ∞, we obtain the very

important formula

Df

(
ξ1 . . . ξn
η1 . . . ηn

)
+
∫ 1

0
f(ξ1, τ)Df

(
τ, ξ2 . . . ξn
η1, η2 . . . ηn

)
dτ

= f(ξ1, η1)Df

(
ξ2 . . . ξn
η2 . . . ηn

)
− f(ξ1, η2)Df

(
ξ2, ξ3 . . . ξn
η1, η3 . . . ηn

)
+ · · · .

(4)

In the same way, if we start by expanding the determinant by the elements of the
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first column, we get the formula

Df

(
ξ1 . . . ξn
η1 . . . ηn

)
+
∫ 1

0
f(τ, η1)Df

(
ξ1, ξ2 . . . ξn
τ, η2 . . . ηn

)
dτ

= f(ξ1, η1)Df

(
ξ2 . . . ξn
η2 . . . ηn

)
− f(ξ2, η1)Df

(
ξ1, ξ2 . . . ξn
η2, η3 . . . ηn

)
+ · · · etc.

(5)

For the case n = 1 these two formulas become

Df

(
ξ
η

)
+
∫ 1

0
f(ξ, τ)Df

(
τ
η

)
dτ = f(ξ, η)Df , (41)

Df

(
ξ
η

)
+
∫ 1

0
f(τ, η)Df

(
ξ
τ

)
dτ = f(ξ, η)Df . (51)

6. If we replace f(x, y) by λf(x, y) in Df , we find that Dλf can be expanded in a
power series in λ, which, because of H. Hadamard’s lemma, converges for all values
of λ. Thus Dλf is an entire function of λ.

Recalling the definition of Df and its minors, we immediately get the relations

λn
dnDλf

dλn
=
∫ 1

0
· · ·
∫ 1

0
Dλf

(
x1 . . . xn
x1 . . . xn

)
dx1 dx2 . . . dxn, (6)

which hold for n = 1, 2, 3, . . . .
These relations allow us us obtain an important result. Specifically, since Dλf is an

entire function of λ, each root of the equation

Dλf = 0

is necessarily of finite multiplicity.
Consequently, one cannot find a value of λ for which Dλf and all its derivatives are

zero.
In particular, if for λ = 1 we have Dλf = Df = 0, then we can always find a minor

of Df of least order that is not identically zero.

§ 2. On a class of functional transformations and their inversion.

7. Let us now consider the functional equation

ϕ(x) +
∫ 1

0
f(x, s)ϕ(s) ds = ψ(x), (7)

where ϕ(x) is an unknown function and ψ(x) is a finite, integrable function.
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Regarding equation (7) as transforming the function ϕ(x) into a new function ψ(x),
I will write the above equation as

Sfϕ(x) = ψ(x) (7)

and say that the transformation Sf belongs to f(x, y).
The transformations (7) form a group.∗ Specifically, consider another transformation

Sg belonging to the function g(x, y) which satisfies the same conditions of integrability
etc. as f(x, y).

Then it is easily seen that one can set

Sgψ(x) = SgSfϕ(x) = SFϕ(x),

where

F (x, y) = g(x, y) + f(x, y) +
∫ 1

0
g(x, t)f(t, y) dt.

Regarding the inversion of (7), there are two possible cases: Df is nonzero orDf = 0.

8. First suppose that the determinant Df is nonzero and set

g(x, y) = −
Df

(
x
y

)
Df

.

Then from equation (51) we see that F is identically zero. Consequently, the equation

SgSfψ(x) = ψ(x)

is an identity, and the transformation Sg is the inverse of Sf . Thus, if there exists a
solution of equation (7), it is unique and is given by the equation

ϕ(x) = Sgψ(x).

On the other hand, if in equation (7) we substitute Sgψ(x) in place of ϕ(x), we get

Sfϕ(x) = SfSgψ(x) = SFψ(x), †

where by equation (41) F is again equal to zero.
Consequently, we can state the following theorem.

∗By a group Fredholm means a set of operators that is closed under multiplication. The existence of
inverses is not implied.

†The function F in SF is not the same as the F defined above.
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If the determinant Df of a functional equation of the form

ϕ(x) +
∫ 1

0
f(x, s)ϕ(s) ds = ψ(x),

where f(x, s) and ψ(x) are bounded integrable functions, is different from zero, then
there is a unique function ϕ(x) satisfying the equation.

This function is given by the equation

ϕ(x) = ψ(x)−
∫ 1

0

Df

(
x
y

)
Df

ψ(y) dy.

9. Let us now consider the case where Df is zero.
We have seen that in this case there is a minor of Df of least order that is not

identically zero.
Let

Df

(
ξ1 . . . ξn
η1 . . . ηn

)
be that minor. Because all minors of lower order are zero, the formula (4) can be written

Df

(
ξ1 . . . ξn
η1 . . . ηn

)
+
∫ 1

0
f(ξ1, τ)Df

(
τ, ξ2 . . . ξn
η1, η2 . . . ηn

)
dτ = 0.

That is to say that

ϕ(x) = Df

(
x, ξ2 . . . ξn
η1, η2 . . . ηn

)
is a solution of the homogeneous equation

ϕ(x) +
∫ 1

0
f(x, y)ϕ(y) dy = 0. (7′)

To find all such solutions, let Sf denote the transformation belonging to f and let
ϕ be a solution of the equation

Sfϕ(x) = 0.

Let us call Sg the pseudo-inverse transformation of Sf if

g(x, y) = −
Df

(
x, ξ1 . . . ξn
y, η1 . . . ηn

)
Df

(
ξ1 . . . ξn
η1 . . . ηn

) ,
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where the parameters ξ and η are chosen in such a way that the denominator is
nonzero— something that by hypothesis is always possible.

Then
SgSfϕ(x) = SFϕ(x) = 0,

where

F (x, y) = f(x, y) + g(x, y) +
∫ 1

0
g(x, τ)f(τ, y) dτ.

But by equation (5) we have

F (x, y) =

1

Df

(
ξ1 . . . ξn
η1 . . . ηn

) [f(ξ1, y)Df

(
x, ξ2 . . . ξn
η1, η2 . . . ηn

)
− f(ξ2, y)Df

(
ξ1, x, ξ3 . . . ξn
η1, η2, η3 . . . ηn

)
−

· · · − (−1)nf(ξn, y)Df

(
ξ1 . . . x
η1 . . . ηn

)]
.

(9)
Alternatively, using an abbreviated notation, we have

F (x, y) = −
n∑
ν=1

f(ξν , y)Φν(x). (10)

Now ϕ(x) satisfies the equation
SFϕ(x) = 0,

and hence we have

ϕ(x) = −
∫ 1

0
F (x, y)ϕ(y) dy =

n∑
ν=1

Φν(x)
∫ 1

0
f(ξν , y)ϕ(y) dy

=
n∑
ν=1

AνΦν(x).

(11)

It is readily verified that this expression satisfies the equation

Sfϕ(x) = 0

whatever the coefficients Aν .
The functions Φ1, . . . ,Φn are linearly independent. For equation (4) shows that∫ 1

0
f(ξλ, x)Φµ(x) dx =

{
0 if λ 6= 0,
1 if λ = ν.
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Hence the hypothesis that there is a linear relation

a1Φ1 + a2Φ2 + · · ·+ anΦn = 0

among the Φν leads to the contradiction∫ 1

0

n∑
ν=1

aνf(ξν , x) ·
n∑
ν=1

aνΦν(x) dx =
∑

a2
ν = 0.

Thus, not only are the functions Φν linearly independent, but so are the functions
f(ξν , x). We may sum up the results we have obtained in the following theorem.

A necessary and sufficient condition that there exists a nonzero solution of the equa-
tion

Sfϕ(x) = 0

is that Df = 0. If n is the order of the first minor of Df that is different from zero, the
above equation has n linearly independent solutions.

Let us now look for conditions for the existence of a solution of the equation

Sfϕ(x) = ψ(x),

under the hypothesis that Df = 0 and the minors of order less than n are zero.
First we must establish a certain formula. Since the function

α(x) = Df

(
x, a2 . . . an
b1, b2 . . . bn

)
satisfies the equation

Sfα(x) = 0,

α(x) is a linear combination of the functions Φν . Recalling that α(x) also satisfies the
equation

SFα(x) = 0

or alternatively the equation

α(x) = −
∫ 1

0
F (x, y)α(y) dy,

we immediately obtain the following expression for α(x):

α(x) = −
n∑
ν=1

α(ξν)Φν(x). (12)
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Proceeding analogously with the function

β(x) = Df

(
a1, a2 . . . an
x, b2 . . . bn

)
we get the expression

β(x) = −
n∑
ν=1

β(ξν)Ψν(x), (13)

where for brevity we have set

Ψ1(x) = −
Df

(
ξ1, ξ1 . . . ξn
x, η2 . . . ηn

)
Df

(
ξ1 . . . ξn
η1 . . . ηn

) ,

and so on. It can be shown that the n functions Ψ are linearly independent.
Let us now return to the equation in question and integrate it after multiplying by

Df

(
a1, a2 . . . an
x, b2 . . . bn

)
dx.

Then we find that∫ 1

0
ϕ(x)Df

(
a1, a2 . . . an
x, b2 . . . bn

)
dx+

∫ 1

0

∫ 1

0
ϕ(y)f(x, y)Df

(
a1, a2 . . . an
x, b2 . . . bn

)
dx dy

=
∫ 1

0
ψ(x)Df

(
a1, a2 . . . an
x, b2 . . . bn

)
dx.

But by equation (5),∗ we see that the left-hand side is zero whatever the function
ϕ(x).

Hence ψ(x) must satisfy the relation∫ 1

0
ψ(x)Df

(
a1, a2 . . . an
x, b2 . . . bn

)
dx = 0, (15)

whatever the parameters a and b. The number of these constraints appears to be infinite,
but because of equation (13) this number reduces to n; namely, the n equations∫ 1

0
ψ(x)Ψν(x) dx = 0 (ν = 1, . . . , n). (15′)

∗Equation (4) in the original, which appears to be a mistake.
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Let us assume that these constraints are satisfied and see if, in this case, a solution of
equation (7) exists.

If, to this end, we apply the transformation Sg to the two sides of equation (7), we
have

SgSfϕ(x) = SFϕ(x) = Sgψ(x).

But

SFϕ(x) = ϕ(x)−
n∑
ν=1

AνΦν(x).

Thus

ϕ(x) = Sgψ(x) +
n∑
ν=1

AνΦν(x).

Let us now see if the above value satisfies equation (7). To do this it is sufficient to
see if ϕ(x) = Sgψ(x) satisfies equation (7), since the second term is a solution of the
homogeneous equation and can be discarded. We have

Sfϕ(x) = SfSgψ(x) = SGψ(x),

where, by equation (4) and the definition of the functions Ψν , we have

G(x, y) = −
n∑
ν=1

f(x, ην)Ψν(y).

Consequently from equation (15) we find that∫ 1

0
G(x, y)ψ(y)dy = 0,

and hence
SGψ(x) = ψ(x)

and
Sfϕ(x) = ψ(x).

Thus equation (15) gives necessary and sufficient conditions for the equation

Sfϕ(x) = ψ(x)

to have a solution.

10. The system of equations

ϕλ(x) +
∫ 1

0

n∑
ν=1

fλν(x, y)ϕν(y) dy = ψλ(x) (λ = 1 . . . n) (16)
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can be reduced to a single equation of the original type.
To show this, define a function F (x, y) for values between 0 and n by the n2 condi-

tions

F (x, y) = fλν(x− λ+ 1, y − ν + 1), for 0 <
x− λ+ 1
y − ν + 1

< 1.

Also define a function Ψ by the n conditions

Ψ(x) = ψλ(x− λ+ 1) for 0 < x− λ+ 1 < 1.

Then if the determinant of the equation

Φ(x) +
∫ n

0
F (x, y)Φ(y) dy = Ψ(x) (17)

is nonzero, the equation has a unique solution Φ(x). If we then define the functions ϕλ
by the conditions

Φ(x) = φλ(x− λ+ 1) for 0 < x− λ+ 1 < 1.

we see that these functions satisfy the original system.
We also see that this is the only solution that can satisfy the original system. For

otherwise there would be another function satisfying (17), which is impossible.

§ 3. On the first variation of the determinant Df .

11. Let us first calculate the first variation of

f

(
x1 . . . xn
x1 . . . xn

)
.

If we denote the sequence of values x1, x2, . . . , xn with the exception of xλ by

x1, x2 . . . (xλ) . . . xn,

we can write

δf

(
x1 . . . xn
x1 . . . xn

)
=
∑
λ,µ

(−1)λ+νf

(
x1 . . . (xλ) . . . xn
x1 . . . (xν) . . . xn

)
δf(xλ, xµ).

Multiply the two sides by dx1, . . . dxn and integrate from 0 to 1. If we note that names
of the variables are immaterial, we clearly have

δ

∫ 1

0
· · ·
∫ 1

0
f

(
x1 . . . xn
x1 . . . xn

)
dx1 . . . dxn

= n

∫ 1

0
· · ·
∫ 1

0
f

(
x1, x2 . . . xn−1

x1, x2 . . . xn−1

)
δf(x, x) dx dx1 · · · dxn−1

−n(n− 1)
∫ 1

0
· · ·
∫ 1

0
f

(
y, x1 . . . xn−2

x, x1 . . . xn−2

)
δf(x, y) dx dy dx1 · · · dxn−2.
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Multiplying by 1
n! and taking the sum from n = 1 to ∞, we get

δDf =
∫ 1

0
Dfδf(x, x) dx−

∫ 1

0

∫ 1

0
Df

(
x
y

)
δf(x, y) dx dy

or

δ log δDf =
∫ 1

0
δf(x, x) dx−

∫ 1

0

∫ 1

0

Df

(
x
y

)
Df

δf(x, y) dx dy.

Obviously

δf(x, y)−
∫ 1

0

Df

(
x
t

)
Df

δf(t, y) dt = S−1
f δf(x, y).

Hence we can also write

δ logDf =
∫ 1

0
[S−1
f δf(x, y)]x=y dx. (18)

By introducing the notation
Tf

for the transformation

ϕ(x) +
∫ 1

0
f(y, x)ϕ(y) dy

we get another expression for the logarithmic variation of Df : namely,

δ logDf =
∫ 1

0
[T−1
f δf(x, y)]x=y dx. (18′)

§ 4. The product theorem.

12 To establish the product theorem, consider the two transformations

Sfϕ(x) = ϕ(x) +
∫ 1

0
f(x, y)ϕ(y) dy,

Sgϕ(x) = ϕ(x) +
∫ 1

0
g(x, y)ϕ(y) dy.

If we write the product of the two transformations as

SfSg = SF ,
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then we have

F (x, y) = f(x, y) + g(x, y) +
∫ 1

0
f(x, t)g(t, y) dt.

If we likewise consider the transformations

Tfϕ(x) = ϕ(x) +
∫ 1

0
f(y, x)ϕ(y) dy,

Tgϕ(x) = ϕ(x) +
∫ 1

0
g(y, x)ϕ(y) dy,

then we have
TgTf = SG,

where

G(x, y) = f(y, x) + g(y, x) +
∫ 1

0
f(y, t)g(t, x) dt = F (y, x).

We have seen that

δ log δDF =
∫ 1

0
δF (x, x) dx−

∫ 1

0

∫ 1

0

DF

(
y
x

)
DF

δF (x, y) dx dy,

a formula that can also be written as in (18) thus:

δ logDF =
∫ 1

0
[(SfSg)−1δF (x, y)]x=y dx. (19)

Moreover,

δ logDF =
∫ 1

0
[(TgTf )−1δF (x, y)]x=y dx. (20)

Now

δF (x, y) = δf(x, y) + δf(x, y) +
∫ 1

0
[f(x, t)δg(t, y) + g(t, y)δf(x, t)] dt

= Tgδf(x, y) + Sfδg(x, y).

Hence on substituting this expression in (19) and (20), we find that

δ logDF =
∫ 1

0
[(TgTf )−1Tgδf(x, y) + (SfSg)−1Sfδg(x, y)]x=y dx

=
∫ 1

0
[T−1
f δf(x, y) + S−1

g δg(x, y)]x=y dx
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or
δ logDF = δ logDf + δ logDg.

It follows that
logDF − logDf − logDg

does not depend on the functions f and g. Finally, because for f = g = 0, we have
DF = Df = Dg = 1, we have the following theorem:

DF = DfDg. (21)

§ 5. Various expansions.

13. We have seen that the function

ϕ(ξ, η) =
Df

(
ξ
η

)
Df

satisfies the equation

ϕ(ξ, η) +
∫ 1

0
f(ξ, τ)ϕ(τ, η) dτ = f(ξ, η). (41)

Let us look for an expansion of the function ϕ(ξ, η) in the form

ϕ(ξ, η) = ϕ1(ξ, η)− ϕ2(ξ, η) + ϕ3(ξ, η)− · · · , (22)

where ϕn(ξ, η) is of dimension n with respect to f .
Substituting this series in equation (41) and equating to zero the sum of terms having

the same dimensions with respect to f , we get the following equations:

ϕ1(ξ, η) = f(ξ, η)

ϕn(ξ, η) =
∫ 1

0
f(ξ, τ)ϕn−1(τ, η) dτ (n = 2, 3, . . .).

From this it follows that

ϕn(ξ, η) =
∫ 1

0
· · ·
∫ 1

0
f(ξ, τ1)f(τ1, τ2) · · · f(τn−1, η) dτ1 · · · dτn−1.

The resulting expansion converges provided the upper bound of f is sufficiently small.
Now recall the formula (6), which for n = 1 we may write as

λ
d logDλf

η
=
∫ 1

0
ϕ(ξ, ξ) dξ.
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If we replace ϕ(ξ, ξ) by the representation (22), we have the formula

logDλf = λ

∫ 1

0
f(x, x) dx− λ2

2

∫ 1

0

∫ 1

0
f(x, y)f(y, x) dx dy + · · ·

= −
∞∑
n=1

(−λ)n

n

∫ 1

0
· · ·
∫ 1

0
f(x1, x2)f(x2, x3) · · · f(xn−1, xn)f(xn, x1) dx1 · · · dxn.

In particular, if the series on the right converges for λ = 1,

logDf =
∞∑
n=1

(−1)n−1

n

∫ 1

0
· · ·
∫ 1

0
f(x1, x2)f(x2, x3) · · · f(xn−1, xn)f(xn, x1) dx1 · · · dxn.

§ 6. The case where f(x, y) becomes unbounded in such a way that
(x− y)αf(x, y) remains bounded.

Let f(x, y) be a bounded integrable function and i(x, y) be a function such that
(x − y)αi(x, y) is bounded and integrable. Suppose that Df is zero along with its
minors up to order n. If, in addition,

SfSi = SiSf ,

then obviously

SiΦλ(x) =
n∑
µ=1

pλµΦµ(x) (λ = 1, . . . , n), (23)

where Φ1(x) . . .Φn(x) are the n linearly independent solutions of the equation

Sfϕ(x) = 0.

If we let

Tfϕ(x) = ϕ(x) +
∫ 1

0
f(y, x)ϕ(y) dy,

then

TiΨλ(x) =
n∑
µ=1

qλµΨµ(x) (λ = 1, . . . , n), (24)

where Ψ1(x) . . .Ψn(x) are the n linearly independent solutions of the equation

TfΨ(x) = 0.

I claim that the determinant of the coefficients pλµ is equal to that of the coefficients
qλµ.



50 Fredholm, Hilbert, Schmidt

I will prove the assertion under the assumption that the determinant of the quantities

cλµ =
∫ 1

0
Φλ(x)Ψµ(x) dx

is nonzero. Clearly, a simple continuity argument allows the proposition to be extended
to the case where this determinant is zero.

Noting that we have the identity∫ 1

0
Ψ(x)SiΦ(x) dx

∫ 1

0
Φ(x)TiΨ(x) dx

and taking into account equations (23) and (24), we get

n∑
ν=1

cνµpλν =
n∑
ν=1

cλνqµν ,

from which the desired result follows immediately.
15. Denote by i(x, y) a function to which the transformation Si belongs. We are go-

ing to look for conditions under which an inverse transformation for Si exists, supposing
that i(x, y) becomes unbounded in such a way that (x − y)αi(x, y) remains bounded.
Here α is a number less than one.

If we set

iν(x, y) =
∫ 1

0
· · ·
∫ 1

0
i(x, t1)i(t1, t2) · · · i(tν−1, y) dt1 · · · dtν−1

and
k(x, y) = −i(x, y) + i2(x, y)− · · ·+ (−1)n−1in−1(x, y),

then we have
SkSi = SiSk = Sf ,

where
f(x, y) = (−1)n−1in(x, y)

If n is chosen so that
n >

1
1− α

,

then in(x, y) can no longer become unbounded.
To show this, we note that one can write∫ 1

0

dt

|x− t|α|t− y|β
<

Ψ(α, β)
|x− y|α+β−1

, (25)



Fredholm 51

where Ψ(α, β) is a function that is bounded as long as

0 < α < 1, 0 < β < 1, α+ β < 1.

The inequality (25) can easily be established by making a the change of variable

t = x+ (y − x)s

in the above integral. The repeated application of inequality (25) to the inequality

|i(x, y)| < a

|x− y|α

easily leads to the result that

|iν(x, y)| <
aν

|x− y|να−ν+1
,

as long as
να− ν + 1 < 0,

which is to say that

ν >
1

1− α
.∗

If
a

1− α
− 1 < n− 1 <

a

1− α
,

we have

|in(x, y)| <
∫ 1

0

an−1αdt

|x− t|(n−1)α−n+2|t− y|α
. (25)

From this inequality it follows that in(x, y) has a finite upper bound.
16. The results obtained above can be extended almost immediately to the more

general transformations

Siϕ(x1 . . . xn) = ϕ(x1 . . . xn) +
∫ 1

0
· · ·
∫ 1

0
i(x1 . . . xn; y1 . . . yn)ϕ(y1 . . . yn) dy1 · · · dyn

by postulating that i(x1 . . . xn; y1 . . . yn) becomes unbounded in such a way that

rαi(x1 . . . y1 . . .)

remains bounded. Here α is a suitably chosen number less than n, and r is the distance
between the points whose Cartesian coordinates are x1 . . . xn and y1 . . . yn.

∗Fredholm writes < here.
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Specifically, we have

n∑
ν=1

(xν − yν)2 > n n

√∏n
ν=1(xν − yν)2.

or

r ≥
√
n

n∏
ν=1

|xν − yν |
1
n .

Hence there is a number a such that

|i| ≤ a∏n
ν=1 |xν − yν |

a
n

.

We define the functions iν in the same way as before; i.e., we set

iν(x1 . . . xn) =
∫ 1

0
· · ·
∫ 1

0
i(x1 . . . xn; t1 . . . tn)iν−1(t1 . . . tn) dt1 · · · dtn.

By an argument analogous to the one used in the preceding case, we establish the
inequality

|iλ(x1 . . . xn, y1 . . . yn)| <
aν

{
∏
|xν − yν |}

λα
n
−λ+1

,

and from this inequality we conclude that if λ > 1
1− a

n
then iλ does not become un-

bounded.
17. To shorten the presentation in showing how these results apply to the solution

of the equation
Siϕ(x) = ψ(x),

I will restrict myself to the case where i depends only on two variables.
If we apply the transformation Sk to the two sides of the above equation, we have

SkSiϕ(x) = Sfϕ(x) = Skψ(x).

Here f and Skψ(x) are bounded functions and clearly are also integrable. Hence we
can apply the procedures described in Section 2 to the equation

Sfϕ(x) = Skψ(x). (26)

To treat the most general case, let us suppose that Df is zero along with its minors
up to order n. We will use the notation of § 2.

Applying the pseudo-inverse transformation of Sf to both sides of equation (7), we
have

SgSfϕ(x) = SFϕ(x) + SgSkψ(x),
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or

ϕ(x) = SgSkψ(x) =
n∑
ν=1

ckΦν(x).

If there is a solution of the given equation, then one can determine the coefficients
in such a way that Siϕ(x) is equal to ψ(x).

18. Among the cases where this determination is possible, there is one that seems
to me to merit attention. It is the case where the equation

Siϕ(x) = 0

has only the solution
ϕ(x) = 0.

We obviously have
SiSf = SfSi.

Hence

SiΦλ(x) =
n∑
µ=1

pλµΦµ(x).

Since the functions Φµ are linearly independent and the equation

Siϕ(x) = 0

has only the solution φ(x) = 0, the determinant of the coefficients pλµ is nonzero.
Since the determinant of the pλµ is nonzero, the determinant of the qλµ is also

nonzero. It follows that the equation

Tiϕ(x) = 0

has only the solution ϕ(x) = 0 and we have

SkΦλ = 0,
TkΨλ = 0.

}
(λ = 1, . . . , n) (27)

Given all this, if we set
ϕ0(x) = SgSkψ(x),

we have
Sfϕ0(x) = SfSgSkψ(x) = SGSkψ(x)

= Skψ(x)−
n∑
ν=1

f(x, ην)
∫ 1

0
ψν(x)Skψ(x) dx.
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But ∫ 1

0
ψν(x)Skψ(x) dx =

∫ 1

0
ψ(x)Tkψν(x) dx = 0.

for all ν. Consequently,
Sfϕ0(x)− Skϕ(x) = 0,

or
Sk
(
Siϕ0(x)− ψ(x)

)
= 0.

From this we conclude that

Siϕ0(x) = ψ(x) +
n∑
ν=1

aνΦν(x),

where the aν are known quantities.
If we now set

ϕ(x) = ϕ0(x) +
n∑
ν=1

cνΦν(x),

we get

Siϕ(x) = ψ(x) +
n∑
ν=1

aνΦν(x) +
n∑
ν=1

n∑
λ=1

pλνcλΦν(x).

But because the determinant of the coefficients pλν is nonzero, we can obviously deter-
mine the cν so that

Siϕ(x) = ψ(x).

QED
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Let K(s, t) be a function of the real variables s and t. Let f(s) be a given function
of s and let ϕ(s) be taken as a function of s to be determined. Each of the variables s
and t range over the interval from a to b. Then

f(s) =
∫ b

a
K(s, t)ϕ(t) dt

is called an integral equation of the first kind and

f(s) = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt

is called an integral equation of the second kind. Here λ denotes a parameter. The
function K(s, t) is called the kernel of the integral equation.

Gauss was first led to a particular integral equation by boundary value problems
in potential theory. The term “integral equation” was first used by P. du Bois-
Raymond.1 The first method for solving the integral of the second kind was due
to C. Neumann.2 In his method the function ϕ(s) appears directly as infinite series
in powers of the parameter λ whose coefficients are certain functions of s defined by
multiple integrals. Fredholm3 found a different formula for the solution of the integral
equation of the second kind, in which he was able to represent ϕ(s) as a quotient, whose
numerator is an everywhere convergent power series in λ with certain coefficients that
depend on s, while its denominator turns out to be a power series in λ with numerical
coefficients. At my suggestion Kellogg4 produced a direct proof of the agreement of
the formulas of C. Neumann and Fredholm. In the special case of a certain boundary

1Bemerkungen über ∆z = 0. Journ. f. Math. Bd. 103 (1888).
2Ueber die Methode des arithmetische Mittels. Leipz. Abh. Bd. 13 (1887).
3Sur une classe d’équations fonctionnelles. Acta mathematica Bd. 27 (1903). Also the 1899 paper

cited there concerning the same topic.
4Zur Theorie der Integralgleichungen. Gött. Nachr. 1902.
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value problem in potential theory, Poincaré5 was the first to introduce the parameter
λ and was also the first to show that the solution must necessarily be in the form of of
the quotient of two everywhere convergent power series in λ. In a later paper in these
proceedings I will treat a third method for the solution of the integral equation of the
second kind that is at the same time also applicable to the integral equation of the first
kind. Volterra6 has obtained the solution of special integral equations. In certain
cases the integral equation of the first kind can be reduced to one of the second kind by
a method pointed out by me.7

A closer examination of the topic lead me to the realization that a systematic de-
velopment of a general theory of linear of linear integral equations is of the greatest
importance for analysis as a whole, in particular for the theory of the definite integral
and the theory of the expansion of arbitrary functions in infinite series and in addition
for the theory of linear differential equations as well as potential theory and the calculus
of variation. In a series of papers I intend to give a new treatment of the question of the
solution of integral equations, and above all to explore the interrelations and general
properties of their solutions. In this connection, I generally make an assumption that
is essential for my results — namely that the the kernel K(s, t) of the integral equa-
tion is a symmetric function of the variables s and t. In particular, in this first paper
I obtain formulas that yield the expansion of an arbitrary function in certain special
functions that I call eigenfunctions. This result subsumes as special cases the expansion
in trigonometric, Bessel, Kugel, Lamé and Sturm function, as well as the expansion in
those functions of several variables that Poincaré first established in his investigations
of certain boundary value problems of potential theory. My investigations will show
that the theory of the expansion of arbitrary functions by no means requires the intro-
duction of ordinary or partial differential equations; rather it is the integral equation
that constitutes the necessary basis and the natural starting point for a theory of ex-
pansion in series. The most remarkable result is that the expansion of a function by the
eigenfunctions belonging to a integral equation of the second kind turns out to depend
on the solvability of the corresponding integral equation of the first kind.

At the same time, the problem of the existence of eigenfunctions receives a new
and more nearly perfect solution. In the special case of the boundary value problems
of potential theory, H. Weber,8 as is well known, first tried to prove the existence
of eigenfunctions on the basis of the Dirichlet–Thomson minimum principle. Then
Poincaré actually produced the proof for this special problem by using a method

5Sur les équations de la physique mathématique. Rendiconti del circolo di Palermo t. 8 (1894). La
méthode de Neumann et le problème de Dirichlet. Acta mathematica Bd. 20 (1896–97).

6Sopra alcune questioni di inversione de integrali definite. Annali di matematica s. 2 t. 25 (1897)
7Cf. Kellogg, Zur Theorie der Integralgleichungen. Inaugural-Dissertation, Göttingen 1902, as

well as Math. Ann. Bd. 58
8Ueber die Integration der partiellen Differentialgleichung ∆u+ k2u = 0. Math. Ann. Bd. 1 (1868).
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developed by H. A. Schwartz. Not only does the existence of eigenfunctions in the
most general case follows from an application of my theorems, but at the same time my
theory also gives in simple terms necessary and sufficient conditions for the existence
of infinitely many eigenfunctions. This result is basically predicated on the fact that I
do not, as has previously been done, proceed from an initial proof of the existence of
eigenvalues. On the contrary, I first establish a general expansion theorem (pp. 74–75),
and from this I can easily derive the conditions for the existence of eigenvalues and
eigenfunctions.

The strategy that I use in this first paper is the following. I start with an algebraic
problem, namely the problem of the orthogonal transformation a quadratic form in n
variables into a sum of squares. Then by a rigorous process of passing to the limit for
n = ∞, I arrive at the solution of the transcendental problem that was to be treated.9

The basic idea has been used by many others as a heuristic expedient, in particular by
Lord Rayleigh.10 I have turned it into a rigorous principle.

For the sake of greater intelligibility and a shorter presentation in this communica-
tion, I have confined myself strictly to the case of an integral equation with a simple
integral. However, the strategy and results are also valid when the simple integral in
the integral equation given above is replaced by a double or multiple integral, so that
K denotes a symmetric function of two sequences of variables.

I.

Solution of the Algebraic Problem

Let K(s, t), f(s), and ϕ(s) have the meaning given at the beginning of this paper.
For simplicity, however, we take to interval of the variables s and t to be the interval
from 0 to 1. In addition, let K(s, t) be a symmetric function of s and t. Furthermore, by
n we will understand a fixed positive integer and introduce the following abbreviations.

Kpq = K
( p
n
,
q

n

)
(p, q = 1, 2, . . . , n)

Kxy = K11x1y1 +K12x1y2 +K21x2y1 + · · ·+Knnxnyn

=
∑
p,q

Kpqxpyq, (Kpq = Kqp),

ϕp = ϕ
( p
n

)
, fp = f

( p
n

)
, (p = 1, 2, . . . , n),

9I have presented the basic idea of this strategy repeatedly in my seminar and in lectures during
W.-S. 1900–1901.

10Cf. Rayleigh, The Theory of Sound, 2. ed. London 1894–1986 and Pockels-Klein, Ueber die
partielle Differentialgleichung ∆u+K2u = 0 und deren Auftreten in der mathematischen Physik. Leipzig
1891.
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Kx1 = K11x1 +K12x2 + · · ·+K1nxn,
Kx2 = K21x1 +K22x2 + · · ·+K2nxn,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kxn = Kn1x1 +Kn2x2 + · · ·+Knnxn,

[x, y] = x1y1 + x2y2 + · · ·+ xnyn.

It is obvious that
Kxy = [Kx, y] = [Ky, x].

We will now introduce our algebraic problem: Determine the values of ϕ1, ϕ2, . . . , ϕn
from the n linear equations

f1 = ϕ1 − `(K11ϕ1 + · · ·+K1nϕn),
f2 = ϕ2 − `(K21ϕ1 + · · ·+K2nϕn),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fn = ϕn − `(Kn1ϕ1 + · · ·+K1nϕn),

(1)

or more succinctly from the equations

f1 = ϕ1 − `Kϕ1,
. . . . . . . . . . . . . .

fn = ϕn − `Kϕn.
(2)

Here the values fp and the coefficients Kpq are given, and likewise ` is to be taken as a
parameter with a known value. We will consider the properties of the solution together
with the connection with the problem of the orthogonal transformation of the quadratic
form Kxx .

In order to solve this algebraic problem we will use the determinants

d(`) =

∣∣∣∣∣∣∣∣
1− `K11 −`K12 · · · −`K1n

−`K21 1− `K22 · · · −`K2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−`Kn1 −`Kn2 · · · 1− `Knn

∣∣∣∣∣∣∣∣
and

D

(
`,
x

y

)
=

∣∣∣∣∣∣∣∣∣∣
0 x1 x2 · · · xn
y1 1− `K11 −`K12 · · · −`K1n

y2 −`K21 1− `K22 · · · −`K2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yn −`Kn1 −`Kn2 · · · 1− `Knn

∣∣∣∣∣∣∣∣∣∣
.

The first of these determinants is the discriminant of the quadratic form

[x, x]− `Kxx.
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If we denote byD
(
`,

x

Ky

)
the determinant that results from replacing every occurrence

of yp in D
(
`, xy

)
by

Kyp = Kp1y1 +Kp2y2 + · · ·+Kpnyn,

then we have the easily following easily verified identity in x, y, and `:

d(`)[x, y] +D

(
`,
x

y

)
− `D

(
`,

x

Ky

)
= 0. (3)

Our problem now consists of determining the n unknowns ϕ1, ϕ2, . . . , ϕn from the
equations (1) or (2); that is, to find a linear form

[ϕ, y] = ϕ1y1 + ϕ2y2 + · · ·+ ϕnyn

that satisfies the equation
[f, y] = [ϕ, y]− `[Kϕ, y]

identically in y. Since from
Kpq = Kqp

it necessarily follows that
[Kϕ, y] = [ϕ,Ky],

the equation to be satisfied is equivalent to the equation

[f, y] = [ϕ, y]− `[ϕ,Ky].

It is immediately clear from (3) that this equation is solved by the formula

[ϕ, y] = −
D
(
`, fy

)
d(`)

. (4)

Thus if ` has the property that d(`) 6= 0, the coefficients of the linear form (4) are the
values of the unknowns ϕ1, ϕ2, . . . , ϕn that we have been seeking.

It is well known that the roots of the equation

d(`) = 0

are all real. We denote them by

`(1), `(2), . . . , `(n)
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and assume that they are distinct from one another.
If we denote by d11(`), . . . , dnn(`) the minors of d(`) with respect to its n diagonal

elements and if d′(`) is the derivative of d(`) with respect to `, then the equation

d11(`) + · · ·+ dnn(`) = nd(`)− `d′(`)

holds identically in `. Hence for ` = `(h) it follows that

d11(`(h)) + · · ·+ dnn(`(h)) = −`(h)d′(`(h)). (5)

According to our assumptions d′(`(h)) cannot be zero. Hence the minors on the left-hand
side certainly cannot all be zero; that is, the homogeneous equations

ϕ1 − `Kϕ1 = 0
. . . . . . . . . . . . . .
ϕn − `Kϕn = 0

(6)

for ` = `(h) has a certain solution system

ϕ1 = ϕ
(h)
1 , . . . , ϕn = ϕ(h)

n

that is uniquely determined up to a common factor of these n quantities. By (3) the
coefficients of y1, . . . , yn in the expression

D

(
`(h),

x

y

)
must be solutions of the homogeneous equations (6) that are independent of x. Hence
we have the proposition

D

(
`(h),

x

y

)
= [ψ(h), x][ϕ(h), y],

where the first factor in the right-hand side represents a linear form in x1, . . . , xn. From
this and the symmetry of the expression on the left-hand side, it follows on exchanging
x and y that

D

(
`(h),

x

y

)
= C[ϕ(h), x][ϕ(h), y],

where C is a constant that is independent of x and y. If we choose the the common
factor mentioned above suitably, we get

D

(
`(h),

x

y

)
= ±[ϕ(h), x][ϕ(h), y]. (7)
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From this equation, by comparing coefficients of the products

x1y1, . . . , xnyn

on both sides, we get the special formula

d11(`(h)) + · · ·+ dnn(`(h)) = ∓[ϕ(h), ϕ(h)]. (8)

Hence from (5)

[ϕ(h), ϕ(h)] = ±`(h)d′(`(h)), (h = 1, 2, . . . , n), (9)

and thence from (7)

D
(
`(h), xy

)
`(h)d′(`(h))

=
[ϕ(h), x][ϕ(h), y]

[ϕ(h), ϕ(h)]
, (h = 1, 2, . . . , n). (10)

Equation (9) shows that one must take the top or bottom sign in (7) and (8) according
as `(h)d′(`(h)) turns out to be positive or negative. We can write the equations (6) as
an identity in x as follows:

[ϕ(h), x] = `(h)[ϕ(h),Kx]. (11)

Since for unequal indices `(h) and `(k) are different, we obtain from (11) the relation

[ϕ(h), ϕ(k)] = 0, (h 6= k).

Finally, to obtain the connection with the theory of the orthogonal transformation
of a quadratic form, we start with the expression

D
(
`, xy

)
d(`)

.

Since the numerator is a function of degree n− 1 in ` and the numerator is of degree n,
from the rule for expansion in partial fractions and the use of (10) we get the formula

D
(
`, xy

)
d(`)

=
D
(
`(1), xy

)
d′(`(1))

1
`− `(1)

+ · · ·+
D
(
`(n), xy

)
d′(`(n))

1
`− `(n)

=
[ϕ(1), x][ϕ(1), y]

[ϕ(1), ϕ(1)]
`(1)

`− `(1)
+ · · ·+ [ϕ(n), x][ϕ(n), y]

[ϕ(n), ϕ(n)]
`(n)

`− `(n)
,
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which is satisfied identically in x, y, and `. For ` = 0, this formula becomes

[x, y] =
D
(
`(1), xy

)
`(1)d′(`(1))

+ · · ·+
D
(
`(n), xy

)
`(n)d′(`(n))

(12)

=
[ϕ(1), x][ϕ(1), y]

[ϕ(1), ϕ(1)]
+ · · ·+ [ϕ(n), x][ϕ(n), y]

[ϕ(n), ϕ(n)]
. (13)

If we replace y by the linear combination Ky, in view of (11) we get

Kxy = [Kx, y] = [x,Ky] =
D
(
`(1), xy

)
(`(1))2d′(`(1))

+ · · ·+
D
(
`(n), xy

)
(`(n))2d′(`(n))

(14)

=
[ϕ(1), x][ϕ(1), y]
`(1)[ϕ(1), ϕ(1)]

+ · · ·+ [ϕ(n), x][ϕ(n), y]
`(n)[ϕ(n), ϕ(n)]

. (15)

In addition, we append the particular formulas that result from the last two sets of
formulas by setting y equal to x:

[x, x] =
D
(
`(1), xx

)
`(1)d′(`(1))

+ · · ·+
D
(
`(n), xx

)
`(n)d′(`(n))

(16)

=
[ϕ(1), x]2

[ϕ(1), ϕ(1)]
+ · · ·+ [ϕ(n), x]2

[ϕ(n), ϕ(n)]
.

Kxx =
D
(
`(1), xx

)
(`(1))2d′(`(1))

+ · · ·+
D
(
`(n), xx

)
(`(n))2d′(`(n))

(17)

=
[ϕ(1), x]2

`(1)[ϕ(1), ϕ(1)]
+ · · ·+ [ϕ(n), x]2

`(n)[ϕ(n), ϕ(n)]
.

II.

Solution of the Transcendental Problem

Recalling the significance of the quantities Kpq, which were constructed from the
function K(s, t) at the beginning of Section I, we now assume that K(s, t) is a symmetric
continuous function of the variables s and t in the interval of interest, namely [0, 1]. Our
strategy requires the rigorous passage to the limit n = ∞. The transcendental problem
of solving the integral equation of the second kind

f(s) = ϕ(s)− λ

∫ 1

0
K(s, t) dt
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corresponds to the preliminary algebraic problem that we solved in Section I. In this
Section II we essentially confine ourselves to using our strategy to derive the formulas
required to solve the integral equation, formulas that were first given by Fredholm.

If we expand d(`) in powers of ` as follows

d(`) = 1− d1`+ d2`
2 − · · · ± dn`

n

and let h stand for any the indices 1, 2, . . . , n, then we have

dh =
∑

(p1,p2,...,ph)

∣∣∣∣∣∣∣∣
Kp1p1 Kp1p2 · · · Kp1ph

Kp2p1 Kp2p2 · · · Kp2ph

. . . . . . . . . . . . . . . . . . . .
Kphp1 Kphp2 · · · Kphph

∣∣∣∣∣∣∣∣ ,
(

p1 < p2 < p3 < · · · < ph

p1, p2, · · · , ph = 1, 2, . . . , n

)
.

The sum on the right-hand side consists of
(
n
h

)
determinants. According to a well-

known theorem11 the absolute value of any of these determinants cannot exceed the
bound

√
hhKh, where K denotes the maximum of the absolute values of the function

values K(s, t). From this we find that

|dh| ≤
(
n

h

)√
hhKh ≤

√
hh

h!
(nK)h ≤

(
neK√
h

)h
.

In other words,
|dh|
nh

≤
(
eK√
h

)h
. (18)

On the other hand, we can easily show that if h is fixed, in the limit as n increases
without bound

lim
n=∞

dh
nh

= δh, (19)

where δh stands for the multiple integral

δh =
1
h!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣
K(s1, s1) K(s1, s2) · · · K(s1, sh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K(sh, s1) K(sh, s2) · · · K(sh, sh)

∣∣∣∣∣∣ ds1 · · · dsh.
From (18) and (19) it follows that

|δh| ≤
(
eK√
h

)h
. (20)

11Hadamard, Bulletin des sciences mathématiques (2) XVII (1893).
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We now introduce the power series first given by Fredholm

δ(λ) = 1− δ1λ+ δ2λ
2 − δ3λ

3 + · · · ,

which because of (20) is everywhere convergent. We can now establish the following
lemma.

Lemma 1. As n increases without bound, the expression d
(
λ

n

)
converges to δ(λ),

and the convergence is uniform for all values of λ whose absolute value lies below

an arbitrarily chosen positive bound Λ. In the same sense, the expression
1
n
d′
(
λ

n

)
converges to δ′(λ).

To prove this lemma, we will suppose, on the contrary, that there exists a positive
quantity ε such that for infinitely many integers n and corresponding values λ with
absolute value not greater than Λ we have∣∣∣∣d( 1

n

)
− δ(λ)

∣∣∣∣ > ε.

We now choose an integer m so large that the following conditions are satisfied. For all
λ whose absolute value is not greater than Λ,

|δm+1λ
m+1 − δm+2λ

m+2 + · · · | ≤ ε

3
. (21)

Further, the inequalities
m > (2eKΛ)2 (22)

and
1

2m
<
ε

3
(23)

are to be satisfied. Then in view of (18) and (22) for each n we surely have

d

(
1
n

)
= 1− d1

n
λ+ · · · ± dm

nm
λm ∓ dm+1

nm+1
λm+1 ± · · · ± dn

nn
λn

= 1− d1

n
λ+ · · · ± dm

nm
λm ± ϑ

2m
(0 ≤ ϑ ≤ 1).

By (23) ∣∣∣∣d( 1
n

)
−
(

1− d1

n
λ+ · · · ± dm

nm
λm
)∣∣∣∣ < ε

3
. (24)

The integer m having been determined in this way, we choose the integer n so large that∣∣∣∣(1− d1

n
λ+ · · · ± dm

nm
λm
)
−
(
1− δ1λ+ δ2λ

2 − · · · ± δmλ
m
)∣∣∣∣ < ε

3
. (25)
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Because of equation (19) such a choice of n is always possible. The inequalities (21),

(24), and (25) now show that the absolute value of the difference between d

(
λ

n

)
and

δ(λ) must be less than ε. This result contradicts our assumption, and hence Lemma 1
is proved.

In order to discover how the passage to the limiting transcendental problem works
out for the determinants D

(
`, xy

)
, we will take x(s) and y(s) to be two arbitrary

continuous functions of the variable s in the interval 0 to 1 and substitute

xp = x
( p
n

)
, yp = y

( p
n

)
into into the determinants D

(
`, xy

)
. We then expand these determinants in powers of

` as follows:

D

(
`,
x

y

)
= D1

(
x

y

)
−D2

(
x

y

)
`+D3

(
x

y

)
`2 − · · · ±Dn−1

(
x

y

)
`n−1.

It is easily seen that in the limit with infinitely increasing n and fixed h

lim
n=∞

Dh

(
x
y

)
nh

= ∆h

(
x

y

)
where ∆h

(
x
y

)
denotes the multiple integral

∆h

(
x

y

)
=

1
h!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣∣∣
0 x(s1) x(s2) · · · x(sh)

y(s1) K(s1, s1) K(s1, s2) · · · K(s1, sh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y(sh) K(sh, s1) K(sh, s2) · · · K(sh, sh)

∣∣∣∣∣∣∣∣ , ds1 · · · dsh
If we now introduce the everywhere convergent power series

∆
(
λ,

x

y

)
= ∆1

(
x

y

)
−∆2

(
x

y

)
λ+ ∆3

(
x

y

)
λ2 − · · · ,

we get the following lemma by a proof analogous to the previous one.

Lemma 2. As n increases without bound the expression
1
n
D

(
λ

n
, xy

)
converges to

∆
(
λ, xy

)
. Moreover, this convergence is uniform for all λ whose absolute value lies

below an arbitrarily chosen bound Λ.

Thus it is seen that ∆
(
λ, xy

)
is a power series in λ whose coefficients depend on

the arbitrary functions x(s) and y(s).
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We now proceed to determine the limit in the formula (3) for n = ∞.
Bearing in mind that according to the abbreviations introduced at the beginning

Kyp is

Kyp = Kp1y1 +Kp2y2 + · · ·+Kpnyn

= K

(
p

n
,
1
n

)
y

(
1
n

)
+K

(
p

n
,
2
n

)
y

(
2
n

)
+ · · ·+K

(
p

n
,
n

n

)
y

(
n

n

)
,

we obtain the following formula by the same method that led to Lemmas 1 and 2:

lim
n=∞

λ

n2
D

(
λ

n
,
x

Ky

)
= lim

n=∞

λ

n
D

λ
n
,

x
1
n
Ky


= λ

{
∆
(
λ,

x

ȳ

)}
ȳ(s)=

R 1
0 K(s,t)y(t) dt

= λ

∫ 1

0

{
∆
(
λ,

x

ȳ

)}
ȳ(s)=K(s,t)

· y(t) dt.

Therefore if in formula (3) we set ` =
λ

n
and divide the formula by n, then the limit as

n grows without bound becomes

δ(λ)
∫ 1

0
x(s)y(s) ds+ ∆

(
λ,

x

y

)
− λ

∫ 1

0

{
∆
(
λ,

x

ȳ

)}
ȳ(s)=K(s,t)

· y(t) dt = 0. (26)

This formula is an identity in λ and holds whenever x(s) and y(s) are continuous
functions of their arguments.

If in (26) we set
x(r) = K(r, s) and y(r) = K(r, t)

and introduce the abbreviation

∆(λ; s, t) = λ

{
∆
(
λ,

x

y

)}
x(r)=K(r,s)
y(r)=K(r,t)

− δ(λ)K(s, t), (27)

then (26) becomes

δ(λ)K(s, t) + ∆(λ; s, t)− λ

∫ 1

0
∆(λ; s, r)K(t, r) dr = 0. (28)

Finally, setting

K(s, t) = −∆(λ; s, t)
δ(λ)

,
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we get

K(s, t) = K(s, t)− λ

∫ 1

0
K(s, r)K(t, r) dr. (29)

In the above equations, ∆(λ; s, t) and K(s, t) are symmetric functions of the real
variables s and t, and in addition, they contain the parameter λ. The formulas (28) and
(29) hold identically in s, t, and λ.

The function K(s, t) is called the solution function for the kernel K(s, t).∗ Specifi-
cally, by means of it the original integral equation of the second kind,

f(s) = ϕ(s)− λ

∫ 1

0
K(s, t)ϕ(t) dt

can be solved as follows:

ϕ(s) = f(s) + λ

∫ 1

0
K(s, t)f(t) dt.

We can see this immediately by substituting the right-hand side of the last formula into
the previous integral equation. At the same time we see that the solution of the integral
equation of the second kind is unique for any λ that is not a zero of δ(λ).

From the above material, we obtain the following power series for ∆(λ; s, t):

∆(λ; s, t) = −K(s, t) + ∆1(s, t)λ−∆2(s, t)λ2 +− · · · ,

where

∆h(s, t) =
1
h!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣∣∣
K(s, t) K(s, s1) · · · K(s, sh)
K(s1, t) K(s1, s1) · · · K(s1, sh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K(sh, t) K(sh, s1) · · · K(sh, sh)

∣∣∣∣∣∣∣∣ ds1 · · · dsh.
The identity in λ

δ′(λ) =
∫ 1

0
δ(λ; s, s) ds (30)

follows easily from this formula.
The formulas obtained in this way are none other than the formulas of Fredholm,

which we have already mentioned several times.

III.

The Transcendental Problem that Corresponds to the Transformation of a
Quadratic Form into a Sum of Squares.

∗Hilbert’s solution function is also called the resolvent function. It was first introduced, but not
explicitly named, by Fredholm.
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Our most important task consists of transferring the algebraic inquiry of Section 1
concerning the orthogonal transformation of the quadratic form Kxx into the transcen-
dental domain by carrying out the passage to the limit for n = ∞.

To this end we first will prove the following propositions about the zeros of δ(λ).
Proposition 1. The function δ(λ) has no complex zeros.
For the proof we will assume on the contrary that we have such a zero at hand,

and we will construct a circle around it in the complex λ-plane, whose periphery and
interior contain no other zeros of δ(λ) and moreover such that δ′(λ) is not zero on its

periphery.∗ By Lemma 1, d
(
λ

n

)
converges uniformly to δ(n) for infinitely increasing

n and
1
n
d′
(
λ

n

)
converges to δ′(λ). Hence for sufficiently large values of n the quotient

d

(
λ

n

)
1
n
d′
(
λ

n

) differs from
δ(λ)
δ′(λ)

by an arbitrarily small quantity on the entire periphery of

the circle. But then the difference of the integrals

∫ d

(
λ

n

)
1
n
d′
(
λ

n

) dλ and
∫

δ(λ)
δ′(λ)

dλ

taken over the periphery of the circle would lie arbitrarily near zero. But this is impos-

sible. For the first integral has the value zero, since the zeros of d
(
λ

n

)
are all real, and

on the other hand, the second integral will be equal to the integer that is the multiplicity
of the of the zero of δ(λ) at the center of the circle.

In a similar manner because of the uniform convergence stated in Lemma 1, we have
the following fact.

Proposition 2. Suppose that the n roots of the equations d(`) = 0

`(1), . . . , `(n)

are ordered by their absolute values in such a way that when equal roots of opposite signs
occur the positive ones come first and, moreover, multiple roots appear as often as their
multiplicities require. Let the zeros of δ(λ), such as there may be, be ordered likewise.
Then

lim
n=∞

n`(1) = λ(1), lim
n=∞

n`(2) = λ(2), lim
n=∞

n`(3) = λ(3) . . . .

∗As the proof below shows, the circle must not intersect the real axis.
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There is no way to conclude from Proposition 2 that that zeros of δ(λ) exist. For it
may well happen that as n increases without bound, the absolute value of n`(1) grows
beyond any specific bound.

We now introduce the following terminology: The zeros of δ(λ) will be called eigen-
values belonging to the kernel K(s, t).

Previously we have understood K(s, t) to be a symmetric function of the real vari-
ables s and t. Throughout this third section we now make the assumption that function
δ(λ) belonging to K(s, t) has no multiple roots, so that for any root of the equation
δ(λ) = 0 it must happen that δ′(λ) is different from zero.

We must further note that the transformation theory, developed toward the end of
Section I, of the quadratic form

Kxx =
∑
p,q

K
( p
n
,
q

n

)
xpxq, (p, q = 1, 2, . . . , n)

presupposed that the determinants formed from K(s, t) had no multiple zeros. Now if
for any value of n the determinant d(`) belonging to K(s, t) should have a multiple zero,
we can proceed as follows. For each such value of n we imagine that K(s, t) is replaced
by a modified function K̄(s, t), so that the zeros of the determinant d̄(`) constructed
correspondingly from K̄(s, t) are all simple. Moreover, the difference between the values
of the modified function K̄(s, t) and the values of the original kernel are to be so small
that for all values of the variables s and t, for all indices h (= 1, 2, . . . , n), and for all
pairs of continuous functions x(s) and y(s), the following inequalities are satisfied:

|K(s, t)− K̄(s, t)| < 1
n
,

|dh − d̄h| < 1,

|`(h) − ¯̀(h)| < 1
n2
, (h = 1, 2, . . . , n)∣∣∣∣Dh

(
x

y

)
− D̄h

(
x

y

)∣∣∣∣ < M(x) ·M(y).

Here d̄h and D̄h

(
x
y

)
denote the coefficients of the determinants d̄(`) and D̄

(
`, xy

)
con-

structed from K̄(x, t). Moreover, ¯̀(h) denotes the corresponding zeros of d̄(`), and M(x)
and M(y) are the maxima of the absolute values of the functions x(s) and y(s). Clearly,
as n increases without bound the expressions

K̄(s, t), d̄

(
λ

n

)
,

1
n
D̄

(
λ

n
,
x

y

)
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approach the limits

K(s, t), δ(λ), ∆
(
λ,

x

y

)
,

i.e., the same limits as the expressions constructed by means of the unmodified kernel.
We are therefore in the position to use the the theory of the quadratic form Kxx for
whose validity the absence of multiple zeros on d(`) was a necessary condition. In
problematical cases we must work with the modified expressions, but to keep the big
picture in view during the following exposition we will use the original expressions
without the bars.

Let λ(h) denote the hth zero of δ(λ) with respect to the ordering defined on page 68.
From (26) it follows that

∆
(
λ(h),

x

y

)
= λ(h)

∫ 1

0

{
∆
(
λ(h),

x

ȳ

)}
ȳ(r)=K(r,t)

y(t) dt, (31)

and because of the symmetry of the expression δ
(
λ, xy

)
with respect to x(s) and y(s)

we also have

∆
(
λ(h),

x

y

)
= λ(h)

∫ 1

0

{
∆
(
λ(h),

x̄

y

)}
x̄(r)=K(r,s)

x(s) ds.

If we set y(r) = K(r, t), we get{
∆
(
λ(h),

x

y

)}
y(r)=K(r,t)

= λ(h)

∫ 1

0

{
∆
(
λ(h),

x̄

y

)}
x̄(r)=K(r,s)
y(r)=K(r,t)

x(s) ds.

In view of (27) {
∆
(
λ(h),

x

ȳ

)}
y(r)=K(r,t)

=
∫ 1

0
∆(λ(h); s, t)x(s) ds. (32)

From (31) and (32) we obtain

∆
(
λ(h),

x

y

)
= λ(h)

∫ 1

0

∫ 1

0
∆(λ(h); s, t)x(s)y(t) ds dt. (33)

At the same time, if we substitute x(r) = K(r, s) in (32) and recall (27), we get

∆(λ(h); s, t) = λ(h)

∫ 1

0
∆(λ(h); r, t)K(r, s) dr. (34)



Hilbert 71

From now on let `(h) denote the hth zero of d(`) with respect to the ordering defined
above. Because of the formula (7) we have generally

D

(
`(h),

x

y

)
D

(
`(h),

x∗

y∗

)
= D

(
`(h),

x

x∗

)
D

(
`(h),

y

y∗

)
,

and from this it follows that in the limit for infinitely increasing n

∆
(
λ(h),

x

y

)
∆
(
λ(h),

x∗

y∗

)
= ∆

(
λ(h),

x

x∗

)
∆
(
λ(h),

y

y∗

)
,

provided that x∗ and y∗, like x and y, represent continuous functions of their arguments.
In view of (27), it follows that

∆(λ(h); s, t)∆(λ(h); s∗, t∗) = ∆(λ(h); s, s∗)∆(λ(h); t, t∗). (35)

Because of (30) ∫ 1

0
∆(λ(h); s, s) ds = δ′(λ). (36)

From our assumption that the zeros of δ(λ) are simple, it follows that δ′(λ(h)) is different
from zero, and hence ∆(λ(h); s, s) is not identically zero for all values of s. Let s∗ be a
particular value for which ∆(λ(h); s∗, s∗) is nonzero. We now set

ϕ(h)(s) =

∣∣∣∣∣
√

λ(h)

∆(λ(h); s∗, s∗)

∣∣∣∣∣ ∆(λ(h); s, s∗), (37)

This defines ϕ(h)(s) as a continuous function of the variable s. It will be called the
eigenfunction corresponding to eigenvalue λ(h). On replacing t∗ with s∗ we obtain from
(35) and (37) the equation

λ(h)∆(λ(h); s, t) = ±ϕ(h)(s)ϕ(h)(t). (38)

With the help of (36) it follows that∫ 1

0
(ϕ(h)(s))2 ds = ±λ(h)δ′(λ(h)).

Hence we see that the sign in the last two equations is plus or minus depending on
whether λ(h)δ′(λ(h)) is positive or negative.

In view of (33), we can derive the following formulas:

∆
(
λ(h),

x

y

)
= ±

∫ 1

0
ϕ(h)(s)x(s) ds ·

∫ 1

0
ϕ(h)(s)y(s) ds
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and

∆
(
λ(h),

x

y

)
λ(h)δ′(λ(h))

=

∫ 1

0
ϕ(h)(s)x(s) ds ·

∫ 1

0
ϕ(h)(s)y(s) ds∫ 1

0
(ϕ(h)(s))2 ds

.

Finally, formula (34) combined with (38) gives, after cancellation of the factor ϕ(h)(t),

ϕ(h)(s) = λ(h)

∫ 1

0
K(s, t)ϕ(h)(t) dt.

From this we immediately derive the equation∫ 1

0
ϕ(k)(s)ϕ(h)(s) ds = 0 (h 6= k),

where ϕ(k)(s) denotes the eigenfunction belonging to a different eigenvalue λ(k).
For the sake of brevity it is often preferable to use the functions

ψ(h)(s) =
ϕ(h)(s)∣∣∣√(ϕ(h)(s))2 ds

∣∣∣
instead of the eigenfunctions ϕ(h)(s). These functions may be called normalized eigen-
functions, or, when there appears to be no chance of misunderstanding, simply eigen-
functions. They satisfy the equations

∆
(
λ(h),

x

y

)
λ(h)δ′(λ(h))

=
∫ 1

0
ψ(h)(s)x(s) ds ·

∫ 1

0
ψ(h)(s)y(s) ds (39)∫ 1

0
(ψ(h)(s))2 ds = 1,∫ 1

0
ψ(h)(s)ψ(k)(s) ds = 0 (h 6= k),

ψ(h)(s) = λ(h)

∫ 1

0
K(s, t)ψ(h)(t) dt. (40)

We have now finished the preliminaries needed to treat the question of what we
obtain from the algebraic problem of the orthogonal transformation of a quadratic form
by passage to the limit as n increases without bound.
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At the end of Section I we obtained the formulas

[x, x] =
D
(
`(1), xx

)
`(1)d′(`(1))

+
D
(
`(2), xx

)
`(2)d′(`(2))

+ · · ·+
D
(
`(n), xx

)
`(h)d′(`(h))

D
(
`(h), xx

)
`(h)d′(`(h))

=
[ϕ(h), x]2

[ϕ(h), ϕ(h)]
, (h = 1, 2, . . . , n).

The last formula shows that every term in the sum on the right-hand side of the ex-
pression for [x, x] is positive. Hence, when m is any integer less than n, we have the
inequality

D
(
`(m+1), xx

)
`(m+1)d′(`(m+1))

+
D
(
`(m+2), xx

)
`(m+2)d′(`(m+2))

+ · · ·+
D
(
`(n), xx

)
`(n)d′(`(n))

≤ [x, x]. (41)

Because
|[ϕ(h), x][ϕ(h), y]| ≤ 1

2
([ϕ(h), x]2 + [ϕ(h), y]2)

we necessarily have

D
(
`(h), xy

)
`(h)d′(`(h))

≤ 1
2

D
(
`(h), xx

)
`(h)d′(`(h))

+
D
(
`(h), yy

)
`(h)d′(`(h))

 .

Hence it follows from (41) that∣∣∣∣∣∣
D
(
`(m+1), xy

)
`(m+1)d′(`(m+1))

∣∣∣∣∣∣+
∣∣∣∣∣∣
D
(
`(m+2), xy

)
`(m+2)d′(`(m+2))

∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣
D
(
`(n), xy

)
`(n)d′(`(n))

∣∣∣∣∣∣ ≤ 1
2
([x, x] + [y, y]),

and further that the absolute value of the sum of the last n−m terms in the right-hand
side of the formula (14) is not greater than

1
2|`(m+1)|

([x, x] + [y, y]).

Therefore, in view of (14) we also have∣∣∣∣∣∣Kxy −
D
(
`(1), xy

)
(`(1))2d′(`(1))

+
D
(
`(2), xy

)
(`(2))2d′(`(2))

+ · · ·+
D
(
`(m), xy

)
(`(m))2d′(`(m))

∣∣∣∣∣∣
≤ 1

2|`(m+1)|
([x, x] + [y, y]).

(42)
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As we have already done earlier, we wish to insert

Kpq = K
( p
n
,
q

n

)
xp = x

( p
n

)
, yp = y

( p
n

)
,

into the above formula and then take the limit for n = ∞ after dividing by n with m
held constant. Let us recall the following limits:

lim
n=∞

1
n2
Kxy = lim

n=∞

1
n2
K
( p
n
,
q

n

)
xpyp

=
∫ 1
0

∫ 1
0 K(s, t)x(s)y(t) ds dt,

lim
n=∞

n`(h) = λ(h),

lim
n=∞

[x, x]
n

=
∫ 1
0 (x(s))2 ds, lim

n=∞

[y, y]
n

=
∫ 1
0 (y(s))2 ds

and also note that the by Lemmas 1 and 2 the expressions
1
n
D

(
λ

n
,
x

y

)
and

1
n
d′
(
λ

n

)
converge uniformly to ∆

(
λ, xy

)
and δ′(λ) for all λ less than a fixed bound. Then the

inequality (42) in the limit becomes.∣∣∣∣∣∣∫ 1
0

∫ 1
0 K(s, t)x(s)y(s) ds dt−

∆
(
λ(1), xy

)
(λ(1))2δ′(λ(1))

−
∆
(
λ(2), xy

)
δ′(λ(2))2δ′(λ(2))

− · · ·

−
∆
(
λ(m), xy

)
δ′(λ(m))2δ′(λ(m))

∣∣∣∣∣∣ ≤ 1
2λ(m+1)

(∫ 1
0 (x(s))2 ds+

∫ 1
0 (y(s))2 ds

)
.

(43)

We now use the fact that if there are infinitely many of the eigenvalues λ(m) then
their absolute values increase unboundedly with increasing m. Hence with the help of
(39) we obtain the following theorem, in which we have replaced the limits of integration
0, 1 with the more general limits a, b.

Theorem. Let the kernel K(s, t) of then integral equation of the second kind

f(s) = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt

be a symmetric continuous function of s and t. Moreover, let λ(h) be the the eigenvalues
of K(s, t) and ψ(h) be the corresponding normalized eigenfunctions. Finally, let x(s)
and y(s) be any continuous functions of s. Then we have the expansion∫ b

a

∫ b
a K(s, t)x(s)y(t) ds dt =

1
λ(1)

∫ b
a ψ

(1)(s)x(s) ds ·
∫ b
a ψ

(1)(s)y(s) ds

+
1
λ(2)

∫ b
a ψ

(2)(s)x(s) ds ·
∫ b
a ψ

(2)(s)y(s) ds+ · · · ,
(44)
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in which the right-hand side converges absolutely and uniformly for all functions x(s)
and y(s) for which the integrals∫ b

a
(x(s))2 ds,

∫ b

a
(y(s))2 ds

remain below a fixed, finite bound.

For x(s) = y(s), this is the theorem that corresponds to the algebraic theorem,
mentioned in I, concerning the transformation of a quadratic form into the sum of
squares of linear forms.

The following are some immediate consequences of this theorem.
The same eigenvalues λ(h) and eigenfunctions ψ(h)(s) cannot belong to another kernel

that is different from K(s, t). On the contrary, the λ(h) and ψ(h) in their entirety
completely determine the kernel K(s, t).

If we replace y(t) in the formula of the theorem by the integral
∫ b
a K(r, t)y(r) dr then

in view of (40) we get the following formula:

∫ b
a

∫ b
a KK(s, t)x(s)y(s) ds dt =

1
(λ(1))2

∫ b
a ψ

(1)(s)x(s) ds ·
∫ b
a ψ

(1)(s)y(s) ds

+
1

(λ(2))2
∫ b
a ψ

(2)(s)x(s) ds ·
∫ b
a ψ

(2)(s)y(s) ds+ · · · ,

where for short we have written

KK(s, t) =
∫ b

a
K(s, r)K(t, r) dr.

This function KK(s, t) may be called the the twofold combination of K(s, t). From (44)
we see that the twofold combination of K(s, t) has the same eigenfunctions as K(s, t),
while the eigenvalues are the squares of the eigenvalues of K(s, t).

This is also a suitable place for a generalization of the formula (29). We will use
the notation K(λ; s, t) to express the dependence of the solution function K(s, t) on the
parameter λ and set

F (s, t) = K(λ; s, t)− K(µ; s, t) + (µ− λ)
∫ b

a
K(λ; r, s)K(µ; r, t) dr

as a temporary abbreviation. Then by repeated application of (29) we get the identity

F (s, t)− λ

∫ b

a
F (r, s)K(r, t) dr = 0.
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It follows from a remark at the conclusion of II that F (s, t) vanishes for any value of λ
that is different from the eigenvalues λ(h). Hence F (s, t) is of necessity identically zero
for all arguments λ, µ, s, and t; i.e., the general formula

K(λ; s, t)− K(µ; s, t) = (λ− µ)
∫ b

a
K(λ; r, s)K(µ; r, t) dr. (45)

is valid.
We can also write this formula in the form

K(µ; s, t) = K(λ+ µ; s, t)− λ

∫ b

a
K(λ+ µ; r, s)K(µ; r, t) dr. (46)

Hence it follows that if take K(µ; s, t) as the kernel of an integral equation of the second
kind, the corresponding solution function is necessarily K(λ+µ; s, t). At the same time
we find that ∫ b

a
ψ(h)(t)K(λ; s, t) dt =

ψ(h)(s)
λ(h) − λ

.

From this we see that the same eigenfunctions that belong to the the kernel K(s, t) also
belong to the kernel K(µ; s, t) while the corresponding eigenvalues are the quantities
λ(h) − µ.

IV.

The Expansion of an arbitrary Function in Eigenfunctions.

The first important application of the theorem proved in Section III is to answer the
question of the existence of the eigenvalues λ(h). This question is of particular interest
because the corresponding special problem in the theory of linear partial differential
equations — namely, to establish the existence of certain important values of parameters
appearing in the differential equation or the boundary conditions —has previously been
fraught with fundamental difficulties. The far more general problem of the existence
of eigenvalues belonging to an integral equation is resolved in a simple and complete
manner by the application of our theorems.

Specifically, if we we assume that there are no eigenvalues or only a finite number,
say m, then the series (44) appearing in our theorem is finite with m terms. Since the
formula (44) of this theorem is valid for all continuous functions, it necessarily follows
that

K(s, t) =
1
λ(1)

ψ(1)(s)ψ(1)(t) + · · ·+ 1
λ(m)

ψ(m)(s)ψ(m)(t).

In other words, if we regard one variable, say t, as a parameter and assign any constant
value to it, K(s, t) may be represented by only m independent functions of the other
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variable s. Conversely, if K(s, t) has this property, then, as one sees, all coefficients of
the power series for δ(λ) multiplying powers of λ greater than m vanish; that is, δ(λ)
becomes an entire rational function, and there are, therefore, only m eigenvalues. Hence
we can state the following theorem.

Theorem 3. The eigenvalues belonging to K(s, t) are always available in infinite
number. For suppose that K(s, t) is representable as a finite sum of products, each
of whose factors depends only on the variables s and t. In this case, the number of
eigenvalues is equal to the number of the terms in that sum and δ(λ) is an entire rational
function of degree equal to that number.

We now turn to the problem of the expansion of an arbitrary function in an infinite
series consisting of eigenfunctions. If in the formula (44) of our theorem we set

y(t) = K(r, t)

and set

f(r) =
∫ b

a

∫ b

a
K(s, t)K(r, t)x(s) ds dt,

then, considering that according to (40)∫ b

a
f(r)ψ(m)(r) dr =

1
(λ(m))2

∫ b

a
x(s)ψ(m)(s) ds,

we find that the formula (44) of our theorem becomes

f(r) =
∫ b

a
f(s)ψ(1)(s) ds · ψ(1)(r) +

∫ b

a
f(s)ψ(2)(s) ds · ψ(2)(r) + · · · .

In other words we have the following theorem.
Theorem 4. If a function f(s) can be represented in the form

f(s) =
∫ b

a

∫ b

a
K(r, t)K(s, t)h(r) dr dt,

where h(r) is a continuous function of r, then it can be expanded in a Fourier-like series
of eigenfunctions as follows:

f(s) = c1ψ
(1)(s) + c2ψ

(2)(s) + · · · ,
cm =

∫ b
a f(s)ψ(m)(s) ds.

This series converges absolutely and uniformly.
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The assumption about f(s) made in this theorem is equivalent to the requirement
that there is a continuous function h(s) such that the integral representation

f(s) =
∫ b

a
KK(s, t)h(t) dt

holds. This is further equivalent to the requirement that there are two continuous
functions g(s) and h(s) such that

f(s) =
∫ b

a
K(s, t)g(t) dt,

g(s) =
∫ b

a
K(s, t)h(t) dt.

When K(s, t) is a symmetric function of s and t for which the equation∫ b

a
K(s, t)g(s) ds = 0

is never satisfied for all t by any continuous, nonzero function g(s), then K(s, t) is
called a closed kernel. It is easy to see from Theorem 3 that a closed kernel always
has infinitely many eigenvalues. Moreover we can make the following assertion about a
closed kernel.

Theorem 5. Let K(s, t) be a closed kernel and let ψ(m)(s) be its eigenfunctions.
Then if h(s) is a continuous function such that for all m the equation∫ b

a
h(s)ψ(m)(s) ds = 0

holds, then h(s) is identically zero.
To prove this theorem, we set

g(s) =
∫ b

a
K(s, t)h(t) dt,

f(s) =
∫ b

a
K(s, t)g(t) dt.

By Theorem 4, f(s) admits an expansion in the eigenfunctions ψ(m)(s), and in fact one
obtains for the coefficients

cm =
∫ b

a
f(s)ψ(m)(s) ds =

1
λ(m)

∫ b

a
g(s)ψ(m)(s) ds =

1
(λ(m))2

∫ b

a
h(s)ψ(m)(s) ds = 0.
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It follows that f(s) is identically zero. Since K(s, t) is assumed to be a closed kernel, if
follows first that g(s) = 0 and then that h(s) = 0.

Theorem 6. Let K(s, t) be a closed kernel and f(s) any continuous function. If it
happens that the Fourier-like series

c1ψ
(1)(s) + c2ψ

(2)(s) + · · · ,

cm =
∫ b

a
f(s)ψ(m)(s) ds,

converges uniformly, then it represents the function f(s).
In fact, by Theorem 5 it turns out that the difference between f(s) and the function

of s represented by the series is zero.
In Theorems 4 and 6 we have established certain conditions for the expandability

of an arbitrary function in terms of eigenfunctions. We can significantly simplify the
conditions of Theorem 4, if we make a certain assumption about the kernel K(s, t).
Specifically, we will call a symmetric continuous function K(s, t) a general kernel if for
every continuous function g(s) and every arbitrarily small positive ε, it is always possible
to determine a continuous function h(s) such that if we set

x(s) = g(s)−
∫ b

a
K(s, t)h(t) dt

then the inequality ∫ b

a
(x(s))2 < ε

holds. In other words, the kernel K(s, t) is said to be general provided that the integral∫ b
a K(s, t)h(t) dt can approximate, in the sense given above, any continuous function
g(s) by a suitable choice of of the continuous function h(t). In this case, we have the
following theorem.

Theorem 7. If K(s, t) is a general kernel, then any function that can be represented
by means of a continuous function g(s) in the form

f(s) =
∫ b

a
K(s, t)g(t) dt

is expandable in a series of eigenfunctions as follows:

f(s) = c1ψ
(1)(s) + c2ψ

(2)(s) + · · · ,

cm =
∫ b

a
f(s)ψ(m)(s) ds.



80 Fredholm, Hilbert, Schmidt

The series converges absolutely and uniformly.
For the proof we denote by ε any arbitrarily small positive quantity and by M the

maximum of the function ∫ b

a
(K(s, t))2 dt

for s in the interval from a to b. Since K(s, t) is a general kernel and g(s) is a continuous
function, we can find a continuous function h(s) such that if we set

x(s) = g(s)−
∫ b

a
K(s, t)h(t) dt

then the inequality ∫ b

a
(x(s))2 ds <

(
2ε

3(1 +M)

)
(47)

is satisfied. We set

g∗(s) =
∫ b

a
K(s, t)h(t) dt,

f∗(s) =
∫ b

a
K(s, t)g∗(t) dt.

By Theorem 4 the function f∗(s) has the following series expansion in eigenfunction:

f∗(s) = c∗1ψ
(1)(s) + c∗2ψ

(2)(s) + c∗3ψ
(3)(s) + · · · .

Because of the uniform and absolute convergence of this series it is certainly possible to
find an integer m such that for all s

|f∗(s)− c∗1ψ
(1)(s)− c∗2ψ

(2)(s)− · · · − c∗mψ
(m)(s)| < ε

3
, (48)

and moreover the inequalities that result from replacing m with a larger integer also
hold.

Now ∣∣∣∣∫ b

a
K(s, t)x(t) dt

∣∣∣∣ ≤√∫ ba (K(s, t))2 dt ·
∫ b
a (x(t))2 dt

and in view of (47) the right-hand quantity above is

≤
√
M

2ε
3(1 +M)

≤ ε

3
.

Because

f(s) = f∗(s) +
∫ b

a
K(s, t)x(t) dt, (49)
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we have the inequality
|f(s)− f∗(s)| ≤ ε

3
(50)

On the other hand, because of (49)

cj − c∗j =
∫ b

a

∫ b

a
K(s, t)ψ(j)(s)x(t) ds dt =

1
λ(j)

∫ b

a
ψ(j)(t)x(t) dt,

and therefore

(cj − c∗j )ψ
(j)(s) =

∫ b

a
ψ(j)(s)x(s) ds ·

∫ b

a
K(s, t)ψ(j)(t) dt. (51)

If we set

A =

∫ b
a ψ

(j)(s)x(s) ds
4

√∫ b
a (x(s))2 ds

, B = 4

√∫ b

a
(x(s))2 ds ·

∫ b

a
K(s, t)ψ(j)(t) dt,

then because
|AB| ≤ 1

2
(A2 +B2)

the inequality

|(cj − c
(∗)
j )ψ(j)(s)| ≤

1
2


(∫ b

a ψ
(j)(s)x(s) ds

)2

√∫ b
a (x(s))2 ds

+

√∫ b

a
(x(s))2 ds ·

(∫ b

a
K(s, t)ψ(j)(t) dt

)2


(52)

follows from (51).
We now return to the the formula (16). Since every term on the right hand side of

(16) is ≥ 0, we have the inequality

D
(
`(1), xx

)
`(1)d′(`(1))

+
D
(
`(2), xx

)
`(2)d′(`(2))

+ · · ·+
D
(
`(m), xx

)
`(m)d′(`(m))

≤ [x, x].

If we now suppose, as before, that that we have substituted

Kpq = K
( p
n
,
q

n

)
xp = x

( p
n

)
,

in this formula and then after division by n we have taken the limit for n = ∞ while m
is held constant, then we get the inequality{∫ 1

0
ψ(1)(s)x(s)

}2

+
{∫ 1

0
ψ(2)(s)x(s)

}2

+ · · ·

+
{∫ 1

0
ψ(m)(s)x(s)

}2

≤
∫ 1

0
(x(s))2 ds.

(53)
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If we sum (52) for i = 1, 2, . . . ,m, then an application of the last inequality, in which
we assume that the integration limits from a to b have been restored, we get

∑
j=1,...,m

|(cj − c∗j )ψ
(j)(s)| ≤ 1

2

√∫ b

a
(x(s))2 ds · (1 +M).

In view of (47) this last expression is

≤ 1
2

2ε
3(1 +M)

(1 +M) =
1
3
ε;

i.e.,
|c1ψ(1)(s) + · · ·+ cmψ

(m)(s)− c∗1ψ
(1)(s)− · · · − c∗mψ

(m)(s)| ≤ ε

3
. (54)

From (48), (50), and (54) it follows that for all s

|f(s)− c1ψ
(1)(s)− c2ψ

(2)(s)− · · · − cmψ
(m)(s)| < ε,

and it is readily seen that this inequality continues to hold when one chooses a larger
value of m in the left hand side. This completes the proof of our theorem.

On the basis of Theorem 7, which was just proved, we can also show that the infinite
series (∫ b

a
ψ(1)(s)x(s) ds

)2

+
(∫ b

a
ψ(2)(s)x(s) ds

)2

+ · · ·

converges and has the value ∫ b

a
(x(s))2 ds.

Here K(s, t) is assumed to be a general kernel and x(s) denotes an arbitrary continuous
function.

V.

The Variational Problem that Corresponds to the Algebraic Question of
the Minima and Maxima of a Quadratic Form

The theory developed in Sections III–IV has special significance for the calculus of
variations. Here I would like to treat just the transcendental problem that corresponds
to the algebraic of question of the relative maxima and minima of a quadratic form
when a second different form is held constant. Specifically, the problem is to find the
function x(s) for which the double integral

J(x) =
∫ b

a

∫ b

a
K(s, t)x(s)x(t) ds dt
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has a minimal or maximal value, assuming that the side condition∫ b

a
(x(s))2 ds = 1. (55)

is satisfied.
If the kernel K(s, t) has the property that the integral J(x) has only positive values

for continuous x(s) and is zero only when x(s) = 0, we will say that the kernel is definite.
In what follows we make the assumption that K(s, t) is a definite kernel.

If for some continuous function x(s) we have∫ b

a
K(s, t)x(t) dt = 0

identically in s, then obviously J(x) = 0 and hence x(s) is also zero; that is, a definite
kernel is also a closed kernel. It must therefore have infinitely many eigenvalues and
eigenfunctions.

The eigenvalues of a definite kernel are always positive. For if on the contrary some
eigenvalue λ(h) were negative, it follows from

J(x) =
1
λ

{∫ b

a
ψ(1)(s)x(s) dx

}2

+
1
λ

{∫ b

a
ψ(2)(s)x(s) dx

}2

= · · · (56)

that for x(s) = ψ(h)(s) the value of the double integral J(x) would be negative.
The following theorems concern the minima and maxima of J(x).
Theorem 8. There is no continuous function satisfying the side condition (55) that

causes J(x) to assume a minimum.
In fact, the eigenfunctions ψ(1)(s), ψ(2)(s), . . . all satisfy the side condition (55).

Because
J(ψ(1)) =

1
λ(1)

, J(ψ(2)) =
1
λ(2)

, . . . ,

the minimum we seek can only be equal to zero. But J(x) obtains this value only for
x(s) = 0.

Theorem 9. The largest value the double integral J(x) assumes when x(s) is a con-
tinuous function satisfying the side condition (55) is 1

λ(1) . The double integral assumes
this value for x(s) = ψ(1)(s).

If, on the contrary, there were a function x(s) which satisfied the side condition (55)
and for which

J(x) >
1
λ(1)

,
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then there we would have to be able to choose an integer m such that the sum S(x) of
the first m terms in the right-hand side of (56) is greater than 1

λ(1) . We now set

x(s) = c1ψ
(1)(s) + c2ψ

(2)(s) + · · ·+ cmψ
(m)(s) + y(s),

where for short we have written

ch =
∫ b

a
ψ(h)(s)x(s) ds (h = 1, 2, . . . ,m).

Hence ∫ b

a
ψ(h)(s)y(s) ds = 0 (h = 1, 2, . . . ,m).

We then easily see that∫ b

a
(x(s))2 ds = c21 + c22 + . . . c2m +

∫ b

a
(y(s))2 ds (57)

and

S(x) =
c21
λ(1)

+
c22
λ(2)

+ · · ·+ c2m
λ(m)

. (58)

In view of (55) it follows from (57) that

c21 + c22 + . . . c2m ≤ 1,

and perforce we have
c21
λ(1)

+
c22
λ(2)

+ · · ·+ c2m
λ(m)

≤ 1
λ(1)

.

This equation contradicts (58), since S(x) was to be greater than 1
λ(1) ; the original

assumption therefore does not hold.

In an analogous manner we see that the following more general theorem is true.
Theorem 10. The largest value that the double integral J(x) attains when x(s) is

a continuous function satisfying the side conditions∫ b

a
(x(s))2 ds = 1,∫ b

a
ψ(h)(s)x(s) ds = 0, (h = 1, 2, . . . ,m− 1)

is 1
λ(m) . The double integral attains this value for x(s) = ψ(m)(s).
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By similar arguments we can also obtain the solutions of more general maximal
problems. For example, one can find with no essential difficulty the function x(s) that
maximizes J(x) when, in addition to the side condition (55), the side condition∫ b

a
f(s)x(s) ds = 0 (59)

is satisfied, where f(s) denotes a given function.
The kernel K(s, t) is said to be relatively definite, if it has the property that it [i.e.,

J(x)] takes on only positive values when x(s) is a continuous function satisfying the
side condition (59).

At most one of the eigenvalues of a relative definite kernel is negative. For if, say,
λ(1) and λ(2) were negative, one could determine constants c1 and c2 such that the
function

x(s) = c1ψ
(1)(s) + c2ψ

(2)(s)

satisfies the side condition (59) and in addition c21 + c22 = 1. Then by (56), J(x) must
be negative.

VI.

Supplementing and Extending the Theory.

Up to now in Sections I–V, we have consistently stipulated that K(s, t) be a contin-
uous function of the variables s and t. Our next problem is to ascertain to what extent
this assumption can be relaxed.

We will say that K(s, t) has singularities of order less than 1
2 whenever there are a

finite number of analytical lines L of the forms

s = F (t) or t = G(s)

in the s, t-plane for which there is a a positive exponent α less than 1
2 such that the

product
(s− F (t))αK(s, t) or (t−G(s))αK(s, t)

is continuous. We also assume that K(s, t) is continuous off the lines L. We can now
make the following assertion.

All the results proved in Sections III–V also hold provided the kernel K(s, t) of our
basic integral equation has singularities of order less than 1

2 . At the same time the
functions x(s) and y(s) appearing in our theory may also have singularities of order
less than 1

2 at a finite number of points, provided that they are otherwise continuous.

The following is the method by which we see the truth of this assertion. We cover
the lines L by a set of strips in the s, t-plane of arbitrarily small width ε. We then
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construct a function Kε(s, t) that is zero in the domain of strips and outside is identical
to K(s, t). The function Kε(s, t) is everywhere continuous with the exception of the
boundary lines of the set of strips, where clearly jump discontinuities are encountered
Our earlier proofs are valid without any changes for a kernel like Kε(s, t), whose values
are everywhere less than a finite bound, and are discontinuous in certain lines. To see
the validity for the kernel K(s, t) requires application of a passage to the limit ε = 0.
In what follows we will show how this can be effected.

To this end, we first turn to the power series δ(λ) (p. 64) and ∆
(
λ, xy

)
(p. 65). The

coefficients δh and ∆h

(
x
y

)
cannot be formed if K(s, s) regarded as a function of s has no

meaning; i.e. whenever the line s = t or a part of it belongs to the singular lines of the
kernel. We will take care of this difficulty by introducing the the formulas

δh =
1
h!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣∣∣
0 K(s1, s2) · · · K(s1, sh)

K(s2, s1) 0 · · · K(s2, sh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K(sh, s1) K(sh, s2) · · · 0

∣∣∣∣∣∣∣∣ ds1 · · · dsh
and

∆h

(
x

y

)
=

1
h!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣∣∣
0 x(s1) x(s2) · · · x(sh)

y(s1) 0 K(s1, s2) · · · K(s1, sh)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y(sh) K(sh, s1) K(sh, s2) · · · 0

∣∣∣∣∣∣∣∣ ds1 · · · dsh
in place of the formulas used earlier for δh (p. 64) and ∆

(
s
t

)
(p. 65). It is seen that the

new expressions for δh and ∆h

(
x
y

)
differ from the originals in that the diagonal elements

of the determinants are everywhere zero. The power series δ(λ) and ∆
(
λ, xy

)
formed

from the new coefficients agree with the originals up to an negligible exponential factor.

This factor is the same for δ(λ) and ∆
(
λ, xy

)
and drops out when the quotient

∆
“
λ, xy

”
δ(λ)

is formed.12

Lemma 3. For our kernel K(x, y) the new expressions δh and ∆h

(
x
y

)
are uniquely

defined and the power series δ(λ) and ∆
(
λ, xy

)
formed from them are everywhere con-

vergent.

For simplicity we will prove this lemma only for the case that s = t is the sole
singular line of K(s, t). In the h-fold integral the variables of integration s1, . . . , sh are
to run through all values between 0 and 1. We first consider the 1/h! th part of the

12See Kellogg, Zur Theorie der Integralgleichungen, §5. Göttinger Nachr. 1902.
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h-dimensional domain of integration characterized by the inequalities

s1 > s2 > · · · > sh.

In the determinant with h rows that appears in the expression for δh we suppose that
the elements of the

first row are multiplied by |s1 − s2|α
second row are multiplied by {|s1 − s2|−α + |s2 − s3|−α}−1

third horizontal row are multiplied by {|s2 − s3|−α + |s3 − s4|−α}−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
hth row are multiplied by |sh−1 − sh|α

As can easily be seen, we obtain a determinant the absolute values of whose elements
for all values of the variables are less than a finite positive quantity K. The value of
this determinant is certainly less than or equal to

√
hhKh. Hence, we have the following

upper bound for the h-fold integral taken over T :
√
hhKh

∫
· · ·
∫
|(s1 − s2)−α|{|s1 − s2|−α + |s2 − s3|−α}

{|s3 − s2|−α + |s2 − s3|−α} · · · |(sh−1 − sh)−α| ds1ds2 · · · dsh,

1 > s1 > s2 > · · · > sh > 0.

(60)

If in this h-fold integral we introduce the new variables

s1 − s2 = σ1, s2 − s3 = σ3, . . . , sh−1 − sh = σh, sh = σh

and multiply out the product under the integral sign, we find that this integral is
composed of 2h−2 h-fold integrals of the form∫

· · ·
∫
σα1

1 σα2
2 · · ·σαh

h dσ1dσ2 · · · dσh(
σ1 > 0, σ2 > 0, . . . , σh > 0
σ1 + σ2 + · · ·σh+ < 1

) (61)

Here the exponents α1, α2, . . . , αh have the values 0, −α or −2α while their sum α1 +
α2 + · · ·+α1 is always equal to −hα. A calculation involving the integral (61) gives the
following expression for an upper bound for the integral:

Ah

Γ(1 + h− αh)
<

Bh

hh(1−α)
.

Here A, B denote certain positive quantities that are independent of h. From this we
get an upper bound

Ch

hh(
1
2
−α)

(62)
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for (60). Here again C is a positive quantity that is independent of h. The expression
(62) is also an upper bound for the part of the h-fold integral that appears in δh taken
over T . Since all the remaining h!− 1 parts of this h-fold integral have the same values
(as can be seen by interchanging the integration variables), it follows that the complete
h-fold integral that appears in δh has has the product of (62) by h! as an upper bound;
i.e.,

|δh| ≤
Ch

hh(
1
2
−α)

. (63)

From this follows the correctness of Lemma 3 with respect to δ(λ) since α < 1
2 .13

The same proof strategy works for the power series ∆
(
λ, xy

)
.

We now return to the function Kε(s, t). If we recall how Kε(s, t) was formed from
K(s, t) by the elimination of singularities, we see that Kε(s, t) is to be considered de-
pendent on the strip width ε. Since for a fixed ε the absolute value Kε(s, t) always stays
below a finite bound, our earlier theory is valid without alteration for Kε(s, t). We de-
note the power series in λ belonging to Kε(s, t) by δε(λ) and ∆ε

(
λ, xy

)
. The inequality

(63) and the corresponding inequality for ∆h

(
x
y

)
, obviously hold for the coefficients of

the power series δε(λ) and ∆ε

(
λ, xy

)
. Hence by the same techniques used in the proof

of Lemma 1 we see the correctness of the following facts.

Lemma 4. The functions δε(λ) and ∆ε

(
λ, xy

)
converge for ε = 0 to δ(λ) and

∆
(
λ, xy

)
. Moreover, the convergence is uniform for all values of λ whose absolute

value lies below an arbitrarily chosen positive bound Λ.

After these preliminaries, it is not difficult to extend the validity of our basic theorem
(p. 74) to the case where the kernel K(s, t) has singularities of order less than 1

2 .
We already know that our theorem is valid for the kernel Kε(s, t) provided that the

zeros of the associated function δε(λ) are all simple. Should this assumption not hold for
a kernel Kε(s, t), we imagine the kernel as being slightly modified —as was done at the
beginning of Section III— so that the assumption is satisfied and so that the modified
kernel still converges uniformly to the same limits K(s, t), δ(λ), and ∆

(
λ, xy

)
.

Now let Λ be any positive quantity. From Lemma 4 we can conclude that the the
zeros λ(h)

ε of δε(λ) whose absolute values remain less than Λ in the limit for ε = 0 go
over in the limit for ε = 0 to the zeros λ(h) of δ(λ) whose absolute values lie below
Λ. Moreover, the value of ∆ε

(
λ

(h)
ε , xy

)
belonging to the zero λ

(h)
ε goes over to the

corresponding value of ∆
(
λ(h), xy

)
.

13The presentation of this proof in the Dissertations of Kellogg and Andrae cited earlier is incorrect.
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We denote by ψ(1)
ε (s), ψ(2)

ε (s), . . . the eigenfunctions belonging to the kernel Kε(s, t).
By (53) (p. 81) for every value of m however large we have the inequality{∫ b

a
ψ(1)
ε x(s)ds

}2

+
{∫ b

a
ψ(2)
ε x(s)ds

}2

+ · · ·

+
{∫ b

a
ψ(m)
ε x(s)ds

}2

≤
∫ b

a
(x(s))2 ds.

It then follows that

∑
(λ

(h)
ε ≥Λ)

{∫ b

a
ψ(h)
ε x(s)ds

}2

≤
∫ b

a
(x(s))2. (64)

We now replace y(s) by x(s) in formula (44) of our theorem and write the resulting
formula in the form∫ b

a

∫ b

a
Kε(s, t)x(s)x(t) ds dt =

∑
(λ

(h)
ε <Λ)

1

λ
(h)
ε

{∫ b

a
ψ(h)
ε x(s)ds

}2

+
∑

(λ
(h)
ε ≥Λ)

1

λ
(h)
ε

{∫ b

a
ψ(h)
ε x(s)ds

}2
(65)

Here the first sum on the right-hand side is to be taken over all eigenfunctions whose
corresponding eigenvalues are less in absolute value than Λ, while the second sum on
the right hand side contains all remaining terms, just like the sum on the left-hand side
of (64). Because of (64) it follows from (65) that∫ b

a

∫ b

a
Kε(s, t)x(s)x(t) ds dt =

∑
(λ

(h)
ε <Λ)

1

λ
(h)
ε

{∫ b

a
ψ(h)
ε x(s)ds

}2

± ϑ

Λ

∫ b

a
(x(s))2, (0 ≤ ϑ ≤ 1).

From this equation we get by passage to the limit for ε = 0∫ b

a

∫ b

a
K(s, t)x(s)x(t) ds dt =

∑
(λ(h)<Λ)

1
λ(h)

{∫ b

a
ψ(h)x(s)ds

}2

± ϑ

Λ

∫ b

a
(x(s))2, (0 ≤ ϑ ≤ 1).
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If Λ is now allowed to grow without bound, we get the formula (44) in our theorem for
the case that x(s) = y(s). This last limitation can easily be disposed of.

We can see without difficulty that all the consequences of our theorem are valid— in
particular, Theorems 4 and 7 on the expansion of arbitrary functions in the eigenfunc-
tions of K(s, t).

Should the kernel K(s, t) have singular lines of order greater than 1
2 but less than

one, our theorems require certain modifications. This is easily seen if one forms the
two-fold and higher-fold combinations of K(s, t). Considering that among these kernels
there must always exist kernels for which the theory presented above is valid, we obtain
the desired conclusions for the kernel K(s, t).

Previously— even in the development of this section IV —we have consistently made
the assumption that for our basic kernel K(s, t) the power series δ(λ) has only simple
zeros. We must now determine the modifications our theory must undergo when we
drop this hypothesis.

To this end, let K(s, t) be a kernel for which for which λ(h) is an nh-fold eigenvalue,
i.e., λ(h) is a nh-fold zero of δ(λ). Then there are no substantial, fundamental difficulties
in finding a kernel Kµ(s, t) with the following properties. The kernel Kµ(s, t) is a power
series in µ, whose coefficients are continuous functions of s and t. The power series
converges for sufficiently small values of µ, so that for µ = 0 becomes K(s, t). Let
δµ(λ) be the usual power series belonging to Kµ(s, t), so that for µ = 0, δµ(λ) converges
to the power series δ(λ) belonging to K(s, t). As can be easily seen from the earlier
proof, δµ(λ) is a power series in λ that converges for all λ and sufficiently small µ. The
convergence is uniform for all λ whose absolute value lies below a finite bound Λ and for
all sufficiently small µ. Thus δµ(λ) is represented by power series in λ and µ. Finally,
let the parameter µ so restricted that the in a neighborhood of λ = λ(h), the equation

δµ(λ) = 0

has the following nh solutions:

λ(h)
µ = ß(µ)

λ(h+1)
µ = ß1(µ)

· · ·
λh+nh−1
µ = ßnh−1(µ)

(66)

Here ß(µ), ß1(µ), . . . , ßnh−1(µ) denote power series in µ and among these no two are
identically equal in µ. This last stipulation gives substance to a property of the function
Kµ(s, t) that will be essential for the following development: namely, for all sufficiently
small, nonzero value of the parameter µ, the function Kµ(s, t) represents a kernel that
has only simple eigenvalues.
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In the manner of (27), we now construct for Kµ(s, t) the power series ∆µ(λ; s, t),
which for µ = 0 becomes the power series ∆(λ; s, t) belonging to K(s, t). Just like δµ(λ),
the power series ∆µ(λ; s, t) is uniformly convergent for all λ and sufficiently small µ and,
moreover, can be represented as a power series in λ and µ. Finally we construct for
Kµ(s, t) the normalized eigenfunctions

ψ(h)
µ (s), ψ(h+1)

µ (s), . . . , ψ(h+nh)
µ (s)

corresponding to
λ(h)
µ , λ(h+1)

µ , . . . λ(h+nh+1)
µ ,

by replacing in turn λ in δµ(λ) and ∆µ(λ; s, t) by the values of λ(h)
µ , λ

(h+1)
µ , . . . , λ

(h+nh)−1
µ

from (66) regarded as power series in µ. First of all we get

ψ(h)
µ (s)ψ(h)

µ (t) =
∆µ(λ(h); s, t)
δ′µ(λ(h))

= µ±e{Ψ(h)(s, t) + Ψ(h)
1 (s, t)µ+ · · · },

ψ(h+1)
µ (s)ψ(h+1)

µ (t) =
∆µ(λ(h+1); s, t)
δ′µ(λ(h+1))

= µ±e1{Ψ(h+1)(s, t) + Ψ(h+1)
1 (s, t)µ+ · · · },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ(h+nh−1)
µ (s)ψ(h+nh−1)

µ (t) =
∆µ(λ(h+nh−1); s, t)
δ′µ(λ(h+nh−1))

= µ±enh−1{Ψ(h+nh−1)(s, t)

+ Ψ(h+nh−1)
1 (s, t)µ+ · · · }.

Here e, e1, . . . , enh−1 are rational exponents that are greater than or equal to zero and
the expressions Ψ(s, t) on the right-hand side denote continuous functions of s and t.
From this it is not difficult to derive formulas of the following kind for the eigenfunction
we seek:

ψ(h)
µ (s) = µ±f{ψ(h)(s) + ψ

(h+1)
1 (s)µ+ · · · },

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ(h+nh−1)
µ (s) = µ±fnh−1{ψ(h+nh−1)(s) + ψ

(h+nh−1)
1 (s)µ+ · · · }.

(67)

Here, as before, f, f1, . . . , fnh−1 are certain rational exponents that are greater than or
equal to zero. Moreover, the expressions ψ(j)(s) on the right-hand side denote continuous
functions of s, and in particular we may assume that among the functions

ψ(h)(s), ψ(h+1)(s), . . . , ψ(h+nh−1)(s) (68)

none are identically zero in s. On the other hand, since for all sufficiently small, nonzero
µ, the equations ∫ b

a
(ψ(h)

µ )2 ds = 1, . . . ,
∫ b

a
(ψ(h+nh−1)

µ )2 ds = 1,
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must be satisfied, it follows that the exponents f, f1, . . . , fnh−1 must all be zero. Then
the formula (67) shows that for µ = 0 the functions

ψhµ(s), ψ
h+1
µ (s), . . . , ψh+nh−1

µ (s),

become the functions in (68). These functions are called the eigenfunctions correspond-
ing to the nh-fold eigenvalue λ(h). By passing to the limit for µ = 0 in the formula for
the eigenfunctions ψ(h), ψ(h+1), . . . we see that the eigenfunctions corresponding to λ(h)

satisfy the following equations: ∫ b

a
(ψ(k))2 ds = 1,∫ b

a
ψ(k)ψ(k′) ds = 0,

(k, k′ = h, h+ 1, . . . , h+ nk − 1; k′ 6= k′).

We will now apply the formula (43) to the kernel Kµ(s, t), where µ denotes a suffi-
ciently small nonzero value. Considering the formula (39), we get∣∣∣∣∫ 1

0

∫ 1

0
Kµ(s, t)x(s)y(t) ds dt −

1

λ
(1)
µ

∫ 1

0
ψ(1)
µ x(s) ds

∫ 1

0
ψ(1)
µ y(s) ds

− 1

λ
(2)
µ

∫ 1

0
ψ(2)
µ x(s) ds

∫ 1

0
ψ(2)
µ y(s) ds− · · ·

− 1

λ
(m)
µ

∫ 1

0
ψ(m)
µ x(s) ds

∫ 1

0
ψ(m)
µ y(s) ds

∣∣∣∣∣
≤ 1

2|λ(m+1)
µ |

(∫ 1

0
(x(s))2 ds+

∫ 1

0
(y(s))2 ds

)
.

If we take the limit for µ = 0 and then let m grow unboundedly, we see that for the
kernel K(s, t), formula (44) of our fundamental theorem remains valid without change.
For the case of of an nh-fold eigenvalue we have only to take into account, one after the
other, the nh different eigenfunctions corresponding to λh, so that in each of these nh
terms the reciprocal of the same eigenvalue λ(h) appears as a factor.

We can find a simple method for calculating the eigenfunctions (68) by proceeding
from the formula∫ b

a

∫ b

a
K(λ : s, t)x(t)y(t) =

∑
(h=1,2,...)

1
λ(h) − λ

∫ b

a
ψ(h)(s)x(s) ds

∫ b

a
ψ(h)(s)y(s) ds.
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If we set
K(s, t) = −δ(λ; s, t)

δ(λ)
,

multiply the formula by λ− λh, and pass to the limit λ = λ(h), we conclude that[
∂nh−1

∂λnh−1 ∆(λ; s, t)
∂nh−1

∂λnh−1 δ(λ)

]
λ=λk

=

ψ(h)(s)ψ(h)(t) + ψ(h+1)(s)ψ(h+1)(t) + · · ·+ ψ(h+nh−1)(s)ψ(h+nh−1)(t).

The eigenfunctions (68) corresponding to the nh-fold eigenvalues are uniquely deter-
mined by this equation, provided we ignore trivial orthogonal combinations with con-
stant coefficients of the eigenvectors.

By means of the generalization of our basic theorem that we have just proved we are
in a position to easily handle the remaining theorems in the case of multiple eigenvalues.

In a second communication I will treat some applications of the above theory of inte-
gral equations of the second kind to the theory of linear ordinary and partial differential
equations.





On the Theory of Linear and Nonlinear Integral Equations.

Part I: The Expansion of Arbitrary Functions by
Prescribed Systems.1

by

Erhard Schmidt at Bonn.

Introduction.

Fredholm2 discovered a formula for the solution of the inhomogeneous linear integral
equation

f(s) = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt.

This formula has the consequence that if λ is not a zero of a certain entire transcendental
function δ(λ) then the equation can always be solved for ϕ(s). As Fredholm went on
to show, for these and only these values of λ—in Hilbert’s nomenclature the so-called
eigenvalues of the kernel K(s, t)—the homogeneous equation

0 = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt

admits a solution, which, following Hilbert, we will call the eigenfunction corresponding
to the eigenvalue λ of the kernel K(s, t). In the theory of partial and ordinary differen-
tial equations, Hilbert3 used Green’s function to reduce the important question of the
existence of so-called normal functions and the expandability of arbitrary functions in
terms of them to a far more general problem: namely that of establishing the existence
of eigenfunctions for a symmetric kernel K(s, t) and setting down the conditions for the

1Except for the newly added Chapter IV, § 13 and some minor alterations in the remaining chapters,
this part is a reprint of my Götting Inaugural Dissertation, which appeared in July, 1905.

2Acta Mathematica, V. 27.
3Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen. Mathem.-Phys. Cl. 1904 Num-

ber 3.
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expandability of arbitrary functions in terms of them. The Green’s function itself is de-
termined by an integral equation with an unsymmetric kernel, which is how Fredholm’s
formula comes into play. Now by considering the double integral∫ b

a

∫ b

a
K(s, t)x(s)y(t) ds dt,

where x(s) and y(t) are arbitrary continuous functions, as a quadratic form in infinitely
many variables, Hilbert4 obtained by passage to the limit the decomposition∫ b

a

∫ b

a
K(s, t)x(s)y(t) ds dt =

∑
ν

1
λν

∫ b

a
x(s)ϕν(s) ds ·

∫ b

a
y(t)ϕν(t) dt,

a formula that corresponds to the canonical orthogonal decomposition of a quadratic
form. Here the ϕν(s) range over all eigenfunctions of the kernel—each scaled so that the
integral of their squares is one—and the λν range over the corresponding eigenvalues. An
immediate consequence of this result is that any symmetric kernel has eigenfunctions.
Under the assumption that the kernel is general—that is, for any continuous function
α(s) and any arbitrarily small positive number ε, there is a function β(s) such that∫ b

a
{α(s)−

∫ b

a
K(s, t)β(t) dt}2 ds < ε

holds—under this assumption Hilbert then derived the fundamental expansion theorem
that any function g(s) that can be represented in terms of a continuous function h(t)
by the integral

g(s) =
∫ b

a
K(s, t)h(t) dt

can be expanded in a absolutely and uniformly convergent series of the eigenfunctions
of the kernel K(s, t). In addition, these theorems imply their analogues for the integral
equation

0 = ψ(s)− λ

∫ b

a
G(s, t)p(t)ψ(t) dt,

where G(s, t) is symmetric and p(t) > 0. For this equation can be reduced to the one
above, namely

0 = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt,

4Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen. Mathem.-Phys. Cl. 1904 Num-
ber 1.
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by the substitutions√
p(s) · ψ(s) = ϕ(s),

√
p(s) ·G(s, t) ·

√
p(t) = K(s, t).

Stekloff5 has obtained a series of related and partially equivalent theorems by means of
the Schwarz-Poincaré method, which he greatly extended.

In the first chapter of this work we establish some supporting lemmas. In the second
we give very simple proofs of Hilbert’s theorems that avoid passing to the limit from
algebraic theorems. First, the existence of eigenvalues is established by a method based
on a famous proof of H. A. Schwarz,6 which in the language of Fredholm’s formula
amounts to solving the equation

δ(λ) = 0

by Bernouli’s method. The expansion theorem then follows from the existence theorem
in a manner analogous to the way the expansion of an entire function in a product of
linear factors follows from the fundamental theorem of algebra. In this connection, it
turns out that the validity of Hilbert’s theorem is unconditional; in particular, it does
not require the “generality” of the kernel postulated by Hilbert. The decomposition
theorem of Hilbert, mentioned above, that corresponds to the canonical orthogonal
decomposition of a quadratic form is obtained immediately from the expansion theorem
by integration. The complications caused by multiple zeros of the function δ(λ) do not
arise in the method of proof given here. Fredholm’s formula is not used, and more
important the unrestricted validity of the expansion theorem for the case of symmetric
kernels gives a new representation of the solution of the inhomogeneous linear integral
equation.7 Also any unsymmetric linear integral equation can be reduced to a symmetric
equation by a simple substitution, as is shown in § 13.

In the third chapter we drop the assumption that the kernel is symmetric and define
the functions ϕν(s) and ψν(s) to be a pair of adjoint eigenfunctions of the kernel K(s, t)
corresponding to the eigenvalue λ if the equations

ϕν(s) = λν

∫ b

a
K(s, t)ψν(t) dt

ψν(s) = λν

∫ b

a
K(t, s)ϕν(t) dt

5Mémoires de l’Académie des Sciences de Saint-Pétersbourg 1904, p.7 ff. Annales del la Fac. de
Toulouse 22 S., VI 1905.

6H. A. Schwarz, Gesammelte Abhandlungen V. 1, pp. 241–262.
7cf. Hilbert’s new, comprehensive development—published while present work was in press—of the

theory of integral equations based on his theory of quadratic forms in infinitely many variables. Göttinger
Nachrichten 1906, fourth and fifth communications.
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are satisfied. The function ϕν(s) may be called an eigenfunction of the first kind; ψν(s),
an eigenfunction of the second kind. The expansion theorem then takes the following
form. If the continuous function g(s) can be represented in terms of the continuous
function h(s) by the integral

g(s) =
∫ b

a
K(s, t)h(t) dt,

then g(s) can be expanded in an absolutely and uniformly convergent series consisting
of eigenfunctions of the first kind. If

g(s) =
∫ b

a
K(t, s)h(t) dt,

then g(s) can be expanded in the same way in a series of eigenfunctions of the second
kind. From this theorem we get by integration the decomposition theorem corresponding
to the orthogonal decomposition of bilinear forms:∫ b

a

∫ b

a
K(s, t)x(s)y(t) ds dt =

∑
ν

1
λν

∫ b

a
x(s)ϕν(s) ds ·

∫ b

a
y(t)ψν(t) dt.

To the best of my knowledge, the theorems of this third chapter were unknown before
now.

The expansion of functions of two variables in powers, in trigonometric functions,
in Kugel functions, and in many other functions can be written in the form of a series
whose terms are products of a function of one variable with a function of the other
variable.

A question in the calculus of variations that arises in connection with this last
observation is the object of the fourth chapter. Let K(s, t) be a continuous function
of two variables s and t. We want to find a system of at most m pairs of continuous
functions, one in s and one in t, such that the sum of their products approximates
the given function K(s, t) as well as possible. As usual we will define the measure of
the approximation, whose minimum is required by the statement of the problem, to be
the double integral of the square of the error. We will show that the solution of the
problem is formed from the first m pairs of adjoint eigenfunction of the kernel K(s, t).
In consequence, the measure Mm of the best approximation is given by the formula

Mm =
∫ b

a

∫ b

a
(K(s, t))2 ds dt−

ν=m∑
ν=1

1
λ2

ν
,

where the λν are the first m eigenvalues of the the kernel K(s, t). It follows that the
measure of the best approximation vanishes with increasing m.
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All theorems and proofs in the first four chapters remain valid when s and t are points
from a bounded n-dimensional domain consisting of a finite number of analytic pieces
in an (n + m)-dimensional space. Here ds and dt are the corresponding [differential]
elements.

The fifth chapter assumes nothing from the second, third, and fourth chapters—
only the lemmas established in the first chapter. The theory of expansion of functions
in in powers and polynomials, in Fourier series and infinite series of finite trigonometric
series, in Kugel functions, and in normal functions of partial and ordinary differential
equations suggests the following question. We are given an infinite series ϕ1(x), ϕ2(x),
· · · , ϕν(x), · · · of continuous, real valued functions defined in the interval a ≤ x ≤ b.
What are the conditions under which any continuous function defined in the interval
a ≤ x ≤ b can be expanded in a uniformly convergent series of the functions ϕν(x)
or of finite linear combinations of them? In other words, under what conditions can
any continuous function defined in the interval a ≤ x ≤ b be uniformly approximated
by functions from the system of functions that are be formed from the sequence of the
ϕν(x) by the operations of multiplying by a constant and addition? And when such is
the case, how can we determine the coefficients of such an expansion?

Let us call the system of function ϕν in question closed if there is no continuous
nonzero function f(x) such that for every ν∫ b

a
f(x)ϕν(x) dx = 0.

Then it is clear that the closure of the system of the φν represents a necessary condition
for the solution of our problem.8 For otherwise all expandable functions would have
to satisfy the condition that their products with f(x) integrate to zero from a to b,
and this condition would not be satisfied by, e.g., f(x) itself and all sufficiently small
perturbations of f(x).

We will then show that just as the closure of the given system of functions if a
necessary condition for the solution of our problem, the closure of the system of its
second derivatives is sufficient, provided, if need be, the functions 1 and x are adjoined.
If the function to be represented is also continuously differentiable, then the coefficients
of the representation have simple formulas that are valid in complete generality.

In a paper that is a direct continuation of the present paper, we will treat a new and
very simple method for solving unsymmetric linear integral equations. The underly-
ing principles of this method also permit the treatment of nonlinear integral equations,
which is the subject of the second part of this paper. By a nonlinear equation I un-
derstand a functional equation that defines the unknown function by requiring that a
given function be equal to a convergent infinite series whose terms are formed from

8J. P. Gram has already made this observation in Crelles Journal v.94, p.94.
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the unknown function and other given functions by the operations of integration and
multiplication, and hence the operation of taking positive integer powers. Thus, for
example,

f(s)−
∫ ∫

K(s, t, r) (ϕ(t))m (ϕ(r))n dt dr = 0

is a nonlinear integral equation. Here ϕ(s) is unknown and f(s) and K(s, t, r) are given.
Now the ordinary nonlinear equation

y = f(x)

admits one and only one solution in the neighborhood of a solution provided f ′(x) does
not vanish, but otherwise branching [into two or more solutions] occurs. Analogously,
the nature of the solution of a nonlinear integral equation in the neighborhood of a
solution depends on a derived linear integral equation. If the Fredholm denominator δ(λ)
of this latter equation does not vanish, then the nonlinear equation in the neighborhood
has one and only one solution. But if δ(λ) vanishes, functional branching occurs, for
which it suffices to invoke the equivalent of Priseux’s theorems.

In the case of nonlinear elliptical partial differential equation of the second order,
for example, these theorems make it possible to track the dependence of the solution
surfaces on the boundary values—and with complete knowledge of branching; that is, of
solutions in whose neighborhood even for arbitrarily small perturbation of the boundary
values there is no longer a single solution but several. The nature of the branching
depends on whether or not the Jacobian linearization of the differential equation has
nonzero solutions for zero boundary values. This can be determined by considering a
linear integral equation.

In particular, the bifurcation, discovered by Poincaré, in the theory of rotating
balanced figures is this kind of branching of a nonlinear integral equation. In a third
paper I will give a detailed exposition of this and several other applications.

Chapter I

Preliminary Results on Orthogonal Functions.

§ 1.

The Bessel and Schwarz Inequalities.

Let ψ1(x), ψ2(x), · · · , ψn(x) be continuous real functions defined in the interval
a ≤ x ≤ b that are pairwise orthogonal; i.e., for each pair of distinct indices µ and ν the
equation ∫ b

a
ψµ(x)ψν(x) dx = 0
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is satisfied. Furthermore, let all the functions be normalized ; i.e., for each ν the equation∫ b

a
(ψν(x))

2 dx = 1

is satisfied. Then Bessel’s identity∫ b

a

(
f(x)−

ν=n∑
ν=1

ψν(x)
∫ b

a

f(y)ψν(y) dy
)2 =

∫ b

a

(f(x))2 dx−
ν=n∑
ν=1

(∫ b

a

f(y)ψν(y) dy
)2
,

ν=n∑
ν=1

(∫ b

a
f(y)ψν(y) dy

)2 ≤ ∫ b

a
(f(x))2 dx.

holds for any real continuous function f(x). If the sequence of pairwise orthogonal,
normalized functions is infinite, then the last inequality implies the convergence of the
sum

ν=∞∑
ν=1

(∫ b

a
f(y)ψν(y) dy

)2
,

since all the terms in the sum are positive.
Now let f(x) and ϕ(x) be two real continuous functions. If we set ψ1(x) =
ϕ(x)qR b

a (ϕ(y))2 dy
, then ψ1(x) is normalized, and Bessel’s inequality for the case n = 1 gives

(∫ b

a
f(x)ψ1(x) dx

)2 ≤ ∫ b

a
(f(x))2 dx

(∫ b

a
f(x)ϕ(x) dx

)2 ≤ ∫ b

a
(f(x))2 dx ·

∫ b

a
(ϕ(x))2 dx.

This is the well-known Schwarz inequality. Bessel’s identity and all results derived from
it in this section remain valid when f(x) is a real integrable function whose square when
integrated from a to b gives a finite value. In this case, the finiteness and existence of∫ b

a
f(x)ψν(x) dx

follows from the inequality

f(x) · ψν(x) ≤ (f(x))2 + (ψν(x))
2 .
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§ 2

A Convergence Theorem

Let Q(z, x) be a real function defined in the domain a ≤ x ≤ b, a ≤ z ≤ b that is
integrable with respect to x, and suppose that for all a ≤ z ≤ b∫ b

a
(Q(z, x))2 dx ≤ A,

where A denotes a constant. Further let ψ1(x), ψ2(x), · · · , ψν(x), · · · be an infinite
sequence of real, continuous functions that, in the nomenclature of the last section, are
normalized and are pairwise orthogonal. If f(x) denotes an arbitrary real integrable
function whose square integrated from a to b is finite, then the series

ν=∞∑
ν=1

∫ b

a
f(y)ψν(y) dy ·

∫ b

a
Q(z, x)ψν(x) dx =

ν=∞∑
ν=1

Uν(z)

converges absolutely and uniformly for a ≤ z ≤ b. In fact,

ν=∞∑
ν=n

|Uν(z)| ≤ 2
√
A

√√√√ν=∞∑
ν=n

(∫ b

a
f(y)ψν(y) dy

)2
,

and because of the convergence of the series
ν=∞∑
ν=n

(∫ b

a
f(y)ψν(y) dy

)2
, which was es-

tablished in the last section, the right hand side of the above expression vanishes with
increasing n.

Proof. Let
ν=n+m∑
ν=n

|Uν(z)| =
∑
k

Uk(z)−
∑
ρ

Uρ(z),

where k runs through the the indices n, n+1, · · · , n+m for which the terms of the sum
are positive at the particular value of z, and ρ runs through the indices corresponding
to negative terms.

If the sum and the integral on the left hand side are interchanged, it follows from
the inequality of Schwarz, which was given in the last section, that

∑
k

Uk(z) ≤

√∫ b

a

(
Q(z, x)

)2
dx ·

√√√√∫ b

a

(∑
k

ψk(x)
∫ b

a
f(y)ψk(y) dy

)2
dx.
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Since the functions are pairwise orthogonal and normalized,

∫ b

a

(∑
k

ψk(x)
∫ b

a
f(y)ψk(y) dy

)2
dx =

∑
ν

(∫ b

a
f(y)ψν(y) dy

)2

≤
ν=∞∑
ν=n

(∫ b

a
f(y)ψν(y) dy

)2
,

and hence

∑
k

Uk(z) ≤
√
A

√√√√k=∞∑
k=n

(∫ b

a
f(y)ψν(y) dy

)2
.

We get the same inequality for

−
∑
ρ

Uρ(z),

and the inequality to be established follows upon adding these two inequalities.

Corollary. If we take Q(z, x) to the the discontinuous function that is +1 for
x ≤ z and 0 for x > z, it follows that the series

ν=∞∑
ν=1

∫ b

a
f(y)ψν(y) dy ·

∫ z

a
ψν(x) dx

is absolutely and uniformly convergent for a ≤ z ≤ b.

§ 3.

The Replacement of Linearly Independent Systems of Functions by
Orthogonal Systems

Let ϕ1(x), ϕ1(x), · · · , ϕn(x) be n continuous, real functions defined for a ≤ x ≤ b
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that are assumed to be linearly independent. Then we construct the functions*)

ψ1(x) = ϕ1(x)vuuut b∫
a

`
ϕ1(y)

´2
dy

ψ2(x) =
ϕ2(x)− ψ1(x)

b∫
a

ϕ2(z)ψ1(z) dzvuuut b∫
a

`
ϕ2(y)− ψ1(y)

b∫
a

ϕ2(z)ψ1(z) dz
´2
dy

...

ψn(x) =
ϕn(x)−

ρ=n−1X
ρ=1

ψρ(x)

b∫
a

ϕn(z)ψρ(z) dzvuuut b∫
a

`
ϕn(y)−

ρ=n−1X
ρ=1

ψρ(y)

b∫
a

ϕn(z)ψρ(z) dz
´2
dy

.

By means of these formulas, for each ν, ψν(x) is represented recursively as a linear
homogeneous combination of ϕ1(x), ϕs(x), · · · , ϕν(x) with constant coefficients, and
conversely, ϕν(x) is similarly represented by ψ1(x), ψ2(x), · · · , ψν(x). To wit, no de-
nominator in any of the formulas can vanish. For if ν were the first index for which it
happened, we would have to have

ϕν(x)−
ρ=ν−1∑
ρ=1

ψρ(x)
∫ b

a
ϕν(z)ψρ(z) dz = 0.

Since the ψρ(x) can be written as linear, homogeneous combinations of ϕ1(x), ϕ2(x),
· · · , ϕν−1(x) with constant coefficients, we would then obtain a contradiction of the
assumed linear independence of the functions ϕ1(x), ϕ1(x), · · · , ϕn(x). Moreover, the
functions ψ1(x), ψ2(x), · · · , ψn(x) form a system of orthogonal, normalized functions;
that is, they satisfy the equation∫ b

a
ψµ(x)ψν(x) dx = 0 or 1,

according as µ and ν are distinct or equal. To begin with, this is clear for the functions
ψ1(x) and ψ2(x). If we now assume the normality and the orthogonality of the system

8*) In essence, J. P. Gram presented the same formulas in the paper “Ueber die Entwickelung reeler
Functionen in Reihen mittelst der Methode der kleinsten Quadrate,” Crelles Journal V. 94.
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ψ1(x), ψ2(x), · · · , ψν−1(x), then the same follows for the system ψ1(x), ψ2(x), · · · ,
ψν−1(x), ψν(x); for∫ b

a
(ψν(x))

2 dx = 1 and
∫ b

a
ψν(x)ψρ(x) dx = 0 for ρ ≤ ν − 1.

If the functions ϕ1(x), ϕ2(x), · · · , ϕn−1(x) form a linearly independent system but
the functions ϕ1(x), ϕ2(x), · · · , ϕn(x) do not, then the linear dependence of the last
sequence is given by the equation

ϕn(x)−
ρ=n−1∑
ρ=1

ψρ(x)
∫ b

a
ϕn(z)ψρ(z) dz = 0.

For if this expression did not vanish identically, then the functions ψ1(x), ψ2(x), · · · ,
ψn(x) could be represented as a linear homogeneous combination with constant co-
efficients of the functions ϕ1(x), ϕ2(x), · · · , ϕn(x), and hence—because of the linear
dependence of the latter functions—of the functions ϕ1(x), ϕ2(x), · · · , ϕn−1(x). Thus
the functions ψ1(x), ψ2(x), · · · , ψn(x) would have to be linearly dependent. But that
is impossible; for in a orthogonal system there can be no equation of the form∑

ν

cνψν(x) = 0,

unless all the cν are zero, a fact that follows on multiplying this equation by ψν(x) dx
and integrating from a to b.

Thus in the numerators of the expressions under consideration we have a sequence of
homogeneous linear forms of the functions ϕ1(x), ϕ2(x), · · · , ϕn(x) with the following
property. If the functions are linearly dependent, the vanishing of one of the forms is
not just a necessary and sufficient condition indicating the dependence but exhibits the
dependence itself.

Concluding remark. All the formulas and results of this chapter, with the
exception of the corollary in § 2, remain valid when x, y, and z are points from a
bounded n-dimensional domain consisting of a finite number of analytic pieces in an
(n+m)-dimensional space. In this case dx, dy, and dz are the corresponding [differential]
elements.
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Chapter II

On the Linear Symmetric Integral Equation.

§ 4.

The Concept of Eigenfunction.

Let K(s, t) be a real continuous function defined for a ≤ s ≤ b, a ≤ t ≤ b that is
symmetric in s and t. If ϕ(s) is any continuous function, real or complex, that does not
vanish identically and that satisfies

ϕ(s) = λ

∫ b

a
K(s, t)ϕ(t) dt

identically in s (here λ is a constant), then ϕ(s) is called an an eigenfunction of the
kernel K(s, t) corresponding to the eigenvalue λ.

Two eigenfunctions ϕµ(s) and ϕν(s) corresponding to distinct eigenvalues are mu-
tually orthogonal; i.e., they satisfy the the equation∫ b

a
ϕµ(s)ϕν(s) ds = 0.

For we have

ϕµ(s) = λµ

∫ b

a
K(s, t)ϕµ(t) dt

and

ϕν(s) = λν

∫ b

a
K(s, t)ϕν(t) dt.

If we multiply the first of these equations by λνϕν(s) ds, the second by λµϕµ(s) ds,
integrate from a to b, and subtract, then by the symmetry of K(s, t) we get

(λν − λµ)
∫ b

a
ϕµ(s)ϕν(s) ds = 0,

from which the equation to be established follows.
If ϕν(s) were an eigenfunction of K(s, t) corresponding to a complex eigenvalue, then

the function conjugate to ϕν(s) would correspond to the conjugate eigenvalue. Because
these two eigenvalues are distinct, ϕν(s) and the function conjugate to ϕν(s) would have
to be orthogonal, which is impossible since the integral of the product of two conjugate
functions is always greater than 0. Thus, all eigenvalues of the kernel K(s, t) are real.
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If ψ(s) is a complex eigenfunction, it follows from the fact that the corresponding
eigenvalue must be real that ψ(s) = ϕ(s)+iϕ̄(s), where ϕ(s) and ϕ̄(s) are real eigenfunc-
tions corresponding to the same eigenvalue. Because of this, only real eigenfunctions
will be treated in the remaining theorems of this chapter, and the term “eigenfunction”
will refer only to real eigenfunctions.

§ 5.

The Full Normalized Orthogonal System.

The number of linearly independent eigenfunctions corresponding to a particular
eigenvalue is finite.

Proof: Any linear, homogeneous combination of eigenfunctions corresponding to the
same eigenvalue yields an eigenfunction that also corresponds to that eigenvalue. Hence
if the construction of § 3 is applied to any system of linearly independent eigenfunctions
corresponding to the eigenvalue λ, the result is a normalized and mutually orthogonal
system of just as many eigenfunctions of the same eigenvalue. Denote these by ϕ1(s),
ϕ2(s), . . . , ϕn(s). By Bessel’s inequality from § 1, for each s∫ b

a
(K(s, t))2 dt ≥

ν=n∑
ν=1

(∫ b

a
K(s, t)ϕν(t) dt

)2 = 1
λ2

ν=n∑
ν=1

(ϕ(s))2 .

If we multiply this inequality by ds and integrate from a to b, then taking into account
the fact that ∫ b

a
(ϕν(s))

2 = 1

we get the relation

n ≤ λ2

∫ b

a

∫ b

a
(K(s, t))2 ds dt,

which establishes the assertion.
If the number of linearly independent eigenfunctions corresponding to an eigenvalue

is equal to m, the eigenvalue in question is said to be m-fold.
We will call a system of normalized and mutually orthogonal eigenfunctions of the

kernel K(s, t) a full ∗ normalized orthogonal system of the kernel if each eigenfunction
of the kernel can be represented as a homogeneous linear combination with constant
coefficients of a finite number of functions of the system.

The functions appearing in the representation of an eigenfunction by functions of
the system along with the function itself must all correspond to the same eigenvalue.

∗“Complete” is a more natural translation of the German Vollständig. However, the term complete
has come to be used in a somewhat different sense in functional analysis.
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For let
ψ(s) =

∑
ν

cνϕν(s)

be such a representation of the eigenfunction ψ(s) in terms of functions of the system.
Then because of the orthogonality of the ϕν(s), we have

cν =
∫ b

a
ψ(s)ϕν(s) ds.

But as we showed earlier, this expression vanishes when ψ(s) and ϕν(s) corresponding
to different eigenvalues.

A full normalized orthogonal system for the kernel K(s, t) may be obtained by ap-
plying the construction of § 3 to each eigenvalue λ to form as many normalized and
mutually orthogonal eigenfunctions as the multiplicity of λ.

If ϕρ(t) runs through an arbitrary finite number of functions from a full normalized
orthogonal system of the kernel K(s, t), then the inequality∫ b

a
(K(s, t))2 dt ≥

∑
ρ

(∫ b

a
K(s, t)ϕρ(t) dt

)2 =
∑
ρ

1
λ2

ρ
(ϕρ(s))

2 ,

or ∫ b

a

∫ b

a
(K(s, t))2 ds dt ≥

∑
ρ

1
λ2

ρ

follows from Bessel’s inequality. From this it follows that the eigenvalues of a kernel
K(s, t), numbered according to their multiplicities, cannot have a finite point of accu-
mulation. Therefore, if they are arranged in a sequence according to their absolute values
and if there are infinitely many of them, then their absolute values grow without bound.

§ 6

The Iterated Kernels.*)

We define
K1(s, t) = K(s, t),

K2(s, t) =
∫ b

a
K(s, r)K1(r, t) dr,

Kν(s, t) =
∫ b

a
K(s, r)Kν−1(r, t) dr.

8*) Cf. H. A. Schwartz l.c. Fredholm l.c. p.384. Hilbert l.c. pp.244–247.
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If one regards Kn+1(s, t) as an n-fold integral of the explicit product of n + 1 kernels,
then it is obvious that

Kµ+ν(s, t) =
∫ b

a
Kµ(s, r)Kν(r, t) dr (1)

and
Kν(s, t) = Kν(t, s).

Moreover, none of the functions Kn(s, t) can vanish identically in s and t. For if it were
true that

Kn(s, t) = 0,

then
Kn+1(s, t) = 0.

According to (1) we would then have∫ b

a
Kn1(s, r)Kn1(r, t) dr = 0,

where n1 denotes the one of the the two numbers n
2 and n+1

2 that is an integer. Hence
we would have

0 =
∫ b

a
Kn1(s, r)Kn1(r, t) dr =

∫ b

a
(Kn1(s, r))2 dr,

from which it would follow that Kn1 vanishes identically in s and t. By repeating
this reduction sufficiently many times, we would find that K(s, t) vanishes identically,
contrary to hypothesis.

Let

ϕ(s) = λ

∫ b

a
K(s, t)ϕ(t) dt.

Then

ϕ(s) = λn
∫ b

a
Kn(s, t)ϕ(t) dt.

Thus any eigenfunction of the kernel K(s, t) is also and eigenfunction of the kernel
Kn(s, t).

Conversely, suppose

ψ(s) = c

∫ b

a
Kn(s, t)ψ(t) dt.
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Let the function χν(s) be defined by the equation

nχν(s) = ψ(s) + hν

∫ b

a
K(s, t)ψ(t) dt+ h2

ν

∫ b

a
K2(s, t)ψ(t) dt+ · · ·

+ hn−1
ν

∫ b

a
Kn−1(s, t)ψ(t) dt (ν = 1, 2, 3, · · · , n),

where hν runs through the roots of the equation hn = c. Then because
ν=n∑
ν=1

hkν is nonzero

if and only if k is divisible by n, we have

ψ(s) =
ν=n∑
ν=1

χν(s). (2)

Moreover, we have

χν(s) = hν

∫ b

a
K(s, t)χν(t) dt.

Therefore, as long as χν(s) does not vanish identically, which according to (2) cannot
be the case for all ν, it is an eigenfunction of the kernel K(s, t). Since by § 4 the kernel
has only real eigenvalues, χν(s) must vanish identically for all nonreal hν . Hence if n is
odd and one writes h1 = n

√
c for the real root of the equation hn = c, then

ψ(s) = n
√
c

∫ b

a
K(s, t)ψ(t) dt.

On the other hand, if n is even, c must be positive. Thus if we write h1 = + n
√
c and

h2 = − n
√
c for the two real roots of the equation hn = c, then

ψ(s) = χ1(s) + χ2(s),

χ1(s) = + n
√
c

∫ b

a
K(s, t)χ1(t) dt,

χ2(s) = − n
√
c

∫ b

a
K(s, t)χ2(t) dt,

which implies that at most one of the two functions χ1(s) and χ2(s) can vanish iden-
tically. Therefore, if n is odd, each eigenfunction of Kn(s, t) is an eigenfunction of
K(s, t). On the other hand, if n is even, each eigenfunction of Kn(s, t) is either an
eigenfunction of K(s, t) or is a sum of two such eigenfunctions.

Any full normalized orthogonal system of the kernel K(s, t) is also a full normalized
orthogonal system for the kernel Kn(s, t).
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§ 7.

The Fundamental Theorem.

Each kernel K(s, t) that does not vanish identically has at least one eigenfunction.
In order not to disturb the flow of ideas, I will leave the proof for this fundamental
theorem for § 11.

§ 8.

Expansion of the Kernel and Its Iterates.

Let the functions ϕ1(s), ϕ2(s), · · · , ϕν(s), · · · form a full normalized orthogonal
system of the kernel K(s, t), and let their eigenvalues λ1, λ2, · · · , λν , · · · be ordered
according to absolute value. If the series∑

ν

ϕν(s)ϕν(t)
λν

converges uniformly for a ≤ s ≤ b, a ≤ t ≤ b, then

K(s, t) =
∑
ν

ϕν(s)ϕν(t)
λν

. (3)

In particular, it follows that this equation is always true if the number of eigenfunctions
of the full normalized orthogonal system is finite.

Proof: We set
K(s, t)−

∑
ν

ϕν(s)ϕν(t)
λν

= Q(s, t).

Then Q(s, t) is also a continuous symmetric function of s and t, and∫ b

a
Q(s, t)ϕν(t) dt = 0 (4)

for all values of ν. Now if Q(s, t) were not identically zero, by the fundamental theorem
of the last section there would have to be a continuous function ψ(s) such that

ψ(s) = c

∫ b

a
Q(s, t)ψ(t) dt.

From (4) it follows that for all values of ν∫ b

a
ψ(s)ϕν(s) ds = 0. (5)
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Hence ∫ b

a
Q(s, t)ψ(t) dt =

∫ b

a
K(s, t)ψ(t) dt,

and

ψ(s) = c

∫ b

a
K(s, t)ψ(t) dt.

Thus ψ(s) would be an eigenfunction for the kernel K(s, t) which, by equation (5),
is orthogonal to all the functions ϕν and which cannot be represented by them as a
homogeneous linear combination with constant coefficients, contradicting the hypothesis
that the functions ϕ1(s), ϕ2(s), · · · , ϕν(s), · · · form a full normalized orthogonal system
of the kernel K(s, t). Therefore, Q(s, t) is identically zero, which is what was to be
shown.

From this we conclude: It is always true that

K4(s, t) =
∑
ν

ϕν(s)ϕν(t)
λ4

ν
, (6)

and the series on the right converges absolutely and uniformly. For by § 6 the functions
ϕν(s) form a full normalized orthogonal system of the kernelK4(s, t) with corresponding
eigenvalues λ4

ν . Hence our assertion follows from the one just proved, provided only that
the absolute and uniform convergence of the series can be established. But

ν=n+m∑
ν=n

∣∣∣ϕν(s)ϕν(t)
λ4

ν

∣∣∣ ≤ 1
2λ2

n

(ν=n+m∑
ν=n

(ϕν(s))2

λ2
ν

+
ν=n+m∑
ν=n

(ϕν(t))2

λ2
ν

)
.

Since by Bessel’s inequality∫ b

a
(K(s, t))2 dt ≥

ν=n+m∑
ν=n

(∫ b

a
K(s, t)ϕν(t) dt

)2

=
ν=n+m∑
ν=n

(ϕν(s))2

λ2
ν

,

it follows that
ν=n+m∑
ν=n

∣∣∣ϕν(s)ϕν(t)
λ4

ν

∣∣∣ ≤ 1
2λ2

n

∫ b

a
(K(s, t))2 dt,

from which follows the absolute and uniform convergence that was to be establish.
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§ 9

Expansion of Arbitrary Functions.9

As in the previous sections, let the functions ϕ1(s), ϕ2(s), · · · , ϕν(s), · · · form a
full normalized orthogonal system for the kernel K(s, t), and let their eigenvalues λ1,
λ2, · · · , λν , · · · be ordered according to absolute value. If h(s) is a continuous function
such that ∫ b

a
K(s, t)h(t) dt = 0,

then by multiplying this equation by ϕν(s) and integrating from a to b we get the equation∫ b

a
h(s)ϕν(s) ds = 0,

which is valid for all ν. Conversely if this equation holds for all ν, then∫ b

a
K(s, t)h(t) dt = 0.

Proof. If the equation
K4(s, t) =

∑
ν

ϕν(s)ϕν(t)
λ4

ν
,

which was established in the last section, is multiplied by h(s)h(t) ds dt and integrated
with respect to s and t from a to b, it follows that

0 =
∫ b

a

∫ b

a
K4(s, t)h(s)h(t) ds dt

=
∫ b

a
dr

∫ b

a
K2(s, r)h(s) ds

∫ b

a
K2(t, r)h(t) dt

=
∫ b

a
dr
(∫ b

a
K2(s, r)h(s) ds

)2
.

Hence ∫ b

a
K2(s, r)h(s) ds = 0

9Cf. Hilbert l.c. pp.72–78, Stekloff l.c. pp.404–425.
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identically in r, and consequently

0 =
∫ b

a

∫ b

a
K2(s, t)h(s)h(t) ds dt.

By repeating the reduction we have just used we get∫ b

a
K(r, s)h(s) ds = 0

identically in r, which is what was to be proved.
Let the continuous function g(s) be represented by the equation

g(s) =
∫ b

a
K(s, t)p(t) dt,

where p(t) is a continuous function. Then

g(s) =
∑
ν

ϕν(s)
∫ b

a
g(t)ϕν(t) dt =

∑
ν

ϕν(s)
λν

∫ b

a
p(t)ϕν(t) dt

=
∑
ν

∫ b

a
K(s, t)ϕν(t) dt

∫ b

a
p(t)ϕν(t) dt,

and the series on the right converges absolutely and uniformly.
Proof. We can deduce the absolute and uniform convergence of the series from the

third form of its general term and the convergence theorem proved in § 2.
If we set

g(s)−
∑
ν

ϕν(s)
∫ b

a
g(t)ϕν(t) dt = h(s),

then for all ν ∫ b

a

∫ b

a
h(s)ϕν(s) ds = 0, (7)

and hence by the theorem just established∫ b

a
K(s, t)h(t) dt = 0. (8)

Now ∫ b

a
(h(s))2 =

∫ b

a
h(s)g(s) ds−

∑
ν

∫ b

a
h(s)ϕν(s) ds

∫ b

a
g(t)ϕν(t) dt.
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Since by (7) the sum on the right vanishes, we have by (8)

∫ b

a
(h(s))2 =

∫ b

a
h(s)g(s) ds =

∫ b

a
p(r)dr

∫ b

a
K(s, r)h(s) ds = 0.

Hence h(s) is identically zero, which is what was to be established.
Let p(s) and q(s) be two continuous functions. If the equation just established is

multiplied by q(s) ds and integrated from a to b, the result is

∫ b

a

∫ b

a
K(s, t)q(s)p(t) ds dt =

∑
ν

1
λν

∫ b

a
q(s)ϕν(s) ds

∫ b

a
p(t)ϕν(t) dt.

This is Hilbert’s fundamental formula, which he obtained from the canonical decompo-
sition of a quadratic form by passage to the limit. From it he then derived the results of
§ 8 and the first theorem of § 9 for all kernels and the expansion theorem for “general”
kernels.

§ 10.

The Inhomogeneous Linear Integral Equation.

Given a continuous function f(s), we wish to determine a continuous function ϕ(s)
such that

f(s) = ϕ(s)− λ

∫ b

a
K(s, t)ϕ(t) dt. (9)

Set

ϕ(s) = f(s) + g(s).

Then

g(s) = λ

∫ b

a
K(s, t) (f(t) + g(t)) dt. (10)

Hence from the expansion theorem of the last section,

g(s) =
∑
ν

ϕν(s)
∫ b

a
g(t)ϕν(t) dt, (11)

where the ϕν(s) range over a full normalized orthogonal system for the kernel K(s, t)
and the series is absolutely and uniformly convergent. Multiplying (10) by ϕν(s) ds and
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integrating, we get∫ b

a
g(s)ϕν(s) ds = λ

∫ b

a

(
f(t) + g(t)

)
dt

∫ b

a
K(s, t)ϕν(s) ds,∫ b

a
g(t)ϕν(t) dt = λ

λν

∫ b

a
f(t)ϕν(t) dt+ λ

λν

∫ b

a
g(t)ϕν(t) dt,∫ b

a
g(t)ϕν(t) dt = λ

λν−λ

∫ b

a
f(t)ϕν(t) dt.

(12)

Hence by (11)

ϕ(s) = f(s) + λ
∑
ν

ϕν(s)
λν−λ

∫ b

a
f(t)ϕν(t) dt. (13)

Conversely, when λ is distinct from all λν , the above series converges absolutely and
uniformly by the results of § 2 since

ϕν(s)
λν−λ

∫ b

a
f(t)ϕν(t) dt = 1

1− λ
λν

∫ b

a
K(s, t)ϕν(t) dt

∫ b

a
f(t)ϕν(t) dt.

Moreover, if we substitute equation (13) into equation (9) and take into account the
equation ∫ b

a
K(s, t)f(t) dt =

∑
ν

ϕν(s)
λν

∫ b

a
f(t)ϕν(t) dt,

which follows from the expansion theorem of the previous section, we find that (13)
represents a solution of equation (9). We therefore see that if λ is not an eigenvalue of
the kernel K(s, t) then equation (9) has one and only solution given by equation (13).
However, if λ is a k-fold eigenvalue, it follows from (12) that for equation (9) to have a
solution the k equations ∫ b

a
f(t)ϕn+ν(t) dt = 0

must be satisfied, where n+ 1, n+ 2, . . . , n+ k are the indices of the eigenfunction of
the full normalized orthogonal system that correspond to the k-fold eigenvalue. In this
case, as substitution in equation (9) shows,

ϕ(s) = f(s) + a1ϕn+1(s) + a2ϕn+2(s) + · · ·+ akϕn+k(s)
+ λ

∑
ν
ϕν(s)
λν−λ

∫ b
a f(t)ϕν(t) dt,

where ν ranges through all indices of the orthogonal system with the exception of n+ 1,
n+2, . . . , n+k and a1, a2, . . . , ak, are arbitrary constants. These results for symmetric
kernels are essentially the same as the [general] theorems that Fredholm proved by means
of his series.
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§ 11.

Proof of the Fundamental Theorem

We now turn to the proof of the fundamental theorem — every kernel has at least
one eigenfunction —which we postponed in § 7.

Set

U1 =
∫ b

a
K1(s, s) ds, U2 =

∫ b

a
K2(s, s) ds, · · · , Un =

∫ b

a
Kn(s, s) ds, · · · .

Then it follows from (1) in § 6 that

Uµ+ν =
∫ b

a

∫ b

a
Kµ(s, r)Kν(s, r) dr ds, (14)

U2ν =
∫ b

a
(Kν(s, r))2 dr ds. (15)

Now since Kν(s, t) cannot vanish identically, as we showed in § 6, it follows that all U2ν

are different from zero and positive. Let n ≥ 2. If we substitute n+1 for ν and n−1 for
µ in (14) and apply Schwarz’s inequality from § 1 (which according to the concluding
remark in the first chapter is also valid for multiple integrals), we get

U2
2n ≤ U2n−2U2n+2,

or
U2n
U2n−2

≤ U2n+2

U2n
.

If we now set
U2n+2

U2n
= cn, (16)

then
cn−1 ≤ cn. (17)

Now by equation (1) of § 6,

Kµ+ν(s, t) =
∫ b

a
Kµ(s, r)Kν(r, t) dr,

(Kµ+ν(s, t))2 ≤
∫ b

a
(Kµ(s, r))2 dr

∫ b

a
(Kν(t, r))2 dr,∫ b

a

∫ b

a

(
Kµ+ν(s, t)

)2
ds dt ≤

∫ b

a

∫ b

a
(Kµ(s, r))2 dr ds ·

∫ b

a

∫ b

a
(Kν(t, r))2 dr dt.
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Therefore by (15)
U2µ+2ν ≤ U2µ · U2ν ,

U2ν ≥ U2µ+2ν

U2µ
,

and by (16) and (17)
U2ν ≥ cνµ. (18)

In view of (17),
lim
µ=∞

cµ = c,

where c is a finite, positive number. Moreover

U2ν
cν ≥ 1. (19)

Because cn ≤ c, it follows from (16) that

U2n+2

cn+1 ≤ U2n
cn . (20)

From (19) and (20) it follows that

lim
n=∞

U2n
cn = U, (21)

where U ≥ 1 is finite.
Now

K2n+2m(s,t)
cn+m − K2n(s,t)

cn

= 1
c

∫ b

a

∫ b

a

K(s, r1)
{

K2n+2m−2(r1,r2)
cn+m−1 − K2n−2(r1,r2)

cn−1

}
K(r2, t) dr1 dr2.

Hence (
K2n+2m(s,t)

cn+m − K2n(s,t)
cn

)2
≤ 1

c2

∫ b

a

∫ b

a
(K(s, r1)K(r2, t))

2 dr1 dr2×

×
∫ b

a

∫ b

a
dr1 dr2

{(
K2n+2m−2(r1,r2)

cn+m−1

)2
− 2K

2n+2m−2(r1,r2)K2n−2(r1,r2)
c2n+m−2 +

(
K2n−2(r1,r2)

cn−1

)2
}
.

From this, in view of (14) and (15), it follows that

(
K2n+2m(s,t)

cn+m − K2n(s,t)
cn

)2
≤ 1

c2

∫ b

a
(K(s, r1))

2 dr1

∫ b

a
(K(t, r2))

2 dr2×

×
{
U4n+4m−4

c2n+2m−2
− 2

U4n+2m−4

c2n+m−2
+
U4n−4

c2n−2

}
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Now as n increases, the expression on the right side becomes infinitely small, inde-

pendently ofm, s, and t. From this it follows that with increasing n,
K2n(s, t)

cn
converges

uniformly to a necessarily continuous function u(s, t), which, since∫ b

a
u(s, s) ds = lim

n=∞

∫ b

a

K2n(s,s)
cn ds = lim

n=∞

U2n

cn
= U ≥ 1,

cannot vanish identically in s and t. Moreover, from

K2n+2(s, t)
cn+1

=
1
c

∫ b

a
K2(s, r)K

2n(r,t)
cn dr,

it follows that

u(s, t) =
1
c

∫ b

a
K2(s, r)u(r, t) dr.

If we now choose a value t1 for which u(s, t1) does not vanish identically in s, then by
the last equation u(s, t1) is an eigenfunction of the kernel K2(s, t). From this it follows
according to § 6 that K(s, t) must also have an eigenfunction, which is what was to be
proved.

§ 12.

Generalization of the Hypotheses

We can allow the symmetric kernel to be discontinuous in cases that satisfy the
following conditions.

I. The point set in the s, t-plane consisting of the points of discontinuity of K(s, t)
(and which is therefore closed) has outer content zero on any line s = const.

II.
∫ b

a
(K(s, t))2 dt is defined and finite for a ≤ s ≤ b and represents a continuous

function of s.
Let the square domain of definition of K(s, t) be divided into 22n equal squares

by lines parallel to the sides and let Qn denote the region formed from the union of
the squares that have points of discontinuity of K(s, t) in their interiors or on their
boundaries. Then the following result can be proved with no difficulty from I and II:
for any arbitrarily small positive quantity ε there is a number n such that for all lines
s = const. the total size of the region covered by Qn and the value of the integral∫

Qn

(K(s, t))2 dt
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taken over the totality of this region are both less than ε.*)
From this it first of all follows that for all lines s = const.∫

Qn

|K(s, t)|dt < ε.

For by the Schwarz inequality(∫
Qn

|K(s, t)| dt
)2 ≤ ∫

Qn

(K(s, t))2 dt ·
∫
Qn

dt ≤ ε2.

From the inequality just established it easily follows that the planar content of the
set of points of discontinuity of K(s, t) is zero. For any continuous function m(t),∫ b

a
(K(s, t))m(t) dt and

∫ b

a
(K(s, t))2m(t) dt is well determined and finite for a ≤ s ≤

b and represents a continuous function of s. Similarly one can easily prove by an
application of the Schwarz inequality to the integral over the product of two kernels
that

K2(s, t) =
∫ b

a
K(s, r)K(r, t) dr

is well determined and finite for a ≤ s ≤ b, a ≤ s ≤ b and represents a continuous
function of s and t, which because

K2(s, s) =
∫ b

a
(K(s, r))2 dr

can vanish identically only if K(s, t) vanishes identically in its region of continuity.
These consequences of the assumptions I and II easily ensure that all the operations

occurring in §§ 4, 5, 6, especially the frequent exchange of the order of integration, are
legitimate.*) Thus the theorems and proofs of §§ 4, 5, 6 remain valid as they are. The
fundamental theorem stated in § 7 still stands, since K2, which is a continuous kernel,
must have eigenfunctions, and from this the existence of eigenfunctions of K(s, t) follows
as in § 6.

In § 8 the validity of equation (3) is confined to the region of continuity of the kernel,
while equation (6) is remains valid as is. In §§ 9 and 10 all theorems and proofs are
unchanged.

It is also permissible for the conditions I and II to be violated along a finite number
of lines s = const., where the kernel takes on different values at the two boundaries
of each line. However, I and II must be assumed to hold in each of the rectangles,

9*)Instead of the assumptions I and II, one can require that I and this inequality be satisfied. From
these assumptions II easily follows.

9See, e.g., Jordan, Cours d’Analyse, V. II, Ch. II, II [sic].
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including their boundaries, into which the square of definition of the kernel is divided
by the lines. Moreover, both the eigenfunctions and the solutions of the inhomogeneous
integral equation must be allowed to jump at the values of s in question.

Further, the range of validity of the development theorem in § 9 can be extended
by replacing the assumption of the continuity of p(t) by the integrability of p(t) and its
square.

Likewise, nothing changes in the theorems and proofs of this chapter if s, t, r, . . . are
points from a bounded n-dimensional domain consisting of a finite number of analytic
pieces in an (n+m)-dimensional space. In this case ds, dt, dr, . . . are the corresponding
[differential] elements.

In this case too the conditions I and II determine a permissible range of discontinuity.

Chapter III

On the linear unsymmetric integral Equation.

§ 13.

The inhomogeneous integral equation.

Let the kernel K(s, t), which is no longer assumed to be symmetric, and the function
f(s) be real continuous functions defined for a ≤ s ≤ b, a ≤ t ≤ b. We seek a real
continuous function ϕ(s) that satisfies the integral equation

f(s) = ϕ(s)−
∫ b

a
K(s, t)ϕ(t) dt. (22)

If we set

g(t) = χ(t)−
∫ b

a
K(s, t)χ(s) ds, (23)

we get the identities

g(s)−
∫ b

a
K(s, t)g(t) dt = χ(s)−

∫ b

a
Q(s, t)χ(t) dt, (24)

∫ b

a
(g(s))2 ds =

∫ b

a
χ(s)

(
χ(s)−

∫ b

a
Q(s, t)χ(t) dt

)
ds, (25)

where

Q(s, t) = K(s, t) +K(t, s)−
∫ b

a
K(s, r)K(t, r) dr

is necessarily symmetric.
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Any real, continuous, nonzero function that causes the right-hand side of equation
(22) to vanish will be called a null solution in s of the kernel. Any real, continuous,
nonzero function that causes the right hand side of equation (23) to vanish will be called
a null solution in t. According to the first theorem of § 5 for λ = 1, whose proof does not
use the assumption of the symmetry of the kernel, the number of linearly independent
null solutions in s, as well as in t, is finite. If χ(t) is a null solution in t, if follows from
(23) and (24) that χ(t) is an eigenfunction of the symmetric kernel Q(s, t) corresponding
to the eigenvalue λ = 1. The converse follows from (25) and (23). Hence we obtain
the first set of functions as we form the second set, since they have been shown to be
identical.

Now a necessary and sufficient condition for the solution of equation (22) is the
orthogonality of f(s) to all possible null solutions in t. Moreover, all solutions may be
obtained from a single solution by the additive combination with all null solutions in
s.*)

For the necessity of this condition is easily seen by multiplying equation (22) by
a null solution in t and integrating. The straightforward application of the existence
theorem of § 10 to the symmetric integral equation

f(s) = χ(s)−
∫ b

a
Q(s, t)χ(t) dt

shows that the condition is sufficient. For by (24) the equation (22) can be reduced to
this equation by the substitution

ϕ(t) = χ(t)−
∫ b

a
K(s, t)χ(s) ds.

§ 14.

The Concept of Eigenfunction

Let K(s, t), defined for a ≤ s ≤ b, a ≤ t ≤ b, be a real continuous function that will
not be assumed symmetric. If ϕ(s) and ψ(s) are real or complex functions that are not
identically zero and that together satisfy the equations

ϕ(s) = λ

∫ b

a
K(s, t)ψ(t) dt (26)

and

ψ(s) = λ

∫ b

a
K(t, s)ϕ(t) dt, (27)

9*)This theorem was first proved by by Fredholm, loc. cit.
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then they will be said to be a pair of adjoint eigenfunctions of the kernel K(s, t) corre-
sponding to the eigenvalue λ.

We now define

K(s, t) =
∫ b

a
K(s, r)K(t, r) dr (28)

and

K(s, t) =
∫ b

a
K(r, s)K(r, t) dr. (29)

Then K(s, t) and K(s, t) are symmetric.
If we substitute (27) into (26) and (26) into (27), we get the equations

ϕ(s) = λ2

∫ b

a
K(s, t)ϕ(t) dt (30)

and

ψ(s) = λ2

∫ b

a
K(s, t)ψ(t) dt. (31)

Now if we were to have

ϕ(s) = ϕ1(s) + iϕ2(s) and ψ(s) = ψ1(s) + iψ2(s),

then, since λ2 is the eigenvalue of the symmetric kernel K(s, t) and hence, as was shown
in § 4, is real, we would have from (30) the following equations

ϕ1(s) = λ2

∫ b

a
K(s, t)ϕ1(t) dt∫ b

a
(ϕ1(s))

2 ds = λ2

∫ b

a

∫ b

a
ϕ1(s)K(s, t)ϕ1(t) ds dt

= λ2

∫ b

a
dr

∫ b

a
K(s, r)ϕ1(s) ds

∫ b

a
K(t, r)ϕ1(t) dt∫ b

a
(ϕ1(s))

2 ds = λ2

∫ b

a
dr
(∫ b

a
K(s, r)ϕ1(s) ds

)2
.

In the same way it follows that∫ b

a
(ϕ2(s))

2 ds = λ2

∫ b

a
dr
(∫ b

a
K(s, r)ϕ2(s) ds

)2
.

Now since for at least one of these two equations both sides cannot be identically zero,
it follows that λ2 is positive and hence that that λ is real. Therefore, at least one of the
pairs ϕ1(s) and ψ1(s) and ϕ2(s) and ψ2(s) must be adjoint eigenfunctions of the kernel
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K(s, t). For this reason we will treat only real pairs of adjoint eigenfunctions in what
follows and the term eigenfunction will refer only to real pairs. By a suitable choice of
the sign of ψ(s) we can assume that the eigenvalues of an unsymmetric kernel are all
positive.

Equation (26) follows from (30) if ψ(s) is defined by (27), and (31) follows follows by
the substitution of (26) in (27). Likewise, (27) follows from (31) if ϕ(s) is defined by (26),
and (30) follows by the substitution of (27) in (26). Therefore, to each eigenfunction
of the symmetric kernel K(s, t) there corresponds an eigenfunction of the symmetric
Kernel K(s, t) and conversely—and in such a way that this pair of functions forms a
pair of eigenfunctions of the unsymmetric kernel K(s, t).

§ 15

The full normalized orthogonal system of an unsymmetric kernel.

The adjoint functions of a full normalized orthogonal system of the kernel K(s, t)
form a full normalized orthogonal system of the kernel K(s, t), and conversely.

Proof.∫ b

a
ψµ(r)ψν(r) dr =

∫ b

a
dr λµ

∫ b

a
K(t, r)ϕµ(t) dt λν

∫ b

a
K(s, r)ϕν(s) ds

= λµλν

∫ b

a
K(s, t)ϕµ(t)ϕµ(s) ds dt.

It follows from (30) that∫ b

a
ψµ(s)ψν(s) ds = λν

λµ

∫ b

a
ϕµ(s)ϕν(s) ds.

It therefore follows from this equation that if the functions ϕ1, ϕ2, · · · , ϕn, · · · form
a full normalized orthogonal system of the kernel K(s, t), then the adjoint functions
ψ1, ψ2, · · · , ψn, · · · are all normalized and pairwise orthogonal. Now let ψ(s) be an
eigenfunction of K(s, t) and let ϕ(s) be its adjoint, which is therefore and eigenfunction
of K(s, t). Then according to our assumption [of the fullness of the system of the ϕν ]
we have

ϕ(s) =
∑
ρ

cρϕρ(s)

where ρ runs through a finite number of indices. By § 5 all the ϕρ(s) correspond to the
same eigenvalue as ϕ(s). Then from the equations

ψρ(s) = λ

∫ b

a
K(s, t)ϕρ(t) dt,

ψ(s) = λ

∫ b

a
K(t, s)ϕ(t) dt,
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it follows that
ψ(s) =

∑
ρ

cρψρ(s).

Hence the functions ψ1, ψ2, · · · , ψn, · · · form a full normalized orthogonal system for the
kernel K(s, t), which is what was to be proved. The converse is established similarly.

By a full normalized orthogonal system of the unsymmetric kernel K(s, t) we will
understand the above pair of adjoint normalized orthogonal systems of the kernels K(s, t)
and K(s, t).

§ 16

Expansion of Arbitrary Functions

Let the functions
ϕ1(s), ϕ2(s), · · · , ϕn(s), · · ·
ψ1(s), ψ2(s), · · · , ψn(s), · · ·

corresponding to the eigenvalues λ1, λ2, · · · , λn · · · (which are ordered by magnitude)
form a full normalized orthogonal system of the unsymmetric kernel K(s, t) as defined
in the previous section. Then we have the following theorem:

If h(s) is a continuous function and∫ b

a
K(t, s)h(t) dt = 0

identically in s, then for all ν ∫ b

a
h(s)ϕν(s) ds = 0.

This can be shown by multiplying equation (26) by h(s) ds and integrating from a to b.
Similarly, if ∫ b

a
K(s, t)h(t) dt = 0

identically in s, then for all ν ∫ b

a
h(s)ψν(s) ds = 0.

Conversely, if for all ν ∫ b

a
h(s)ϕν(s) ds = 0.
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then the equation ∫ b

a
K(t, s)h(t) dt = 0

holds; and if for all ν ∫ b

a
h(s)ψν(s) ds = 0,

then the equation ∫ b

a
K(s, t)h(t) dt = 0

holds.
Proof. We will prove only the first assertion, since the proof of the second is

the same. Since by hypothesis h(s) is orthogonal to all functions of a full normalized
orthogonal system for the symmetric kernel K(s, t), it follows from § 9 that∫ b

a
K(s, t)h(t) dt = 0

and

0 =
∫ b

a

∫ b

a
K(s, t)h(s)h(t) ds dt

=
∫ b

a
dr

∫ b

a
K(s, r)h(s) ds

∫ b

a
K(t, r)h(t) dt

=
∫ b

a
dr
(∫ b

a
K(s, r)h(s) ds

)2
.

It follows that ∫ b

a
K(s, r)h(s) ds = 0

identically in r— which is what was to be proven.
If

g(s) =
∫ b

a
K(s, t)h(t) dt,

where h(t) is a continuous function, then

g(s) =
∑
ν

ϕν(s)
∫ b

a
g(t)ϕν(t) dt

=
∑
ν

ϕν(s)
λν

∫ b

a
h(t)ψν(t) dt

=
∑
ν

∫ b

a
K(s, t)φν(t) dt

∫ b

a
h(t)ψν(t) dt.
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If

g(s) =
∫ b

a
K(t, s)h(t) dt,

then

g(s) =
∑
ν

ψν(s)
∫ b

a
g(t)ψν(t) dt

=
∑
ν

ψν(s)
λν

∫ b

a
h(t)ϕν(t) dt

=
∑
ν

∫ b

a
K(t, s)ϕν(t) dt

∫ b

a
h(t)ϕν(t) dt.

The series in the right-hand sides of both equations converge absolutely and uniformly.
Proof. We will only prove the first assertion, since the proof of the second is the

same. From the third representation of the general term in the series, the convergence
theorem in § 2 allows us to conclude that the series converges absolutely and uniformly.
If we now set

g(s)−
∑
ν

ϕν(s)
∫ b

a
g(t)ϕν(t) dt = f(s),

then it follows that ∫ b

a
f(s)ϕν(s) ds = 0. (32)

From this and the theorem we have just proved it follows that∫ b

a
K(t, s)f(t) dt = 0. (33)

Now by (33)∫ b

a
(f(s))2 ds =

∫ b

a
f(s)g(s) ds =

∫ b

a
h(t) dt

∫ b

a
K(s, t)f(s) ds = 0.

Hence f(s) = 0, which was what was to be proven.
Let p(s) and q(s) be two continuous functions. Then the theorem we just proved

gives ∫ b

a
K(s, t)q(t) dt =

∑
ϕν(s)
λν

∫ b

a
q(t)ψν(t) dt.

Multiplying this equations by p(s) ds and integrating from a to b, we get∫ b

a

∫ b

a
K(s, t)p(s)q(s) ds dt =

∑
ν

1
λν

∫ b

a
p(s)ϕν(s) ds

∫ b

a
q(t)ψν(t) dt.
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This theorem corresponds to the canonical decomposition of a bilinear form.
From the theorem just proven it follows that if

∑
ν

ϕν(s)ψν(t)
λν

converges uniformly,

then
K(s, t) =

∑
ν

ϕν(s)ψν(t)
λν

. (34)

In particular, this equation always holds if the full normalized orthogonal system of the
kernel K(s, t) consists of only a finite number of pairs of functions.

§ 17.

Generalization of the Hypotheses

As an argument fully analogous to the one in § 12 shows, we can permit the discon-
tinuity of the unsymmetric kernel in cases that satisfy the following conditions.

I. The point set in the s,t-plane consisting of the points of discontinuity of K(s, t)
must have zero outer content on any line s = const., t = const..

II.
∫ b

a
(K(s, t))2 dt and

∫ b

a
(K(t, s))2 dt must be finite and well defined for a ≤ s ≤ b

and represent continuous functions of s that are not identically zero.
Then all the theorems and proofs of this chapter continue to hold. Only the validity

of equation (34) depends on the continuity of K(s, t).
Likewise, nothing is changed in the theorems and proofs in this chapter, when s, t,

and r are points from a bounded n-dimensional domain consisting of a finite number
of analytic pieces in an (n +m)-dimensional space. Here ds, dt, and dr are the corre-
sponding [differential] elements. In this case too, the conditions I and II determine a
realm in which discontinuity is permitted.

Chapter IV

On the Best Approximation of Functions of Two Variables by
Sums of Projects of Functions of One Variable

§ 18.

The approximation theorem.

Let K(s, t) be a real continuous function defined on a ≤ s ≤ b, a ≤ t ≤ b. We
wish to approximate K(s, t) as well as possible by a sum of at most m products of a
continuous function of s and a continuous function of t. Here, as usual, we will take
as the measure [of the quality] of the approximation the double integral of the square
error ranging over the domain of definition of the given function.
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Let the functions
ϕ1(s), ϕ2(s), · · · , ϕν(s), · · · ,
ψ1(s), ψ2(s), · · · , ψν(s), · · · ,

corresponding to the eigenvalues λ1, λ2, · · · , λν · · · arranged in ascending order form a
full normalized orthogonal system of the unsymmetric kernel K(s, t) as defined in § 15.
In the case where the number of adjoint eigenfunctions traversed by the index ν is less
than or equal to m, then equation (34) gives an immediate and trivial solution of our
problem. If, however, if this number is infinite or finite and greater than or equal to m,
then the solution is given by the sum of products

ν=m∑
ν=1

ϕν(s)ψν(t)
λν

.

Proof. The measure of the approximation Mm, whose minimum is required by the
statement of the problem, by hypothesis is defined as

Mm =
∫ b

a

∫ b

a

(
K(s, t)−

ν=m∑
ν=1

ϕν(s)ψν(t)
λν

)2

ds dt.

From the definitions (26) and (27) and in view of the of the orthogonality and
normalization of the system of functions ϕν(s) and the system of functions ψν(s), the
above expression is easily reduced to the formula

Mm =
∫ b

a

∫ b

a
(K(s, t))2 ds dt−

ν=m∑
ν=1

1
λ2

ν
. (35)

We must therefore show that∫ b

a

∫ b

a

(
K(s, t)−

ν=m∑
ν=1

ανβν
)2
ds dt ≥

∫ b

a

∫ b

a
(K(s, t))2 ds dt−

ν=m∑
ν=1

1
λ2

ν
. (36)

holds for all systems of n continuous function pairs

α1(s), α2(s), · · · , αn(s),
β1(s), β2(s), · · · , βn(s),

where n ≤ m. Here we have written αν for αν(s) and βν for βν(s). We may assume that
the functions β1, β2, · · · , βn are normalized and pairwise orthogonal. For if that were
not so, we could, as in § 3, represent them by a homogeneous combination of at most n
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such functions with linear coefficients and then order the sum of products according to
the latter. It then follows that∫ b

a

∫ b

a

(
K(s, t)−

ν=m∑
ν=1

ανβν

)2
ds dt =

∫ b

a

∫ b

a

(K(s, t))2 ds dt

+
ν=n∑
ν=1

∫ b

a

(
α2

ν − 2αν

∫ b

a

K(s, t)βν dt
)
ds

=
∫ b

a

∫ b

a

(K(s, t))2 ds dt +
ν=n∑
ν=1

∫ b

a

(
αν − 2αν

∫ b

a

K(s, t)βν dt
)2
ds

−
ν=n∑
ν=1

∫ b

a

(∫ b

a

K(s, t)βν dt
)2
ds.

(37)

The inequality (36), which we are to prove, therefore follows immediately from the
inequality

0 ≤
ν=m∑
ν=1

1
λ2

ν
−
ν=n∑
ν=1

∫ b

a

(∫ b

a
K(s, t)βν dt

)2
ds.

Moreover, since m ≤ n, this inequality follows immediately from

0 ≤
ν=n∑
ν=1

1
λ2

ν
−
ν=n∑
ν=1

∫ b

a

(∫ b

a
K(s, t)βν dt

)2
ds, (38)

which we will now establish.
According to the expansion theorem given in § 16, we have∫ b

a
K(s, t)βν dt =

∑
ρ

ϕρ(s)

λρ

∫ b

a
βνψρ(t) dt, (39)

where the sum ranges over pairs of adjunct functions ϕρ(s), ψρ(t) of the full normalized
orthogonal system. In view of the orthonormality of the system of functions ϕ(s), it
follows easily from equation (39) that∫ b

a

(∫ b

a
K(s, t)βν dt

)2
ds =

∑
ρ

1
λ2

ρ

∫ b

a
βνψρ(t) dt. (40)

Now according to Bessel’s inequality in § 1

1 =
∫ b

a
β2
ν dt ≥

∑
ρ

(∫ b

a
βνψν(t) dt

)2
, (41)
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and hence the above sum converges. It then follows from a simple transformation of the
right-hand side of equation (40) that∫ b

a

(∫ b

a
K(s, t)βν dt

)2
ds = 1

λ2
n

+
µ=n∑
µ=1

(
1
λ2

µ
− 1

λ2
n

)(∫ b

a
βνψµ(t) dt

)2
−
∑
k

(
1
λ2

n
− 1

λ2
k

)(∫ b

a
βνψk(t) dt

)2 − 1
λ2

n

[
1−

∑
ρ

(∫ b

a
βνψρ(t) dt

)2]
,

(42)

where k runs through all indices of the full orthogonal system that are greater than n.
By hypothesis the inequality

λk ≥ λn

is satisfied for all values of k. This and the inequality (41) show that

∑
k

(
1
λ2

n
− 1

λ2
k

)(∫ b

a
βνψk(t) dt

)2 ≥ 0

and
1
λ2

n

[
1−

∑
ρ

(∫ b

a
βνψρ(t) dt

)2] ≥ 0.

Hence the inequality (38) to be established follows directly from the inequality

0 ≤
ν=n∑
ν=1

1
λ2

ν
− n

λ2
n

+
ν=n∑
ν=1

µ=n∑
µ=1

(
1
λ2

µ
− 1

λ2
n

)(∫ b

a
βνψµ(t) dt

)2
=

µ=n∑
µ=1

(
1
λ2

µ
− 1

λ2
n

)[
1−

ν=n∑
ν=1

(∫ b

a
βνψρ(t) dt

)2]
,

But the fact that the last expression is nonnegative follows from the inequality

λµ ≤ λn,

which is true by hypothesis, and from Bessel’s inequality

1 =
∫ b

a

(
ψµ(t)

)
dt ≥

ν=n∑
ν=1

(∫ b

a
ψµ(t)βν(t) dt

)2
,

which true because the system of functions βν is orthonormal.
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§ 19.

The measure of the best approximation.

The measure Mm, defined in the previous section, of the best approximation to a
function K(s, t) by a sum of at most m products of a function of s and a function of t
vanishes as m grows unboundedly.

Proof. According to equation (35) the assertion to be proved can be written in
the form ∑

ρ

1
λ2

ρ
=
∫ b

a

∫ b

a
(K(s, t))2 ds dt, (43)

where λρ runs through all the eigenvalues of the unsymmetric kernel K(s, t), each
counted according to its multiplicity.

By the expansion theorem of § 16, we have∫ b

a
K(s, t)K(r, t) dt =

∑
ρ

ϕρ(s)
λρ

∫ b

a
K(r, t)ψρ(t) dt =

∑
ρ

ϕ(s)ϕ(r)
λ2

ρ
, (44)

in which the sum converges uniformly in r for fixed s and uniformly in s for fixed r. If
we set r = s, we get ∫ b

a
(K(s, t))2 dt =

∑
ρ

(ϕρ(s))2

λ2
ρ

. (45)

Equation (43), which is to be established, follows from (45) by integrating in s from a to
b, provided we can integrate the the right-hand side termwise — in particular, provided
the series on the right-hand side of (45) converges uniformly. A theorem of Deni*)
is sufficient to establish the uniform convergence of the series (45) that is required to
conclude the proof, and moreover to prove the uniform convergence of (44) in s and t
because

ϕ(s)ϕ(r)
λ2

ρ
≤ 1

2

(
(ϕρ(s))2

λ2
ρ

+ (ϕρ(r))2

λ2
ρ

)
.

Dini’s theorem states that if a series of positive, continuous functions of the variable
s defined for a ≤ s ≤ b converges so that the sum represents a continuous function then
the convergence is also uniform.

Proof. Let

v(s) =
ν=∞∑
ν=1

uν(s), (46)

where v(s) and the uν(s) are continuous and nonnegative for a ≤ s ≤ b.

9*) Dini, “Fondamenti per la teoria funzioni di variabili reali,” Pisa 1878, §99.
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Denote by Pn the point set consisting of all points for which the continuous function

Rn(s) = v(s)−
ν=n∑
ν=1

uν(s)

attains its maximum, which we will denote by Max(Rn). Then let a single point αn
be chosen from each of the point sets Pn, and let α be an accumulation point of the
point set consisting of the points α1, α2, · · · , αn, · · · . Now let ε be an arbitrarily small,
positive, nonzero quantity. By the assumed convergence of the series (46), there is an
index p such that

Rp(α) < ε
2 . (47)

By the continuity of Rp(s) and because α is an accumulation point of the point set
α1, α2, · · · , αn, · · · , we can find an index q > p such that

|Rp(αq)−Rp(α)| < ε
2 . (48)

It follows from (47) and (48) that

Rp(αq) < ε.

Now because the functions uν(s) are assumed to be positive, Rn(s) cannot be negative
an for fixed x cannot grow with increasing n. Therefore, for m > q > p

0 ≤ Max(Rm) = Rm(αm) ≤ Rq(αm) ≤ Max(Rq) = Rq(αq) ≤ Rp(αq) < ε.

Therefore
lim
n=∞

Max(Rn) = 0,

which is what was to be proved.
Concluding remarks.

Again, under the conditions stated in § 17, discontinuity in the kernel is permitted.
Likewise, nothing is changed in the theorems and proofs in this chapter, when

s, t, r, . . . are points from a bounded n-dimensional domain consisting of a finite number
of analytic pieces in an (n + m)-dimensional space. Here ds, dt, and dr, . . . are the
corresponding elements.
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Chapter V

On the Expansion of Arbitrary Functions by Prescribe Systems

§ 20.

The prescribed system of functions vanishes at the
endpoints of the interval of definition

Let ϕ1(x), ϕ2(x), · · · , ϕν(x), · · · be an infinite sequence of real, continuous, and twice
continuously differentiable functions on the interval a ≤ x ≤ b that furthermore vanish
for both x = a and x = b. In addition, let the system

ϕ′′1(x), ϕ
′′
2(x), · · ·ϕ′′ν(x), · · · ,

where we have written ϕ′′ν(x) for s2ϕν(x)
dx2 , be a closed system; that is (as we have stated

in the introduction) a system for which there is no continuous function f(x) other than
the zero function for which the equation∫ b

a
f(x)ϕ′′ν(x) dx = 0

is satisfied for all ν. We then form

ψ1(x) = ϕ1(x)qR b
a (ϕ′1(y))2

dy

ψ2(x) = ϕ2(x)−ψ1(x)
R b

a ϕ
′
2(z)ψ′1(z) dzrR b

a

“
ϕ′2(y)−ψ′1(y)

R b
a ϕ

′
2(z)ψ′1(z) dz

”2
dy

...

ψν(x) =
ϕν(x)−

Pρ=ν−1
ρ=1 ψρ(x)

R b
a ϕ

′
2(z)ψ′ρ(z) dzrR b

a

“
ϕ′ν(y)−

Pρ=ν−1
ρ=1 ψ′ρ(y)

R b
a ϕ

′
ν(z)ψ′ρ(z) dz

”2
dy

...

where we have written ϕ′ν(x) and ψ′ν(x) for dϕν(x)

dx and dψν(x)

dx .
We also note the following. As was shown in § 3, a denominator in the above

expression can vanish if and only if the corresponding function ϕ′(x) can be represented
as a homogeneous, linear combination with constant coefficients of its predecessors. But
because

ϕν(a) = 0,

any such linear, homogeneous relation between the ϕ′ν(x) remains valid for the ϕν(x)
and conversely. It therefore follows that a denominator vanishes if and only if the



Schmidt 135

corresponding function ϕn(x) is linearly dependent on its predecessors. In this case we
ignore the corresponding function ϕn(x) and proceed with the formation of the functions
ψν(x) as if the function ϕn(x) had never appeared in the first place. Then by the above
formulas, all ψν(x) are represented homogeneous linear combinations of the ϕν(x), and
vice versa.

Now let g(x) be a continuously differentiable function in the interval a ≤ x ≤ b that
vanishes for x = a and x = b. Then

g(x) =
ν=∞∑
ν=1

ψν(x)
∫ b

a
g′(y)ψ′ν(y) dy,

and the sum on the right-hand side converges absolutely and uniformly.
Proof. By § 3 we have the equations∫ b

a
ψµ(x)ψν(x) dx = 1 or 0,

depending on whether µ and ν are equal or unequal. The absolute and uniform conver-
gence of the series on the right-hand side of the equation to be proved follows from the
the corollary of § 2. We now set

g(x)−
ν=∞∑
ν=1

ψν(x)
∫ b

a
g′(y)ψ′ν(y) dy,= f(x).

Then because ∫ b

a
g(x)ψ′′ρ(x) dx = −

∫ b

a
g′(x)ψ′ρ(x) dx

and ∫ b

a
ψν(x)ψ′′ρ(x) dx = −

∫ b

a
ψ′ν(x)ψ

′
ρ(x) dx = −1 or 0

depending on whether ν and ρ are equal or unequal, it follows that for each ρ∫ b

a
f(x)ψ′′ρ(x) dx = 0.

But since each function ϕ′′ν(x) can be represented as a homogeneous linear combination
with constant coefficients of a finite number of the ψ′′ν , it follows that for each ν∫ b

a
f(x)ϕ′′ν(x) dx = 0.

Hence the assumed closure of the system of the ϕ′′ν allows us to conclude that f(x)
vanishes identically—which is what was to be proved.
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§ 21.

The general case.

Let ϕ1(x), ϕ2(x), · · · , ϕν(x), · · · be an infinite sequence of real, continuous, and twice
continuously differentiable functions on the interval a ≤ x ≤ b but which are subject to
no boundary conditions. Moreover let the system

ϕ′′1(x), ϕ
′′
2(x), · · · , ϕ′′ν(x), · · ·

be a closed system. If for each index ν we define

ϕ̄ν(x) = ϕν(x)− ϕν(a)− x−a
b−a (ϕν(b)− ϕν(a)) ,

then the following equations hold:

ϕ̄ν(a) = ϕ̄ν(b) = 0

ϕ̄′′ν(x) = ϕ′′ν(x).

Hence the system ϕ̄′′1(x), ϕ̄
′′
2(x), · · · , ϕ̄′′ν(x), · · · is also a closed system. As in the previous

section, we now construct the sequence of functions

ψ1(x) = ϕ̄1(x)qR b
a (ϕ̄′1(y))2

dy

...

ψν(x) =
ϕ̄ν(x)−

Pρ=ν−1
ρ=1 ψρ(x)

R b
a ϕ̄

′
2(z)ψ′ρ(z) dzrR b

a

“
ϕ̄′ν(y)−

Pρ=ν−1
ρ=1 ψ′ρ(y)

R b
a ϕ̄

′
ν(z)ψ′ρ(z) dz

”2
dy

...

Then if g(x) is an arbitrary continuous and continuously differentiable function in
the interval a ≤ x ≤ b and if we set

ḡ(x) = g(x)− g(a)− x−a
b−a (g(b)− g(a)) ,

ḡ(a) = ḡ(b) = 0

then the expansion theorem established in the previous paragraph implies that

ḡ(x) =
ν=∞∑
ν=1

ψν(x)
∫ b

a
ḡ′(y)ψ′ν(y) dy,

or

g(x) = bg(a)−ag(b)
b−a + xg(b)−g(a)b−a +

ν=∞∑
ν=1

ψν(x)
∫ b

a
g′(y)ψ′ν(y) dy,
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and the series on the right converges absolutely and uniformly.
In the proof of the expansion theorems in this and the previous section, we have

assumed that the system of the ϕ′′ν(x) is a closed system. But it would have been
sufficient to have assumed a little less — specifically, that any function that is orthogonal
to all the ϕ′′ν(x) is linear. For the vanishing of f(x), which was required by the proof
given in the previous section, results from the fact that f(x) must be linear because of
the vanishing of f(x) at the endpoints.

Since any continuous can be uniformly approximated by a continuously differentiable
function, from the last theorem we have the following theorem. Let ϕ1(x), ϕ2(x), · · · ,
ϕν(x), · · · be an infinite sequence of real, twice continuously differentiable functions de-
fined on a ≤ x ≤ b whose second derivatives form a closed system. Then any continuous
function defined in a ≤ x ≤ b can be expanded in a uniformly convergent sequence of
finite linear combinations of the functions 1, x, ϕ1(x), ϕ2(x), · · · , ϕν(x), · · · .


