Improving Recommendation Accuracy by Clustering Social Networks with Trust

Thomas DuBois, Jennifer Golbeck, John Kleint, and Aravind Srinivasan

University of Maryland
Overview

- We use trust clustering as follows to aid recommender systems:
 - Infer trust between all pairs of users.
 - Find clusters of users with high trust.
 - Give more weight to users in the same cluster.
Talk Outline

- Trust in social networks.
- Clustering in recommender systems.
- Uses of trust in recommender systems.
- An algorithm for clustering networks by trust.
- Trust clusters in recommender systems.
- Experimental results.
Trust and Trust Inference

- Users rate their friends.
- High trust often means similar opinions.
 - Trust correlated to similarity.\(^a\)
 - Most useful for controversial items.\(^b\)
 - Trust can be directly applied to improve recommendation accuracy.\(^c\)
- Sparse networks require trust inference.

\(^a\) Ziegler and Lausen, Analyzing correlation between trust and user similarity in online communities.
\(^b\) Golbeck, Trust and nuanced profile similarity in online social networks.
\(^c\) Massa and Bhattacharjee, Using trust in recommender systems: an experimental analysis.
Clustering

- Bayesian clustering methods:
 - Cluster users by their ratings.\(^{ab}\)
 - Mixed results in recommender systems.
- Graph theoretic clusterings.\(^c\)
 - Did not evaluate for rec sys.
- Clustering to speed up recommendations without much accuracy degradation.\(^d\)

\(^a\) Breese, Heckerman, and Kadie, Empirical analysis of predictive algorithms for collaborative filtering.

\(^b\) Ungar and Foster, Clustering methods for collaborative filtering.

\(^c\) Mirza, Keller, and Ramakrishnan. Studying recommendation algorithms by graph analysis.

\(^d\) Sarwar et. al, Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering.
Our recent trust inference algorithm takes a random graph view of trust:

- Direct trust as edge probability.
- Indirect trust as path probability (approximated).
- The log of the inverse of path probability defines a metric space.
Random Graph Theory

- Started in the 1950’s with the question: in a random graph when is there an $O(n)$ sized connected component.
- Generalized to many types of graphs and many properties.
- By using random graphs, we can make use of probability theory as well:
 - We can quickly find “less important” edges in the graph.
Many clustering algorithms work on metric spaces:
- k-centers, k-means, and others.

We use correlation clustering.
- Maximize closeness within groups and minimize closeness between them.
- This seems well suited.
We used the FilmTrust dataset.

- Users rate movies
- And their trust in friend’s recommendations.
- Small enough, ≈ 500 users in the largest component.
- Working to scale up to the epinions dataset.
Six largest cluster sizes from iterations of correlation clustering. Purple/blue bars from a radius of 1, red/orange a radius of 2, and green a radius of 3.
We modified two algorithms

- Basic ACF (automated collaborative filtering) using Pearson coefficients.
- A trust based ACF using trust values as weights.

We compare the base results to those when users in the same cluster have more weight.
Experimental Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Cluster Radius</th>
<th>MAE method</th>
<th>MAE control</th>
<th>RMSE method</th>
<th>RMSE control</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
<td>1</td>
<td>0.53454</td>
<td>0.53460</td>
<td>0.70199</td>
<td>0.70204</td>
</tr>
<tr>
<td>ACF</td>
<td>2</td>
<td>0.53452</td>
<td>0.53460</td>
<td>0.70196</td>
<td>0.70204</td>
</tr>
<tr>
<td>ACF</td>
<td>3</td>
<td>0.53453</td>
<td>0.53460</td>
<td>0.70194</td>
<td>0.70204</td>
</tr>
<tr>
<td>Trust</td>
<td>1</td>
<td>0.63495</td>
<td>0.63501</td>
<td>0.82614</td>
<td>0.82620</td>
</tr>
<tr>
<td>Trust</td>
<td>2</td>
<td>0.63496</td>
<td>0.63501</td>
<td>0.82615</td>
<td>0.82620</td>
</tr>
<tr>
<td>Trust</td>
<td>3</td>
<td>0.63496</td>
<td>0.63501</td>
<td>0.82614</td>
<td>0.82620</td>
</tr>
</tbody>
</table>

Improvements were small but noticeable and consistent *even over controls that already use trust.*
Conclusion

- Given a social trust component in the data, recommendations can be improved by clustering users based on trust.
- These improvements are small but consistent.
- These improvements exist even when trust is already considered.