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ABSTRACT

Flap is a package to implement floating-point arithmetic with adjustable
precision, in which arithmetic operations are performed on Matlab doubles
but are rounded to a specified number of decimal digits after each operation.
It is intended to make it easy to generate examples of the effects of rounding
error for classroom use. The rounding level is controlled by a global variable
that can be changed in the course of a computation. Modes for single and
double precision binary arithmetic are also provided. The operations are
performed on objects of class flap, which consists of an integer indicating the
current rounding level for the object and a double containing its data. Most
of Matlab’s commonly used operations and functions have been overloaded
to work with flap objects. In addition, Flap provides functions to compute
the LU, QR, and Cholesky decompositions of a flap, as well as routines for
manipulating Householder transformations and plane rotations.

1. Introduction

The original Matlab [1], written by Cleve Moler to support a student laboratory for
linear algebra, had an option that allowed one to specify the precision to which compu-
tations were performed. Because the effects of rounding error are especially visible when
the numbers involved are not too long, the option was useful for constructing classroom
examples of the how rounding error plays out in numerical algorithms. Unfortunately,
this option has vanished in the version of Matlab produced by Mathworks.

The purpose of this paper is to describe a Matlab package Flap (Floating-point arith-
metic with adjustable precision) that implements adjustable-precision floating-point
arithmetic. This arithmetic is not the same as that of the typical variable precision
package that allows computations to arbitrarily high precision. Instead, Flap uses stan-
dard IEEE double-precision floating-point arithmetic to perform its operations, after
which the results are rounded to a prespecified number of decimal digits. This has three
consequences. First, the maximum precision is limited by the precision of the under-
lying arithmetic —approximately 16 decimal digits for IEEE double precision. Second,
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2 FLAP

because each arithmetic operation involves an expensive rounding process, Flap pro-
grams are not really suitable for production runs. Finally, since the rounding is in
decimal arithmetic, printouts reveal the precision by trailing zeros — e.g., 3.1400e+00
for π rounded to three digits. This is useful in following the ongoing effects of rounding
error in a computation —especially cancellation.

In addition to this decimal mode, Flap provides a binary mode in which rounding
takes place in IEEE double or single precision. This mode is designed for people who
develop algorithms in Matlab that are to run in single precision on specialized hardware.
The move from double precision to the less forgiving single precision can reveal unan-
ticipated glitches, and the single-precision option provides an opportunity to test the
algorithms in single precision without having to implement them on the target hardware.

Flap is a simple package that does not require a long paper to explain itself. In the
next section we will describe the Matlab class flap that supports adjustable precision
arithmetic.1 As we will see, rounding is done, for the most part, by the flap constructor,
and we describe the rounding protocol is some detail. Section 3 gives more details on
the capabilities of Flab. A concluding section gives an illustrative example.

To fix our nomenclature, Flap will denote the package; flap, the class; and a flap
object will be called a flap.

2. Flap objects and operations

Flap consists of three parts.

1. The class flap and its methods.

2. The global variables FlapRlevel and FlapLineLength.

3. Public functions and scripts.

The class flap is the heart of the package. A flap object f is a structure containing
the following two fields.

f.Rlevel
f.d

1The reader is assumed to have at least a passing familiarity with Matlab classes. But to keep
our terminology straight, here is a summary. A Matlab class consists of a constructor to create class
objects and class methods to manipulate the objects. Both the constructor and the methods are Matlab
functions residing in a directory named @<classname>. A class object is represented by a structure whose
fields are defined by the class. The fields must appear in the same order in all objects. The fields of a
class object are private — they can only be accessed by class methods. This restriction, however, can
be overridden by class methods, as is done in Flap.
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The d (for double) field is an array of doubles, which may be complex. The field Rlevel
(for Rounding level) contains an integer between 1 and 16 (inclusive). The values 15
and 16 specify single and double precision in the binary mode. In the decimal mode
Rlevel contains the number of decimal digits required to represent the data in f.d.

Rounding in Flap has two aspects: How Flap rounds individual numbers in the
three rounding modes and how Flap rounds dynamically in an ongoing computation.
We begin with the individual numbers.

1. Single precision binary: Rlevel = 15. The result of rounding a number a to
single precision is a double precision number whose bit pattern is the same as that
of a rounded to single precision and extended to double precision by appending
zero bits. The Matlab statement

double(single(a))

will perform this rounding.2

2. Double precision binary: Rlevel = 16. Since all Flap arrays are double,
rounding in this mode is essentially the default rounding mode of the machine on
which a Flap program is running.

3. Decimal: 0 < Rlevel < 15. The rounded value of a is the double precision
representation of a rounded to Rlevel decimal digits.3

The global variable FlapRlevel contains the rounding level for flap operations. It
can be changed freely, but we recommend that you use the Flap function

SetFlapRlevel(Rlevel),

which produces an error return if Rlevel is not an integer in the range 0:16.
In a Flap program, most rounding is done by calls to the flap constructor. It has

three forms. (Note: You do not have to work through the details in the list below to
use Flap. Flap does pretty much what you would do if you were performing a hand
calculation, rounding as you go.)

1. f = flap: With no input arguments flap returns returns a flap f with f.d an
empty array and f.Rlevel set to 16.

2. f = flap(a). Here a is either a flap or an array of doubles.
2If a overflows on being converted to single precision the final result will be Inf.
3The rounding is accomplished by a variant of Matlab’s chop function. It is expensive, requiring the

evaluation of a logarithm and a subsequent exponentiation to round a single number. For details see
the appendix.
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1. a is a flap: flap returns a flap f. The field f.d is the a.d rounded as specified
by FlapRlevel. The details depend on the rounding mode.

1. In decimal mode if a.Rlevel nonzero and less than or equal FlapRlevel,
no rounding is done and f.Rlevel is set to a.Rlevel. Otherwise round-
ing occurs and f.Rlevel is set to FlapRlevel.

2. In single mode rounding occurs if a.level ~= 15. f.Rlevel is set to
15.

3. In double mode no rounding occurs, and f.Rlevel is set to 16.

2. a is a double array: the field f.d of f is the array a rounded as specified by
FlapRlevel. The field f.Rlevel is set to FlapRlevel.

3. f = flap(a, Rlevel). This is the same as flap(a), except that FlapRlevel is
replaced by Rlevel.

Note that in item 2.1.1, if a.Rlevel is less than or equal to FlapRlevel, a.d is al-
ready rounded to FlapRelevel, and no rounding is performed. The reason for assigning
a.Rlevel, instead of FlapRlevel to f.Rlevel is to avoid unnecessary roundings later.
Thus in the decimal mode, the Rlevel field of a flap represents its actual rounding
status, not the global rounding represented by FlapRlevel.

An important consequence of this rounding algorithm is that the statement

f = flap(f) (2.1)

rounds f.d to the precision specified by FlapRlevel, adjusting f.Rlevel appropriately.
This fact is used by Flap to implement its adjustable precision operations.

Operations are performed on flaps by overloaded operators and functions. For ex-
ample, if f and g are flaps, the statement

h = f*g;

causes Matlab to call the flap method times(f,g), which creates a new flap containing
the properly rounded product of f.d and g.d. It is instructive to look at the code for
times.

function h = times(f, g)
f = flap(f);
g = flap(g);
h = flap(f.d*g.d);

The constructor flap is used to round f and g to the precision specified by FlapRlevel.
Then the sum is computed and rounded to the same level.

Paradoxically, the statement h = f*g does not cause either f or g to be rounded
to the current FlapRlevel. The reason is that the rounding occurs inside the function
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times. Since Matlab passes arguments by value (i.e., it passes copies of them), the
changes made in f and g in times do not propagate back to the flaps in the argument
list of the call to times. This has the consequence that if we change FlapRlevel, then a
flap f appearing in multiple operations may be rounded each time in the implementing
functions. One can avoid this by converting f to the current rounding level via (2.1).

Flap’s public functions and scripts reside in the directory FlapBase, which contains
the directory @flap. For example, the public script FlapStartup declares the global
variable FlapRound and queries the user for a value. The function SetFlapRlevel
mentioned earlier is also a public function, as is PrintAry, which prints a double array,
and FlapRound, which rounds a double array. Other public functions are described
later.

Further information about Flap methods can be obtained by using Matlab’s help
command. For example

help PrintAry

gives the following output

PrintAry Prints a double array.
PrintAry(ARY, RLEVEL) prints the ARY to RLEVEL decimal digits.

. . . . . .

and

help flap/qrd

gives

QRD Orthogonal-triangular decomposition.
[Q,R] = QRD(A) produces an upper triangular matrix R of the same
dimension as A and a unitary matrix Q so that A = Q*R.
In this and the cases below, Q and R are normalized so that
the diagonal elements of R are nonnegative.

. . . . . .

The commands help FlapBase and help flap will list Flap’s public functions and
Flap’s methods respectively.

3. Flap’s capabilities

In this section we will give further details on Flap.
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• Subscripting and fields. Let <se> denote a subscript expression— e.g., :,2. Then
the expressions f(<se>), f.d, f.d(<se>), and f.Rlevel are allowed in any expression.
Thus you can interrogate the value of Rlevel for a flap f by writing

f.Rlevel

Only f.d and f(<se>) are allowed on the left hand side of an assignment statement.
Thus you can write

f.d = [1, 2, 3];

You can also write

f(:,1) = g(:,2);

But you cannot write

f.d(3,2) = 5;

In all these assignments, Flap insures that numbers are rounded according to the pro-
tocol described it the previous section.

Flap does not allow one to change the values of the Rlevel field of a flap. That
privilege is reserved for flap methods.

• Operators. The operators +, - (unary and binary), .*, .^, .\, ./, kron, and *, \,
and / have been implemented. All but the binary forms of first operators two and last
three operators are equivalent to something like

f = flap(f); g = flap(g);
h = flap(f.d <op> g.d);

or in the case of unary operators

f = flap(f);
g = flap(<op> f.d);

The operators of addition and subtraction can cause the cancellation of leading
significant digits. When this happens, it is necessary to round at a level strictly less than
FlapRlevel. The algorithm for determining the rounding level is tricky and involves
additional work. For more details see the appendix in §5.

The last three operators in the above list are different from the others in requiring
support functions that round with each operation. For example, * requires a matrix
multiply function. The \ and / operators must compute an LU-decomposition and solve
solve triangular systems (see lud below).
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In the multiplication and division of complex numbers, the real and imaginary com-
ponents must by computed by formulas involving more than one operation. For example,

(v + iw)(x + iy) = (vx − wy) + i(wx + vy). (3.1)

Flap rounds the real and imaginary parts computed by Matlab to FlapRlevel. This
is clearly not the same as evaluating the formulas in (3.1) in precision FlapRlevel.
In particular, the smaller of the real or imaginary parts of the results of these two
procedures may differ considerably. However, if you regard the complex number as a
single entity, then in decimal mode the two procedures give results differing by a relative
error of about 10−FlapRlevel. A similar statement holds for the binary mode.

Flap overloads Matlab’s relational operations: ==, ~=, <=, etc. The result is equiv-
alent to performing the same operation on the d fields of the operators, and the array
returned is of class double, not flap. In particular, two flaps with identical d fields will
be equal even if their Rlevel fields are different.

• Extraction and combination. Some operations extract information from flaps or
combine flaps without rounding. As we have seen, Flap permits such concatenation of
flaps as

[f, g; h, k]

In addition, Flap overloads, size, disp, isnumeric, diag, tril, triu, fliprl, and
flipud.

• Elementary and special functions. Flap overloads Matlab’s elementary func-
tions — sin, cos, exp, etc. It does not overload the special functions like airy, erf,
etc. They can be referenced by writing flap(fun(f.d)).

• Constructors. Most of Matlab’s constructors, such as zeros, ones, eye do not
contain a double in their argument, and hence cannot be overloaded. Although it would
be easy to write flap methods with a different name — e.g., feye— it is almost as simple
to code, say,

flap(eye(10));

and that is the solution taken here.
Note, however, that in expressions where a flap is involved, it may be unnecessary

to use this dodge. For example, in the frequently occurring expression

A - lambda*eye(n) (3.2)

where A is a flap, lambda*eye(n) will be computed as a double, but Matlab will call the
overloaded minus to compute the difference. The function minus will round the double
lambda*eye(n) to the working precision.
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• Matrix functions, decompositions, and transformations. The majority of
Matlab’s matrix functions are either decompositions, such as the singular value de-
composition; scalar functions, such as the determinant; or mathematical functions of
matrices that produce a matrix value, such as the exponential, logarithm, or square
root. These functions all have in common that their results can be very sensitive to
the precision to which they are computed. Consequently, the only way that they can
be included in Flap is to implement them in Flap, rounding at each step— a difficult,
though not impossible, undertaking.

Flap provides three widely used decompositions: the pivoted LU decomposition
(lud), the QR decomposition (qrd), and the Cholesky decomposition (chold). The LU
decomposition is used to implement the matrix divide operators \ and /. The algorithms
for computing these decompositions round each operation as they progress. For more
details us the Matlab help command.

For those who want to compute other decompositions, Flap provides functions to
construct and apply Householder transformations and plane rotations. To find out more,
query housegen, houseappl, houseappr, rotgen, and rotapp. These functions act on
flaps. But if you decide to code a new decomposition for incorporation into Flap itself,
you will want to work directly with the double arrays. Accordingly these functions are
mirrored in FlapBase, by FlapHousegen, FlapHouseappl, etc., which act on double
arrays.

As noted above, owing to the possibility of cancellation, the functions plus and
minus that implement the sum and difference operators are not trivial. The public
functions FlapPlus and FlapMinus in FlapBase perform the same operations on dou-
bles. For more on all these functions, use the Matlab help command

• Printing Flap provides a method PrintFlap to print the d field of a flap. In its
simplest form

PrintFlap(f)

It prints f.d to f.Rlevel digits on the screen. The global variable FlapLineLength
specifies the length of the output lines. You will generally set it at the beginning of
your session when you execute FlapStartup. Optional arguments specify a label to be
printed along with the f or override the default line length.

PrintFlap uses a public function PrintAry to actually print f.d. This function
can be useful when one wants to print a flap array to a different number of digits than
f.Rlevel. For more details use Matlab’s help command.
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4. An example

The well-known method of iterative refinement for solving a linear system

Ax = b

proceeds as follows.

1. Solve the system Ax = b
2. While (not converged)
3. Compute r = b − Ax
4. Solve the system Ad = r
5. Set x = x + d
6. End while

(4.1)

In exact arithmetic this is just a way of computing the solution all over again. In fact,
for any x, approximate solution or not, we have

x + d = x + A−1r = x + A−1(b − Ax) = A−1b.

so that we get the solution in one step.
On the other hand, when rounding error is involved, the method can be used to

improve the initial solution [line 1 in (4.1)]. The key is to compute r to higher precision
than is used to solve the linear systems involving A. Specifically, let

1. ρ be the precision to which the systems are solved (our FlapRLevel),

2. σ be the common logarithm of the condition number of A,

3. τ be the precision to which the residual is computed.

Then is is known that [2, Section 3.4.5]

1. ρ − σ is the number of accurate digits in the initial solution.

2. ρ − σ is the number of accurate digits added by each refinement step.

3. min{ρ, τ − σ} is the maximal attainable accuracy.

These statements should be taken with a grain of salt, especially when the computa-
tion is done in decimal arithmetic with its coarse rounding. But as we shall see, they
characterize the typical behavior of iterative refinement.

Figure 4.1 contains a Matlab script to probe the properties of iterative refinement.
It begins by setting FlapRlevel (to 7 in the examples that follow).
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1. global FlapRlevel
2.
3. % Set the basic rounding level.
4.
5. SetFlapRlevel(rho);
6.
7. % Generate a system with log(cond(A)) = sig.
8.
9. n = 100;

10. s = logspace(0,-sig, n);
11. [U, trash] = qr(randn(n));
12. [V, trash] = qr(randn(n));
13. A = U*diag(s)*V’;
14. A = flap(A);
15. b = A*ones(n,1);
16. xt = A.d\b.d;
17.
18. % Solve the system with iterative refinement.
19. % The residuals are evaluated to tau digits.
20.
21. fprintf(’tau = %2d\n’, fix(tau));
22.
23. x = A\b;
24. fprintf(’%8.1e\n’, norm(x.d - xt)/norm(xt));
25.
26. for i=1:4
27. SetFlapRlevel(tau);
28. r = b - A*x;
29. SetFlapRlevel(rho);
30. x = x + A\r;
31. fprintf(’%8.1e\n’, norm(x.d - xt)/norm(xt));
32. end

Figure 4.1: Iterative refinement example.
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In the system generation, lines 10–13 are standard code for generating a test matrix
with known singular values. The logspace function generates a sequence of n singu-
lar values decreasing geometrically from 1 to 10−sig. U and V are random orthogonal
matrices, which makes A a matrix with the required condition number.

The right-hand side of the system is generated in line 15. Note that this expression
mixes a flap and a double. This is another example of a mixed expression [see (3.2)].

In line 16, the solution is computed in standard double precision. It will be compared
with the solutions computed by the iterative refinement process. Because A has the
degree of ill-conditioning specified by sig, xt will have only about 16-sig correct digits.
However, if sig is less than seven, as will be the case here, this represents at least nine
digits of accuracy, which is quite enough for the seven digit computations we will be
doing.

Lines 23–32 contain a straightforward implementation of the iterative refinement
method. At line 27, Flap shifts into a higher precision to compute the residual and then
back to normal precision at line 29. The loop performs four iterations of the refinement
procedure prints out the relative error in the current x.

Here are runs with a very ill-condition matrix (ill-condition with respect to rho=7,
that is).

rho = 7, sig = 6.5

tau = 7 tau = 9 tau = 11 tau = 13
7.6e-02 7.7e-02 6.7e-02 7.4e-02
7.5e-02 5.5e-03 2.8e-03 3.3e-03
1.1e-01 1.1e-03 1.9e-04 1.6e-04
1.0e-01 1.2e-03 1.8e-05 1.2e-05
9.1e-02 1.1e-03 1.1e-05 6.1e-07

The results generally agree with the analysis given above. For tau=7 there is no im-
provement in the solution. As tau increases, the refined solution improves; but the
convergence, which is controlled by the condition of A is slow.

Here are runs with with less ill-conditioned matrix.

rho = 7, sig = 4

tau = 7 tau = 9 tau = 11 tau = 13
3.1e-04 4.6e-04 5.2e-04 3.4e-04
4.3e-04 3.6e-06 3.0e-07 2.2e-07
4.1e-04 4.2e-06 2.2e-07 1.9e-07
4.0e-04 3.4e-06 2.3e-07 1.9e-07
6.3e-04 5.2e-06 2.2e-07 1.9e-07
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The convergence is faster, and we can get away with a smaller precision in evaluating
the residual and still get full seven digit accuracy.

The example also illustrates the slowness of Flap. Matlab’s tic/toc timer shows
that the time to evaluate the expression A\r on my workstation is about 0.7 seconds.
Since the \ operator requires O(n3) operations, we can expect a time of about 5.6 seconds
for n = 200 and about 45 seconds for n = 400.

But Flap was never intended to be a number cruncher. The above example shows
that for its stated purpose — probing the effects of rounding error on problems of mod-
erate size —Flap brings adjustable rounding error to Matlab in an easy-to-use form.

5. Appendix: Rounding and cancellation

In this appendix we describe the treatment of rounding and cancellation in Flap. In
what follows, the term binary number will mean an IEEE double-precision floating-point
number.

The rounding problem may be stated as follows. We are given binary number x 6= 0
and an integer rounding level R. We wish to determine a binary number x̂ that is the
binary representation of x rounded to R decimal digits. Note that x̂ is not simply value
of x rounded to R decimal digits, for that value may have to be further rounded to
obtain its binary representation. For example, the value of 0.16 rounded to one digit,
is 0.2 which has a nonterminating representation in binary.

The idea behind the rounding algorithm is simple. Find a power s of 10 such that sx
in decimal representation has exactly R decimal digits to the left of the decimal point.
Then use the Matlab function round to round sx to the nearest integer and divide by
s. For example, if x = 0.16 and R = 1, we take s = 10. Then sx = 1.6, round(sx) = 2
and round(sx)/10 = 0.2. The formula for s used in Flap is

s = 10R−dlog10(x)e,

where dxe is the smallest integer greater than or equal to x (i.e., the matlab ceil
function).

As we have mentioned, the binary representation of a number rounded in decimal
need not be the same as the rounded number. The difference is small —at most a
relative error on the order of 10−16. But cancellation in the addition or subtraction of
two numbers can escalate this error to the point where it causes trouble. Consider the
numbers

a = .1234567891 and b = .1234567890

which differ only in their tenth digits. Flap, operating with a FlapRlevel of 10, should
produce a value of 1.000000000e-10 for a − b. Instead it produces 1.000000083e-10.
The reason becomes apparent when we write out b − a to more places:
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1.000000082740371e-10.

The errors in the binary representation of a and b, which were initially in the 16th digit,
have been promoted by the cancellation so that their combined effects appear starting
in the 8th digit. Our rounding algorithm has not failed— it has correctly rounded the
number it was given.4 Note that this problem does not occur when the rounding level
is less than eight.

A cure is suggested by the fact that if we round 1.000000082740371e-10 at any of
the first seven digits we get the correct answer. There is a buffer of zeros between the
true value and the garbage from the 16th place (in other examples it may be a buffer of
nines). The problem is then one of determining a rounding level that lies in the buffer.
The formula used by Flap is

S = min
{

R, 1 + R +
⌈
log10

(
|a − b|

max{|a|, |b|}

)⌉}
. (5.1)

To see how this formula was derived, consider the following the following diagram.

p q s
a : AAAAAAAAAA00000E
b : − AAAAAABBBB00000F
c = a − b : CCCC00000GGGGGGG

It illustrates symbolically the cancellations of six digits in the subtraction of two ten
digit flaps a and b. The leading digits of a and b (which are the same) are assumed to be
of order 10p; that is, they can range from 1·10p to 9·10p. The leading digit of c = a− b
is or order 10q = 10p−6. The digits under s, which are of order 10s = 10p−15 are the
errors in the sixteenth place introduced by binary rounding. Note that the cancellation
has has promoted the sum of F and E to the tenth digit. If we were to round to ten
digits we would get a spurious nonzero tenth digit. If, on the other hand, we were to
round to four, five, six, seven, or eigth digits, we would get the correct result. In the
general case, we would like to use the smallest of these numbers, since the size of the
buffer is reduced as the rounding level R increases.

The smallest permissible rounding is R − (p − q). Thus our problem is to estimate
p − q. As (5.1) suggests, we will estimate p − q by log10[|a − b|/ max{|a|, |b|}], which
is an approximation of the log relative error between a and b, which in turn is loosely
related to the number of significant digits to which a and b agree. To derive precise
error bounds, we assume that a and b are positive and b < a. Then we must have

10p ≤ a < 10p+1, (5.2)
4Nor was there any error in the subtraction. Its a common misconception that cancellation creates

error. What it actually does is increase the influence of errors made earlier.
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the first bound being obtained for a = 1.00 . . .×10p and the last being most nearly
attained for a = 9.99 . . .×10p. Similarly,

10q ≤ a − b < 10q+1.

Hence
10−(p−q)−1 <

a − b

a
< 10−(p−q)+1 (5.3)

It follows that dlog10(a − b)/ae is either −(p − q) or −(p − q) + 1. Thus S in (5.1) is
either the smallest possible rounding value, R− (p− q), or is one greater, both of which
are in the buffer for R ≤ 14. For this reason Flap restricts FlapRlevel in the decimal
mode to be not greater than 14.

Unfortunately, rounding error can cause the first inequality in (5.3) to be violated,
giving too small a value for S. For this reason we add one to the expression R +
· · · in (5.1). Fortunately, the upper bound in (5.3) cannot be violated. Hence, this
incrementation of S cannot be magnified by the violation of the upper bound.

There is a rarely occurring case, which is exemplified by the following diagram.

p q
a : 100000000000000EX
b : − 0999999999999990F
c = a − b : 1GG

In this case p = 17 and q = 3 so that S = 1 + R− (p− q) = 1. It might seem dangerous
to round the 1 with the digits GG siting next to it, but in practice it works out. For
values of FlapRlevel less than 14, there is a buffer of zeros.

There are three other cases to consider. When b = a, b − a = 0, and there is no
rounding. When b = 0 the ceiling in (5.1) evaluates to zero, so that S = R. When b is
negative the ceiling evaluates to a value greater than or equal to one so that S = R. In
the last two cases there can be no cancellation and S = R is the appropriate value.

Acknowledgement

I would like to thank Clever Moler for suggestions that improved both Flap and this
paper — in particular, for pointing out the problems that cancellation can cause.

References

[1] C. B. Moler. MATLAB — an interactive matrix laboratory. Technical Report 369,
Department of Mathematics and Statistics, University of New Mexico, 1980.

[2] G. W. Stewart. Matrix Algorithms I: Basic Decompositions. SIAM, Philadelphia,
1998.


