
ABSTRACT

Title of dissertation: COLLABORATIVE TESTING ACROSS
SHARED SOFTWARE COMPONENTS

Teng Long, Doctor of Philosophy, 2015

Dissertation directed by: Professor Alan Sussman
Department of Computer Science

Large component-based systems are often built from many of the same com-

ponents. As individual component-based software systems are developed, tested

and maintained, these shared components are repeatedly manipulated. As a result

there are often significant overlaps and synergies across and among the different test

efforts of different component-based systems. However, in practice, testers of differ-

ent systems rarely collaborate, taking a test-all-by-yourself approach. As a result,

redundant effort is spent testing common components, and important information

that could be used to improve testing quality is lost.

The goal of this research is to demonstrate that, if done properly, testers of

shared software components can save effort by avoiding redundant work, and can

improve the test effectiveness for each component as well as for each component-

based software system by using information obtained when testing across multiple

components. To achieve this goal I have developed collaborative testing techniques

and tools for developers and testers of component-based systems with shared com-

ponents, applied the techniques to subject systems, and evaluated the cost and

effectiveness of applying the techniques.

The dissertation research is organized in three parts. First, I investigated

current testing practices for component-based software systems to find the testing

overlap and synergy we conjectured exists. Second, I designed and implemented in-

frastructure and related tools to facilitate communication and data sharing between

testers. Third, I designed two testing processes to implement different collaborative

testing algorithms and applied them to large actively developed software systems.

This dissertation has shown the benefits of collaborative testing across compo-

nent developers who share their components. With collaborative testing, researchers

can design algorithms and tools to support collaboration processes, achieve better ef-

ficiency in testing configurations, and discover inter-component compatibility faults

within a minimal time window after they are introduced.

COLLABORATIVE TESTING ACROSS
SHARED SOFTWARE COMPONENTS

by

Teng Long

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Alan Sussman, Chair/Advisor
Professor Adam Porter, Co-Advisor
Professor Atif Memon, Co-Advisor
Professor Ilchul Yoon
Professor Donald Yeung, Dean’s Representative

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Thesis Statement and Contributions 9

2 Related Work 11
2.1 Distributed Software Development . 11
2.2 Regression Testing . 12
2.3 Continuous Integration and Testing 13
2.4 Software Product Lines Testing . 15

3 Background 16
3.1 Component-based Software Systems 16
3.2 Existing Testing and Collaboration methods 18
3.3 Annotated Component Dependency Model 20
3.4 Rachet Automatic Testing Framework 21
3.5 Testing Regression Configurations . 23

4 Exploring Overlaps and Synergies 25
4.1 Modeling How Components are Exercised 25
4.2 Research Questions . 27
4.3 Metrics . 28
4.4 Subject Components . 30
4.5 Study Procedure . 33
4.6 Data and Analysis . 34

4.6.1 Build Testing . 34
4.6.2 Line/Branch Coverage . 36
4.6.3 Parameter Value Coverage . 40
4.6.4 Fault Detection . 47

4.7 Summary . 51

ii

5 Collaborative Testing Infrastructure 52
5.1 Environment Model . 53
5.2 Conch Data Sharing Repository . 55
5.3 Sharing Virtual Machines with Environment Differencing 58
5.4 Ad-hoc Collaborative Testing Process 61

5.4.1 Testing Procedures for Component-based Systems 61
5.4.2 Collaborative Build and Functional Testing 63

5.5 Evaluation . 66
5.5.1 Collaborative Build and Functional Testing 67
5.5.2 Continuous Collaborative Regression Testing 71

5.6 Summary . 75

6 Coordinated Collaborative Testing Process 77
6.1 Coordinated Collaborative Testing Process 78

6.1.1 Notification Scheme for Coordinated Collaborative Testing . . 78
6.1.2 Strategy for Coordinated Collaboration 80
6.1.3 Regression Testing based on Cross-Component Coverage . . . 83

6.2 Experiments . 84
6.2.1 Subject Components . 84
6.2.2 Testing Strategies . 85
6.2.3 Experimental Setup . 89
6.2.4 Experimental Results . 91

6.2.4.1 Comparing Cumulative Test Execution Time 92
6.2.4.2 Comparing Maximum Fault Exposure Time 93
6.2.4.3 Analyzing Cross-Component Compatibility Faults . . 95

6.3 Summary . 97

7 Conclusions and Future Work 98
7.1 Thesis and Contributions . 98
7.2 Future Work . 101

Bibliography 104

iii

List of Tables

4.1 Configurations tested by component developers 35
4.2 Induced Coverage of APR and MPICH2(%) 37
4.3 Induced Coverage Distribution of APR and MPICH2’s users (%) . . . 37
4.4 Number of Numeric Parameter Values 40
4.5 Summary of Fault Detection Results 49

5.1 Subject Components . 69
5.2 Configuration Preparation Cost(hours) and Benefits(%) 72
5.3 Regression Test Selection Results . 75

6.1 Subject Components . 85
6.2 Cumulative Time in Testing Strategies (in hours) 93

iv

List of Figures

1.1 Systems with Common Components . 4

3.1 An Example System Model . 21
3.2 Example Regression Configurations of A 24

4.1 Induced Coverage Example . 27
4.2 APR CDG . 31
4.3 MPICH2 CDG . 32
4.4 Induced Coverage of APR . 38
4.5 Induced Coverage of MPICH2 . 39
4.6 APR Parameter Value Distribution 43
4.7 MPICH2 Parameter Value Distribution 45
4.8 Test results from all components on 112 faults seeded into MPICH2. . 49

5.1 Simplified example environment description for a VM 55
5.2 The Conch Data Sharing Repository 56
5.3 Request for SQLite dependency data . 57
5.4 Conch response with SQLite dependency data 57
5.5 High-level Design of Ede Infrastructure 59
5.6 Subject Systems on Ubuntu for collaborative Testing 66
5.7 Subject Systems on Debian for Collaborative Testing 68

6.1 Subject Components for Continuous Collaborative Testing 86
6.2 Subject Components Update History . 87
6.3 Maximum Fault Exposure Time . 94

v

Chapter 1: Introduction

Over the years, the practice of software development has changed. Instead

of developing software from scratch, many developer groups and organizations rely

on third-party software components, knitting them together to implement their

system. Each component in a component-based system may have multiple versions,

thus there can be a large number of version combinations (configurations) for a

single software system. Also, as these components evolve independently during the

life cycle of the systems, new versions are continuously released, and new end-user

machine configurations that contain the new versions are added for the potential user

base. If developers use Agile or DevOps methodologies [1, 2], which is prevalent in

the software development community, the version (or build) release cycle can be very

short, and the number of configurations can increase rapidly. As a result, component

developer groups are challenged with testing a large amount of configurations in a

timely manner.

However, today’s component developers still continue to follow the old school

“test-by-yourself” approach. This approach can be time-consuming and overwhelm-

ing for a single tester, because the total number of configurations grow exponentially

with the numbers of components in a system [3], and isolated developers need to test

1

these configurations all by themselves. As a trade-off, in practice, developers have

performed compatibility testing [4] by selecting a set of configurations and testing

whether each configuration builds and functions correctly. This method leaves large

number of configurations untested, and important compatibility faults might be left

uncovered.

In this research, we posit that the paradigm shift to component-based software

development has created numerous opportunities for sharing test effort by collabo-

ration. Collaborative testing can not only boost test efficiency comparing to testing

in isolation, but also provide opportunities to improve the quality of individual

components. Our supposition is based on two characteristics of component-based

systems that we discuss via the example shown in Figure 1.1 (we will discuss the

nomenclature of the figure later in Chapter 3).

The first characteristic is that components in component-based software sys-

tems have dependency relationships between them, i.e., some components use or

depend on other components. Consider the top-level right-most shaded node in

Figure 1.1 labeled Subversion, which relies on other “lower-level” components or

provider components, in this case APR-util, SQLite, APR, Neon, and BerkeleyDB,

also shown as nodes connected directly to subversion via “∗” connector boxes. Op-

portunity 1: Exploit such provider-user relationships to share test effort

and improve local tests of individual components. More specifically, testers

of the user components can inform the provider components about the context in

which they are being used. Similarly, the provider components can inform their

user components of the latest code changes and the latest test efforts and results.

2

This bi-directional flow of information can help to avoid overlaps in testing and also

enables testers to focus their efforts where it can do the most good.

The second characteristic is that many components are commonly used or

shared by multiple software systems. Consider, for example, that the Apache

Portable Runtime library (APR) in Figure 1.1 is used not only by Subversion, but

also by other systems, such as Serf and Flood. Building and testing any of these

systems necessarily involves building APR, and therefore exercises APR as well.

Opportunity 2: Distribute test effort and share results for common com-

ponents to lower cost and improve test quality. More specifically, when two

or more component-based systems use at least one common component, developers

of the systems can collaborate in the testing of the common component, for instance,

when pooling their test cases would help to achieve some desired coverage criteria.

Alternatively, in the case where two or more low-level components implement the

same interface and functionality, and could therefore be used interchangeably by

the same high-level component [5], tests run on one low-level component could be

extracted and applied to the other low-level components.

Based on these opportunities observed, I support the following thesis in this

dissertation: automated collaborative testing between developer groups of

shared software component can i) improve the quality of compatibility

testing of component-based systems; and ii) boost the efficiency of testing

software system configurations. The goal of this research is to develop auto-

mated collaborative testing theories and tools for individual developers of shared

software components, so that their testing practice can be more efficient and with

3

Figure 1.1: Systems with Common Components

Flood

*

*

*

Managelogs

*

*

Serf

*

*

Subvers ion

*

Neon BerkeleyDB *

APR-Util

*

*

APROpenss l

SQLite

Zlib

GNU Compiler

Ubuntu

higher quality comparing to the paradigm of testing their components all by them-

selves.

This research involves three major parts: first, investigate the current proce-

dures of testing component-based software systems to find opportunities of removing

redundant work between testers as well as information that can be shared across

testers to improve the test quality of each other. Second, design and build an in-

frastructure and related tools to facilitate communication and data sharing between

testers, so that collaboration between them can be possible. Third, develop differ-

ent collaborative testing processes upon the infrastructure, so that testers can rely

on information shared by others to coordinate their own testing and improve the

efficiency and effectiveness of their local tests.

As the initial step, we conjectured that overlap and synergy exist in testing

functionally related components [6]. This conjecture is based on the fact that a com-

ponent usually relies on one or multiple provider component(s) to support some of

4

the component’s functionality, thus when exercising the tests of a component, parts

of its provider component(s) are also being tested. We conducted an empirical study

on two sets of components that functionally depend on two common components

(base components) whose developers are currently testing them independently. Two

research questions were addressed in this study: i)to what extent do component

developers duplicate their test effort when they are sharing provider com-

ponents; and ii) and to what extent does testing by component users go

beyond testing by the providers? We exercised the test suites of some exam-

ple provider components and their user component sets who functionally depend on

them. Experiments suggested that: first, redundant test efforts are usually made

when different testers are testing a component and/or its provider/user components;

second, test cases designed and run by component users can exhibit new behaviors

that are not covered by the original provider component’s test cases, which may pro-

vide synergistic data to help improving the original provider component’s testing.

Through this step, we conclude that it is worthwhile to build an infrastructure

to support sharing of test results and artifacts between testers in order

to eliminate the overlapped test effort, and to design techniques utiliz-

ing shared information to improve the quality of local tests of individual

components.

Next, we started building a prototype infrastructure for individual testers to

exchange their test metadata, results and artifacts. The core component of this

infrastructure is the Conch [7] data repository provided to testers as a set of web

services. Automated testing tools can submit data to the repository as well as query

5

the repository to coordinate their own testing processes, or to speed up their testing

by reusing results and prebuilt artifacts stored in the repository. To support scalable

caching and sharing of rebuilt artifacts(virtual machine images), we also developed

a tool called Ede [8] (Environment Differencing Engine). With Ede, Conch shares

not full virtual machine images, but only the incremental environment differences

from pristine operating systems. The infrastructure provided by Conch and

Ede connects isolated component developers, enables the developers to

share testing results and artifacts automatically, and allows sophisticated

collaborative testing strategies and processes to be implemented upon it.

Relying on Conch and Ede, I further developed two collaborative testing pro-

cesses that coordinate the local testing procedures of component developers.

The first process is called ad-hoc collaborative testing, which requires minimal

modification to the current practice of isolated component developers conducting

their testing. In this process, automated tools of isolated developers will query

Conch before building any configuration, or running any functional test. If there are

any prebuilt configurations or results shared for the same testing task, the developers

can just reuse them and avoid redundant effort. Otherwise, they can continue

with their original procedure, and share their prebuilt artifacts and/or test results

afterward.

To evaluate the ad-hoc collaborative testing process, I developed a simulator

that simulates individual testers of two sets of component assemblies using our col-

laborative testing process to coordinate their regression test. The simulation was

based on the historical development data of the components during 2 years. Our

6

results showed that: first, by reusing shared functional test results and prebuilt sys-

tem environments, individual testers can save enormous amount of time on preparing

their test configurations when a provider component gets updated; second, by an-

alyzing code coverage information shared in the repository, testers can save time by

selecting only the affected regression tests instead of the whole regression test suite

to exercise; and third, by analyzing the cases when updating a provider component

causes regression test failure of a user component, testers can reveal faults in ei-

ther provider or user components. As a conclusion, the prototype data sharing

infrastructure and the ad-hoc collaborative testing process have shown

their merit supporting collaborative regression test of component assem-

blies with overlapping components by both eliminating redundancy of

test effort and improving test quality of individual tests.

The ad-hoc collaborative testing process can benefit component developers

the most if reuse is maximized in this process. However, in a regression process

where components are continuously updated and new configurations are introduced

constantly, multiple developers may start to conduct regression testing if their com-

ponents are affected by the update. This testing strategy increases redundancy in

test effort spent by the groups, especially if there are inter-component dependencies

or if the component is shared by multiple groups.

Thus, I developed a coordinated collaborative regression testing process for mul-

tiple developer groups, with the objectives of reducing the overall test redundancy

across the groups as well as minimizing the time in which compatibility faults are ex-

posed to the user community. The process involves a test scheduling and notification

7

mechanism via Conch across developer groups, so that each group is made aware of

the configurations under test by other groups, enabling the groups to avoid perform-

ing redundant tests that could not be avoided by ad-hoc collaborative testing. We

apply this process to a set of software systems with shared components in an Ubuntu

distribution, emulate the application of this process over the 2-year history of the

component development, and evaluate the cost and effectiveness of the process. Our

experimental results show that comparing to ad-hoc collaborative testing, co-

ordinated collaborative testing can further reduce test redundancy across

developers of shared software components, and still maintain the ability

to discover cross-component compatibility faults within a minimum time

window.

Through the two example collaborative testing processes implemented on the

data sharing infrastructure, this dissertation has shown the benefits of collaborative

testing across component developers who share their components. With the idea

of collaborative testing, researchers can design more sophisticated algorithms and

systems to support other collaboration processes, achieve better efficiency in testing

configurations, and discover more inter-component compatibility faults within a

minimal time window after they are introduced.

In this dissertation research, certain assumptions are made in our implemen-

tation of collaborative testing processes, so that our work can focus on major chal-

lenges of enabling collaboration. For example, we are not considering malicious

tester or untrusted testers who may share incorrect data. When testers share their

functional testing results, we only focus on the tests whose results are deterministic.

8

Even though these assumptions may not be always true in industrial practice, they

do not diminish the potential benefits that testers can obtain through collaborative

testing.

1.1 Thesis Statement and Contributions

My thesis statement is: Testers of shared software components can save

test effort by avoiding redundant work, and improve the test effectiveness

for each component as well as for each component-based software system

by collaborating over their testing processes and by using information

obtained when testing across multiple components.

The contributions of my dissertation research include:

1. Our empirical study shows that overlaps and synergies exist in the testing

processes of software components who share provider components. The over-

laps can be eliminated to save test effort, and the synergies between testing of

user components can be used to improve test quality of their shared provider

components.

2. Using the ad-hoc collaborative testing process we implemented on our data

sharing infrastructure, testers of components with shared provider components

can significantly reduce their cost by avoiding both redundant testing tasks

and unnecessary regression testing.

3. In regression testing, by leveraging our coordinated collaborative testing pro-

cess, testers can not only save more effort than using the ad-hoc collaborative

9

testing process, but also minimize the window of finding compatibility faults

introduced by provider component updates.

4. With collaborative testing processes, testers can discover compatibility faults

that are not discoverable by testing components in isolation.

10

Chapter 2: Related Work

2.1 Distributed Software Development

Distributed software development has become common for software develop-

ment, and many researchers have started investigating and evaluating such devel-

opment processes. Ebert et al. studied the advantages and challenges of globally

distribute development activities in [9]. Ramesh et al. [10] also discovered in their

study that agile software development methods like extreme programming and dis-

tributed development can be blended to reap the benefits of both. In these studies,

proper group collaboration and development coordination are considered a key fac-

tor to success. Although the two studies are both focusing on collaboration within

a single organization, they do face some similar challenges of supporting continuous

integration and efficient collaboration between participating groups.

To support distributed software development, researchers have emphasized

the importance of tools for collaboration between distributed teams [11, 12]. Bird

et al. [12] reported that globally distributed software development within a single

company may not perform worse (in terms of failures) than centralized development.

In [11], Begel et al. developed tools based on news-feeds to support developer teams

collaborating with each other, because the teams should be aware of what other

11

teams are doing for managing risk in their development. However, these tools are

designed to support human developers for better collaboration. They are not ready

for automatic testing systems to adapt for supporting collaborative testing.

2.2 Regression Testing

Regression testing is designed to ensure that updates to software, such as

adding new functionality or modifying existing features, do not falsely affect the

functionality that should have been continuously supported. Usually a set of test

cases is developed along with the software evolution to test modifications in previous

versions, and regression testing is performed by running some or all of these test

cases. There have been many research of techniques on designing regression test

cases [13,14], regression tests prioritization [15,16], and regression tests selection [17,

18].

However, in the paradigm of component-based software systems, components

are usually developed and maintained by different groups, each of which develops

regression tests for their own component only. As a result, even though individual

components may be well tested, the system consisting them may suffer compatibility

faults across components. Many research target to address this problem by creating

better cross-component regression tests [19, 20], or performing better continuous

integration testing [21].

The research in this dissertation differs from the previous efforts, because we

are relying on the regression tests created for individual components to improve the

12

overall compatibility of component-based systems. This research is based on two

observations. First, creating cross-component regression tests may not be feasible

in some scenarios. For example, in many open source communities, developers of

a user component (usually the user-facing application, like SVN, etc.) may not

have control over its provider components’ design or development, nor do they have

enough knowledge to these provider components. It will be challenging for the user

component developers to create and maintain very comprehensive cross-component

regression tests. Second, we observed that regression tests of user components are

also testing the provider components by accessing their functionality. It is poten-

tially of great merit if we utilize the information generated by such cross-component

activities, use them to characterize the behavior of the whole system, and rely on

the data to find potential compatibility faults.

The purpose of our research is not to replace integration testing or developing

of cross-component regression tests, but to serve as a complementary means to

achieve better compatibility testing.

2.3 Continuous Integration and Testing

There is some work on methods and tools to support continuous integration

when multiple teams collaborate on large software projects [22, 23]. Elbaum et

al. [22] designed algorithms to pre-select and prioritize test cases from test suites to

make continuous integration processes more cost-efficient. Nilsson et al. [23] devel-

oped a visualization technique for visualizing end-to-end testing activities involved

13

in the continuous integration processes within projects or companies, so that such

activities can be better arranged to support more efficient integration testing. How-

ever, Elbaum et al.’s method does not apply to the scenario of removing redundant

effort between distributed component developers who collaborate with each other;

and the tool from Nilsson et al. provides more complementary support for decision

makings. The tool itself does not support automatic testing scheduling.

An important part of our work is the tools and infrastructure we provided

to support coordinated collaborative testing, as part of the continuous integration.

There are some distributed continuous quality assurance (QA) environments, such

as Dart [24] and CruiseControl [25], to conduct continuous integration testing, which

involves executing build and testing processes whenever check-ins to a repository oc-

cur. Users install agents that automatically check out software from a repository,

build the software, execute functional tests, and submit the results to the server.

However, the underlying QA process is hard-wired in Dart and CruiseControl and

therefore other QA processes or implementations of the build and test process are

not easily supported. Recently, continuous integration tools like Jenkins [26] and

Autopkgtest [27] are becoming prevalent. Jenkins is a platform that supports con-

tinuous integration and delivery of software products. If properly configured, it can

monitor the code repository changes of components and trigger testing activity. It is

a good candidate platform that can be combined with the coordination scheduling.

Autopkgtest is a tool supported by the Ubuntu community to facilitate compati-

bility testing in distributed environments. It enables developers to provide a set of

functional test cases together with the released package. Other developers can easily

14

install the packages, and execute the provided test cases for compatibility testing.

However, this process is neither automatic nor coordinated.

2.4 Software Product Lines Testing

A software product line(SPL) is a family of programs that are differentiated

by their increments in functionality [28]. Since each product is derived from the

core assets [29] based on the features to be exhibited by this product, compatibility

testing must be applied to these products in order to validate the correctness of

features implemented. To some extent, this process is similar to testing component-

based systems. Researchers have proposed many approaches to test SPLs. Souto et

al. [28] used a profile of passing and failing test runs to quickly identify failures that

are indicative of real compatibility problems in test or code rather than specious

failures due to illegal feature combinations. Lamancha et al. [30] worked on model-

driven testing, which were used for one-off development, to an SPL setting. However,

testing SPLs is fundamentally different from testing software components developed

in isolation. SPLs are commonly derived from a single system for the purpose

of reusability and productivity, thus they are commonly designed and maintained

within a single group or organization, and a uniform model for the whole system

is usually well-defined. Tests of products in an SPL can usually be derived from

tests of core assets. The software components addressed in this dissertation, on the

other side, are developed, maintained and tested in isolation, and there is no well-

established compatibility tests generating methods for component-based systems.

15

Chapter 3: Background

This chapter describes the background of my dissertation research topic as

well as other related research. I start by introducing the basics of component-

based software systems, discussing different types of such systems and comparing

their differences, then I describe the features of component-based systems that are

targeted in this research. After that, I list a set of existing testing techniques

for such systems, and also introduce some collaboration methods applied to such

testing. Next I talk about a formal model for our target component-based software

systems. Last, I introduce the example automatic testing process that we refer to

as the baseline in which individual component testers test their products locally.

3.1 Component-based Software Systems

Component-based software engineering has been widely discussed for more

than a decade, yet there is not yet a formal definition of component that is agreed

on by everyone [31]. Different researchers have their own description of the features

that a component should have. For example, He et al. developed a model called

rCOS to define important concepts of component-based software development in-

cluding interfaces, contracts, interaction protocols, components, etc., and used this

16

model to provide an integrated approach to facilitate component-based software

development and verification [31]. Brereton et al. described a component as “an

independently deliverable set of reusable services” [32] to explain the role of a com-

ponent in a component-based system. Based on the goals of different research, the

term “component” can be interpreted differently to emphasize different attributes

of such component-based systems.

Within the scope of this research, we are studying component-based software

systems from the perspective of collaborative software testing, especially functional

testing. Thus we are interested in how testers of different components interact with

each other during their development processes and perform functional testing of

their components. From this perspective, components in this study possess the

following features.

• Independence: Each component is developed and maintained independently

by groups who have their own self-managed development and testing processes.

• Dependency: A component either depends on or is depended by other com-

ponent(s). Here component A depends on component B means that B must

be functioning correctly for component A to be successfully built and correctly

functioning in the same environment.

• Consistency: A component provides a set of consistent interfaces to its users,

and such interfaces do not change dramatically when the component is updated

to newer versions.

• Activeness: A component is actively being updated and tested by its devel-

17

opers and testers, so that collaboration on development and testing between

this component and other components is possible.

In this study, a software component can be an application that depends on a

set of other components which further depend on other components. All components

integrated together form a component assembly and provide the functionality offered

by the top-level component. We define such a component assembly as a component-

based software system. The formal model of component-based software systems that

we adopt is going to be introduced in Chapter 3.3.

3.2 Existing Testing and Collaboration methods

As described in Chapter 3.1, each component has its own independent devel-

opment and testing processes. It is very common that developers of a component

manage their own test suites and exercise unit tests and regression tests regularly.

When a component depends on multiple other components, it is usually tested

against limited numbers of configurations that are most popular among users [33].

All testing tasks for a component are exercised locally by the testers of the same

component. This is the most common practice of testing components, which is

considered the baseline case of testing a software component.

In the baseline scenario, opportunities for collaborations are limited, and forms

of collaborations are restricted. Since components are tested separately by their de-

velopers, the most common way of collaboration is that component testers report

bugs to developers of components that they depend on, and the developers fix those

18

bugs in later versions. Many project hosting services such as Launchpad [34] and

SourceForge [35] provide sophisticated bug reporting and tracking services. How-

ever, such a collaboration mechanism heavily depends on the willingness of testers

to manually share their bug reports.

Since component-based software engineering has already attracted the at-

tention of many researchers, many of them are also proposing methods to test

component-based systems in different ways other than separated individual test-

ing. Leeuwen et al. proposed a framework that can be used to evaluate properties

of component-based software systems include liveness, progress of subsystems, ro-

bustness and fairness [36]. Wu et al. proposed Component Interaction Graph(CIG)

to model component-based systems, then investigated different types of faults in

component-based systems as well as some elements in testing such systems [37].

They also proposed a family of criteria to evaluate such testing. However, neither

work proposed any practical technique that supports collaboration between testers

of related components.

For this research, we model component-based software systems using Anno-

tated Component Dependency Model(ACDM) [33], and create collaborative testing

techniques based on the Rachet testing procedure for component-based software sys-

tems. Both ACDM and Rachet will be introduced in more details in later chapters.

From the software testing perspective, Rachet provides a framework that system-

atically tests compatibility of systems composed from components with different

versions on different platforms, which we believe is more comprehensive than other

known testing methods of component-based systems. However, a Rachet testing

19

procedure is still hosted by a single tester to test the compatibility of components

related to a specific top-level component. When multiple testers are running their

own Rachet procedures, there still exists no collaboration between them. In this

research, we are going to extend similar scenarios and provide a collaborative mech-

anism between testers of components running similar testing procedures.

3.3 Annotated Component Dependency Model

In this dissertation, we model component-based software systems using the An-

notated Component Dependency Model(ACDM) [33]. In this model, a component-

based system can be depicted with two parts: a directed acyclic graph called the

Component Dependency Graph(CDG) and a set of Annotations. As shown in Fig-

ure 3.1, each node in the CDG represents a unique component, and inter-component

dependencies are specified by connecting nodes with AND(*) or XOR(+) rela-

tionships. For example, in Figure 3.1 component A “depends on” component D and

either one of B or C. Here dependency means that one component requires another

component at build-time, runtime, or both. Annotations in this example include

version identifiers for components, and constraints between different components

and component versions, written in first-order logic.

When different systems share components, the relationships between these

systems can be represented by an integrated CDG with overlapping regions. In the

example CDG in Figure 1.1, the top-level components (Serf, Flood, Subversion and

Managelogs) depend on different provider components. There are overlaps between

20

Figure 3.1: An Example System Model

Version Annotations

Constraints

 (ver(C) == C2) (ver(E) E3)

Component Versions

A A1

B B1, B2, B3

C C1, C2

D D1, D2, D3

E E1, E2, E3, E4

F F1, F2, F3, F4, F5

G G1

*

+ D

B C

*

E

*

F

*

G

A

the set of required provider components, and the APR component is required by all

top-level user components. This suggests that each top-level component developer

will use his/her test resources to build the components contained in the shared sub-

graph, starting from the APR node to the bottom node, and then test the behavior

of those components to ensure a functioning build of the top-level component. In

this scenario, those developers are likely to perform redundant test efforts that could

be eliminated or advantageously redirected if all of these components were able to

share their test data and artifacts.

3.4 Rachet Automatic Testing Framework

One concern that component developers have is to make sure that their com-

ponents build correctly. This activity has typically been performed by manually

checking component builds on a handful of popular user configurations. However,

this is time-consuming, error-prone and limited in scope given the large number of

combinations of platforms, components, and versions in which components might be

21

built. In prior work in my research group, we designed a process and infrastructure

called Rachet [33] to address this challenge.

Rachet tackles this problem in several ways. First, it reduces the number

of configurations that must be tested, by applying a sampling strategy called DD-

coverage. With this coverage criterion, all direct dependencies between components

are covered at least once by sampled configurations. Second, Rachet generates a

schedule to test sampled configurations, and then performs build testing in paral-

lel using multiple nodes in a cluster or cloud computing environment. Each con-

figuration is tested in a virtual machine (VM) environment hosted on a physical

node. Rachet further reduces test effort by reusing virtual machine environments

that instantiate partially-constructed configurations. Because building components

is time-consuming and because multiple configurations often share common partial

configurations, Rachet builds systems inside virtual machines and then reuses the

virtual machines across different physical cluster nodes.

Even though Rachet utilizes distributed resources to conduct build testing, its

test plans and associated test tasks are still managed and assigned in a centralized

way locally by the tester. In other words, this infrastructure was designed to be

used to test a single software system. In addition, the virtual machine instances

that Rachet currently employs are quite large, which will be problematic in a col-

laborative test situation. In order to share build test results and cached virtual

machine artifacts among multiple testers, an external collaborative framework is

needed, a set of APIs must be provided to Rachet to interact with that framework,

and Rachet ’s virtual machine artifacts must be compact for efficient sharing. In the

22

research of this dissertation, we further improve the efficiency of testing component-

based systems by reusing test results shared by collaborators, and we developed a

technique called environment differencing that can significantly reduce the size of

virtual machine artifacts.

3.5 Testing Regression Configurations

As components in a software system evolve, newer versions of the components

become available. If a new version of a provider component in a CDG is released,

it introduces new configurations that have to be tested by affected user component

developers. For example, in Figure 3.1, assume that only one version of each compo-

nent is available initially; A1 for the component A, B1 for the component B, and so on.

If the developer of the component D releases a new version D2, {B1,D2,E1,F1,G1} and

{C1,D2,E1,F1,G1} are new configurations on which the developers of the component

A need to test. We call these configurations regression configurations.

Given a CDG and an ordered list of all component updates U, the total

number of regression configurations for each component developer can be computed.

Figure 3.2 shows an example update history of the components in Figure 3.1 and

the regression configurations introduced for A’s developers after each update. For

the given update history, a total of 21 regression configurations are introduced.

After a component update, developers of every user component must ensure

that the user component can be built without any errors in the new regression

configurations, and also the test results obtained by running the user component

23

Figure 3.2: Example Regression Configurations of A

test cases relevant to the update should remain identical to the ones obtained before

the update. If there are any build or test failures, then compatibility faults have

been introduced between the user component and the updated component. This

activity has to be repeatedly executed over all regression configurations, and in this

dissertation it is referred to as regression testing.

24

Chapter 4: Exploring Overlaps and Synergies

In this chapter, I describe my initial study of searching for overlaps and syner-

gies in the testing processes of functionally related components. First, I talk about

the model used to study how components get exercised by their user components in

a component assembly. Then I introduce the research questions at this stage of our

study. Next, I propose several metrics to quantify the informal definition of overlaps

and synergies in the context of this study. Forwarding that, target software compo-

nents and the study procedure are presented. At last, I analyze the data obtained

from this empirical study to investigate the overlaps and synergies of testing shared

components.

4.1 Modeling How Components are Exercised

First, we model how components are exercised by other components in a com-

ponent assembly.

Induced Coverage: Suppose component a directly or indirectly uses component

b, and a has a test suite Ta. In a system where a is successfully built on b, when

running a’s test suite, Ta, the fraction of b’s coverage elements (lines, branches,

functions, parameter values, faults, etc.) that get covered is called b’s induced

25

coverage from a , represented as Ca
b .

To demonstrate the concept of induced coverage, we take the sub-CDG from

Figure 3.1 that contains components A, B, C and E as an example, and focus on

line coverage. Suppose each component has a test suite, correspondingly named TA,

TB, TC , and TE, and that there are 10 lines in E’s source code. When running the

four test suites, different lines of E get covered. Suppose lines 1, 2, 4, 5 get covered

by TA, lines 3, 4, 5, 6, 8 get covered by TB, lines 5, 6, 9, 10 get covered by TC ,

and lines 3, 4, 5, 7, 10 get covered by TE. The induced line coverage from these

components to component E is shown as in Figure 4.1. Each column represents a

line in E’s source code, and each row shows the corresponding coverage. A filled

block means the line is covered, and a blank one means that it is not.

Union of Induced Coverage: When both components a and b use c, the union

of their induced coverage for c (Ca
c ∪ C

b
c) is defined as the fraction of c’s elements

that is covered by either a or b.

Intersection of Induced Coverage: When both components a and b use c, the

intersection of their induced coverage to c (Ca
c ∩C

b
c) is defined as the fraction of c’s

elements that is in both a and b’s induced coverage to c.

Difference of Induced Coverage: When both components a and b use c, the

difference of a and b’s induced coverage to c (Ca
c −C

b
c) is defined as the fraction of

c’s elements that is in a but not b’s induced coverage to c.

CB
E ∪ C

C
E , C

B
E ∩ C

C
E , and C

B
E − C

C
E are also demonstrated in Figure 4.1.

26

Figure 4.1: Induced Coverage Example

A

B

C

E

â
B

 U âC

â
B

 @�â
C

â
B

 - â
C

1 2 3 4 5 6 7 8 9 10

E E

E E

E E

4.2 Research Questions

Our vision of collaborative testing is based on the conjecture that there is

actionable structure in the efforts of testing functionally related components. We

believe that there are significant overlaps in the way components shared by multiple

users are tested. If we are correct, then such duplicate work could be avoided by

sharing test results with no loss of testing effectiveness. We also believe that different

component users test shared components in unique ways, so the aggregate testing

of the entire component assembly is often broader than that done by individual

component providers.

In this initial empirical study, we attempt to formalize and quantify some of

these issues in the context of two real software component assemblies in which some

user components share a number of provider components. We selected these specific

components because each component has its own build and functional tests. Our

analyses involve executing the test cases and studying how various execution metrics

overlap across components, and also show that some individual testers’ efforts are

27

not duplicated so they can provide added test value.

Research Questions: More specifically, we are interested in answering the follow-

ing research questions:

RQ1: Overlap: To what extent do testers of shared components duplicate test effort?

RQ2: Synergies: To what extent does testing by component users go beyond that

done by the providers?

RQ3: Usage Distance 1 Effects: Do overlap and synergy measures change as usage

distance grows?

4.3 Metrics

To answer the research questions, we first develop concrete metrics to quantify

the informal concepts of “overlap” and “synergy”. We treat build and functional

testing separately due to the disjoint nature of their test artifacts – the former uses

build scripts whereas the latter uses functional tests.

Metrics: For build testing, for each component Cj, we define ψ(Ci, Cj) as the set

of configurations of Cj build tested by the developer/tester of component Ci. Note

that ψ(A,A) is valid – it represents the set of configurations on which component

A is build tested by the developer of A. Having defined ψ to return a set, we use

set intersection, ∩, to study overlaps in build testing. We use set union, ∪, to study

1In a CDG, distance between two components is defined as the number of components on the

shortest path between these two components.

28

the synergies in build testing by multiple testers.

For functional testing, we use code (line and branch) coverage, parameter value

coverage, and faults detected, to measure overlaps and synergies among functional

test cases. We use a matrix representation for code coverage and faults detected. For

parameter value coverage, we record all values observed for each numeric parameter.

More formally, given a test suite TS(Ci) for a component Ci that invokes a set of

functions F of component Cj, we record the following artifacts:

• A code coverage matrix that, for each test case in TS(Ci), records the number

of times a coverage element (line and branch) in Cj was covered.

• Parameter values, a list of values, one element for each numeric parameter of

a function f ∈ F .

• A fault matrix that records whether each test case in TS(Ci) passed or failed,

and the fault detected.

Given these artifacts, we compute several metrics: (1) induced code coverage

for line and branch from testing a provider component and its users, (2) ranges of

parameter values passed to functions of a provider component when running the

test cases of its user components, and (3) number of faults detected in a provider

component by running the test cases of its user components.

29

4.4 Subject Components

We study two widely-used open source software components: APR and MPICH2.

APR2 (Apache Portable Runtime) is widely used in the web services community,

for instance, by components such as the Apache HTTP server and the Subversion

version control system. MPICH23, from the high performance computing (HPC)

community, is an implementation of the Message Passing Interface (MPI) standard

that is used to implement scientific applications on many high performance and

parallel computing platforms.

We further identify several components that use APR and MPICH2. In this

study, the user components of APR include flood, a profile-driven HTTP load tester

that collects important performance metrics for websites, managelogs, a log process-

ing program used with Apache’s piped logfile feature, serf, a C-based HTTP client

library that provides high performance network operation with minimum resource

usage, and subversion, a widely used version control system. The user components

of MPICH2 include FreePooma, a C++ library that supports element-wise data-

parallel and stencil-based physics computations using single or multiple processors,

PETSc, a suite of data structures and routines for the scalable (parallel) solution

of partial differential equations, and ParMETIS, a parallel library that implements

many algorithms for partitioning unstructured graphs and meshes. SLEPc, a library

for solving large-scale sparse eigenvalue problems on parallel computers, and TAO,

2http://apr.apache.org

3http://www.mcs.anl.gov/research/projects/mpich2

30

http://apr.apache.org
http://www.mcs.anl.gov/research/projects/mpich2

a library for large-scale optimization problems, are user components of the PETSc

component, and therefore they indirectly use MPICH2. Figure 4.2 and 4.3 show the

CDGs for APR and MPICH2, respectively. We highlight the components that we

focus on in this study in the CDGs.

Figure 4.2: APR CDG

flood

*

*

*

m a n a g e l o g s

*

*

ser f

*

*

subvers ion

*

n e o n BerkeleyDB

*

apr_util

*

*

a p ropenss l sql i te3 zlib

GNU Compiler

Ubuntu

31

Figure 4.3: MPICH2 CDG

FreePooma

*

*

*

SLEPc

*

*

TAO

*

ParMetis

*

PETSc

*

python

lapack

*

MPICH2blas

GNU Compiler

*

ubun tu

32

4.5 Study Procedure

APR, MPICH2 and their users provide their own test cases and for this study

we execute the test cases for each component, measuring how the test cases cover

APR and MPICH2 using each of the metrics described earlier.

For MPICH2 we further break down the test data by usage distance – i.e.,

higher-level components that directly use MPICH2 are differentiated from higher-

level components that indirectly use MPICH2 because there is an intermediate com-

ponent in the CDG between the top level component and MPICH2. We did this

specifically for fault detection, to see if and how testing behaviors change as the

distance between the user components and MPICH2 increases.

All measurements are conducted on virtual machines with 1GB RAM and

a single core CPU simulated by Oracle VirtualBox 4.1.6. Components are built

using the GNU compilers version 4.4.3 (which includes gcc, g++ and gfortran),

and coverage information is collected by lcov 1.9. Code coverage information is

collected for two operating systems: Ubuntu 10.04.3 32bit and FreeBSD 8.2 32bit.

Since we have observed very similar code coverage on both systems, we conducted

experiments to collect parameter value coverage and fault detection only on the

Ubuntu platform.

33

4.6 Data and Analysis

We analyzed data obtained from component development documentation and

test artifacts from our empirical study to understand the overlaps and synergies of

shared test effort in loosely-coupled communities. In Section 4.6.1 we first iden-

tify configurations on which subject components were build-tested by component

providers and users, then we discuss the possibility of broadening the set of tested

configurations and saving test effort by sharing build test results. From Section 4.6.2

to Section 4.6.4 we analyze the code coverage, parameter value coverage and fault

coverage information collected by running functional tests of subject components

and also user components of the subject components.

4.6.1 Build Testing

For each component Cj in the CDGs in Figures 4.2 and 4.3, we first investigated

ψ(Ci, Cj) – i.e., we examined configurations build-tested by component providers and

also configurations tested by component users. This was accomplished by inspecting

documents provided by component providers (e.g., HTML documents, Wiki pages,

user manuals, installation guides, and/or nightly-build test results). In some cases,

component providers do not clearly specify configurations on which their compo-

nents build successfully. For example, component providers can simply list prereq-

uisite components and expected configurations on which their components may be

built successfully. When we do not have sufficient information to determine work-

ing configurations, we examined files such as Makefile to find relevant information.

34

Table 4.1 lists configurations on which the components can be built successfully.

Table 4.1: Configurations tested by component developers

Component OS (tested by providers) Prerequisite components Remarks

APR UNIX variants, Windows, Netware, C compiler
MAC OS X, OS/2

flood Linux, Solaris APR, C compiler known to work on FreeBSD

managelogs Linux APR, C compiler tested with apr 0.9, 1.3

serf UNIX variants APR, C compiler

Subversion Linux, FreeBSD, Windows, APR, C compiler, use buildbot for build test
OpenBSD, MAC OS X, Solaris SQLite, libz

MPICH2 Linux, Cygwin, AIX (on IBM Blue Gene/P), C, C++, Fortran compilers nightly build test for GNU, Intel,
MAC OS X, Solaris PGI, Absoft compilers

PETSc AIX, Linux, Cygwin, FreeBSD, C, C++, Fortran compilers nightly build test for platforms
Solaris, MAC OS X MPI library

FreePooma AIX, Linux, Solaris MPI library, C++ compiler

ParMETIS Linux MPI library, C compiler

TAO Cygwin, MAC OS X, Linux, FreeBSD, PETSc, C++ compiler
AIX, Solaris, UNICOS(on Cray T3E)

SLEPc Linux C, C++, Fortran, PETSc

From Table 4.1, we observe that several components are regularly build-tested

on sets of predetermined configurations, and the tests are performed using automatic

build tools such as buildbot or custom scripts on dedicated machines (e.g., subversion,

MPICH2 and PETSc). However, tested configurations mostly consisted of recent

versions of operating systems and other components. One reason may be that

developers focused their limited resources on testing their components with recent

versions of required components, under the belief that users’ configurations had been

updated to recent versions of required components. However, this is not necessarily

true.

We also observe that successful component builds are often tested on a wider

set of configurations by component users than by component providers. For exam-

ple, subversion is build-tested on top of virtual machines hosting different operating

systems, as listed in Table 4.1. Since subversion requires APR, developers have to

35

first build APR successfully for the configurations, and some of those configurations

are not explicitly tested by the APR developers. Build test results from the subver-

sion developers can be used to increase the set of configurations on which building

APR is known to be successful.

Even though the number of configurations tested by component users is small,

that information can be valuable if the configurations are not commonly tested

by other testers. For example, PETSc is tested on the AIX operating system,

which is not tested by the nightly build system for MPICH2. Although the PETSc

developers do not test PETSc for all configurations where MPICH2 can be built,

their test results can be useful to inform other users of the configurations where

MPICH2 is known to build successfully. In addition, the versions of components

used in the configurations to test PETSc are not always the same as the ones used

by the component developers. For example, the GNU C compiler version used by the

MPICH2 developers can be different from the version used by the PETSc developers.

Test results from the PETSc developers can therefore provide useful information to

the MPICH2 developers, because successful component build can depend on the

versions of the required components.

4.6.2 Line/Branch Coverage

This analysis of functional testing examined how line and branch coverage

changed depending on which component’s tests were being run. Other coverage

metrics, such as method coverage, dataflow coverage, etc., could also be used to

36

Table 4.2: Induced Coverage of APR and MPICH2(%)

APR
Indirect Test Self Test Union Extra

b l b l b l b l

Ubuntu 27.5 36.5 41.9 58.9 48.3 64.4 6.4 5.5
FreeBSD 28.1 36.6 33.2 47.1 41.9 55.5 8.7 8.4

MPICH2
Indirect Test Self Test Union Extra

b l b l b l b l

Ubuntu 10.6 15.3 39.1 47.8 39.3. 48.0 0.2 0.2
FreeBSD 10.4 15.2 39.2 47.2 39.5 47.5 0.3 0.3

Table 4.3: Induced Coverage Distribution of APR and MPICH2’s users (%)

APR
One Two Three Four

b l b l b l b l

Ubuntu 16.05 18.23 6.75 9.05 1.51 3.50 3.20 5.68
FreeBSD 16.36 18.42 7.04 9.06 1.54 3.48 3.19 5.64

MPICH2
One Two Three

b l b l b l

Ubuntu 2.70 3.15 6.11 8.61 1.80 3.54
FreeBSD 2.82 3.12 5.75 8.55 1.82 3.53

37

Figure 4.4: Induced Coverage of APR

��� ��� ���

����

���

����

���

���

���

/LQH�

%UDQFK�

â
$

â

â�8â

$

$

$$

 $

â�� â$$

 $

���

����

����

(a) Ubuntu

��� ��� ���

����

���

����

���

���

���

â
$

â

â�8â

/LQH�

%UDQFK�

$

$

$$

 $

â�� â$$

 $

���

����

����

(b) FreeBSD

measure the effectiveness of user components’ test suites on testing the provider

components.

Table 4.2 shows the induced line and branch coverage of APR and MPICH2

as measured by the lcov tool, on two OS platforms. The “Indirect Test” columns

show the union of induced coverage from all the test suites of their direct users,

while the “Self Test” columns show coverage from just APR’s or MPICH2’s own

test suites. “Union” show the union of induced coverage from all components, while

“Extra” shows the difference between induced coverage of APR and MPICH2 from

their direct users and their own tests. Figures 4.4 and 4.5 show the actual number

of lines/branches in the induced coverage of both components on two operating

systems. CA
A and CM

M are the induced coverage from APR and MPICH2’s own tests,

while C∗

A and C∗

M denote the union of coverage induced from all direct users of the

provider component in the subject systems.

The results of this analysis show that the user components together achieved

substantial coverage, but not as much coverage as the test suites of the provider

components did. However, the user components provided at least some additional

coverage not achieved by the provider components’ tests. The extra coverage for

38

Figure 4.5: Induced Coverage of MPICH2

��� ��� ���

�����

�����

����

����

���

���

/LQH�

%UDQFK�

â
0

â

â��8â��

0

0

00

 0

â���â��00
 0

���

�����

�����

(a) Ubuntu

��� ��� ���

�����

�����

����

����

���

���

/LQH�

%UDQFK�

â
0

â

â��8â��

0

0

00

 0

â���â��00
 0

���

�����

�����

(b) FreeBSD

MPICH2 is small, because MPICH2 is an implementation of an industry standard

with a well-documented and widely-used API, and as a result has a very thorough

test suite.

Our second analysis examined how the cumulative coverage achieved by testing

multiple user components broke down by the component that was doing the testing,

i.e., by which component’s tests were being run. Table 4.3 shows the fraction of

APR’s and MPICH2’s code that are covered by only one, two, three or four of

the user component(s), respectively, for branch and line coverage on two different

platforms.

The results of this analysis suggest that for the APR example, while there was

some overlap in coverage from different users of APR, the tests of different users

tended to cover APR’s functionality in different ways. More specifically, among all

the lines or branches covered by the test suites of the users of APR, about half

of them were covered by only one user component. For MPICH2, since it is an

implementation of the MPI standard, there are a set of functions that are used by

almost all MPI programs, such as MPI init and MPI finalize. Thus we observed

more overlap of coverage among user components of MPICH2, compared to the

39

Table 4.4: Number of Numeric Parameter Values

APR flood svn serf managelogs Union

a 13 38 11 11 62
b 62 85 59 35 123

MPICH PETSc FreePooma ParMETIS SLEPc TAO Union

a 13 1 10 3 18 26
b 247 55 269 140 246 302

Parameter values from user component tests are sometimes outside the range of
values tested by the test suites for provider components. a: number of value range-
extended parameters; b:Total number of numeric parameters

overlap between user components of APR. However, there was still around 20% of

induced coverage from the users that were covered by only one user’s tests, which

again shows that different users have different ways of using the provider component.

Thus the more users a component has, the better induced coverage it will get from

its users’ test cases.

Since we got very similar results on both the freeBSD and Ubuntu platforms,

we only considered Ubuntu for the subsequent studies.

4.6.3 Parameter Value Coverage

To analyze values of individual parameters passed to functions in the provider

components (i.e., APR and MPICH2), we instrumented all functions of APR and

MPICH2 if they have at least one numeric parameter. We then ran the test suites of

APR and MPICH2, and also the test suites of their users (See Figures 4.2 and 4.3).

We collected the information about the parameter values passed into the instru-

mented functions, to see how the patterns of such values differed across the various

test suites.

40

We observed that the test cases for user components often invoked functions in

APR and MPICH2 with values outside the range of values covered by the provider

components’ test suites. In Table 4.4, for each provider component, we show the

total number of numeric parameters in the functions invoked while running test

cases for the user components, and also show the number of parameters for which

values tested by the user components were outside the range of values covered by

the test suites of the provider components. The rightmost column (Union) in the

figure shows the total number of parameters tested by at least one user component.

For the APR component, 180 numeric parameters were covered by running

both the test suites of APR and its user components. Among the parameters, 123

were covered by running only the test suites of user components, and parameter value

ranges were extended for 62 parameters. That is, for the range-extended parameters,

there was at least one value that is greater than the maximum value (or, smaller

than the minimum value) covered by APR’s own test cases. It is noteworthy that

14 parameters were not covered by any test case of APR but were tested by the test

cases of one or more user components. For the MPICH2 component, 302 out of 762

numeric parameters were covered by the user components and the value ranges were

extended for 26 parameters. For MPICH2 there was no parameter that is covered

by testing user components but not covered by the tests of the provider component.

Again, that is because MPICH2 contains many test cases to check compliance of

the implementation to the MPI standard.

These results imply that boundary values for some parameters were not con-

sidered when provider component developers created their test cases, or that user

41

component developers used incorrect or unexpected parameter values. We do not

have information on the relationship between the correctness of the functions and

specific parameter values used in user components’ test cases, and also we do not

assume that extended value ranges from user components are better in quality than

the value range of provider components. However, our results suggest that provider

component developers can learn more about the actual uses of their components if

they are provided with parameter value information from user components. Such in-

formation could be used to reduce developer efforts to create test cases, if developers

and users share the information about parameter value coverage.

42

F
ig
u
re

4.
6:

A
P
R

P
ar
am

et
er

V
al
u
e
D
is
tr
ib
u
ti
on

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
e+

08

 1
e+

09

 1
e+

10

serr/status*****

apr_atomic_xchg32/val

apr_pstrndup/n

apr_pmemdup/n*****

apr_gethostname/len*****

make_array_core/elt_size

impl_pollset_poll/timeout

apr_allocator_max_free_set/in_size*****

apr_strftime/max

apr_cpystrn/dst_size

apr_file_lock/type

apr_file_transfer_contents/to_perms

setptr/pos

apr_hash_get/klen

apr_array_make/elt_size

apr_off_t_toa/n

apr_proc_detach/daemonize*****

apr_mmap_create/size

apr_unix_perms2mode/perms

fill_out_finfo/wanted

apr_file_attrs_set/attributes*****

get_revent/event

apr_signal/signo

apr_socket_sendv/nvec*****

find_entry/klen

apr_poll/timeout

call_resolver/port

apr_pollset_poll/timeout

apr_fnmatch/flags

apr_atomic_cas32/with

apr_allocator_alloc/size*****

apr_file_attrs_set/attr_mask*****

apr_mmap_offset/offset

apr_palloc/in_size

apr_pstrmemdup/n*****

apr_file_write_full/nbytes

apr_sockaddr_info_get/port

apr_hash_set/klen

apr_procattr_detach_set/detach*****

apr_pstrcatv/nvec*****

apr_array_make/nelts

apr_file_perms_set/perms*****

apr_file_read_full/nbytes

make_array_core/nelts

apr_stat/wanted

apr_ltoa/n*****

apr_getopt_init/argc

apr_dir_make_recursive/perm

conv_10/num

apr_filepath_get/flags

apr_file_append/perms

allocator_alloc/in_size

apr_socket_listen/backlog

apr_generate_random_bytes/length

alloc_array/max

apr_socket_timeout_set/t

Parameter Values

Pa
ra

m
et

er
 V

al
ue

 D
is

tr
ib

ut
io

n
ap

r
fl

oo
d

m
an

ag
el

og
s

se
rf

sv
n

43

Table 4.4 shows the number of value range-extended parameters, but that in-

formation by itself does not say that a broader set of test values is used by user

components than by the provider component test suite. For example, a user compo-

nent may test a provider component function with only one value outside the value

range covered by the test suite of the provider component. To look in more details

at the actual parameter values covered by the provider component test suites and

by the user components’ test suites, we show the distribution of parameter values

covered by individual subject components in Figures 4.6 and 4.7.4

In the figures, the x-axis is pairs of function-name/parameter-name in the

provider components, while the y-axis is the values passed into the function from

running the test suites of the providers and user components. For presentation

purposes, we only showed parameters for which value coverage was extended by

user components. The y-axis is log-scale because of the wide range of parameter

values, so we also do not show parameters values less than or equal to 0. In each

graph, the parameter values covered by the provider component are aligned to a

vertical grid line, and values covered by user components are depicted on the right

side of the line in the order shown in the graph legend.

In the figures, we observe that user components often test functions in the

provider components with a larger set of parameter values. For the APR compo-

nent, svn tested many APR functions with diverse values, compared to the values

tested by APR’s test suites. For example, the APR test suite used only -1 and 5 as

4We omitted 5 APR parameters that represents the time data type, and 1 MPICH2 parameter

that is the ‘argc’ parameter of a program that uses MPICH2.

44

F
ig
u
re

4.
7:

M
P
IC

H
2
P
ar
am

et
er

V
al
u
e
D
is
tr
ib
u
ti
on

 1 1
0

 1
00

 1
00

0

 1
00

00

 1
00

00
0

 1
e+

06

 1
e+

07

 1
e+

08

 1
e+

09

 1
e+

10

MPIC_Isend_ft/count

MPIC_Isend/count

HYD_pmci_wait_for_completion/timeout

MPID_Recv_init/rank

stdoe_cb/buflen

MPID_Recv_init/datatype

MPIDI_CH3U_Recvq_FDU_or_AEP/tag

nt_memcpy/len

MPID_nem_lmt_RndvSend/data_sz

MPID_Startall/count

HYD_uiu_stderr_cb/buflen

MPID_Send/tag

MPID_Send_init/datatype

MPID_Send_init/tag

MPID_Isend/tag

MPID_Recv_init/tag

HYD_uiu_stdout_cb/buflen

MPID_Irecv/tag

MPID_Send_init/rank

MPID_Recv/tag

MPIDI_Isend_self/tag

MPIC_Irecv/count

MPID_Recv_init/count

MPID_Get_processor_name/namelen

MPIC_Irecv_ft/count

Parameter Values

Pa
ra

m
et

er
 V

al
ue

 D
is

tr
ib

ut
io

n

m
pi

ch
fr

ee
po

om
a

pa
rm

et
is

pe
ts

c
sl

ep
c

ta
o

45

the values of the klen parameter for the function apr hash get, but the svn test suite

used 35 different values between -1 and 56, including 0. For the MPICH2 compo-

nent, we see that the MPICH2 test suites test itself uses many parameter values.

This is not surprising, because, as previously noted, MPICH2 developers must do

rigorous testing to ensure compliance with the MPI standard. While it is true that

the number of different parameter values tested does not always increase overall

test quality, sharing test results from component users with component developers

can help the developers identify faults, especially if specific parameter values are

associated with the faults.

We also observe that there are APR functions tested only by user components.

In Figure 4.6, such function-parameter pairs are indicated by appending “*****” to

the x-axis labels. For example, the function apr pmemdup in the APR component

is not tested by the APR test suite, although the function is invoked with many

values by the test suites of flood, serf, and svn.

Furthermore, we found different user components invoke different functions of

a provider component. For example, managelogs heavily invoked the APR function

apr file write full but the function is not invoked from serf. That is, we expect that

parameter value distribution can provide useful information about the actual usage

patterns of the provider component by other components. If component users are

willing to share parameter value distribution information with component providers,

both sides will be rewarded, because providers can use the information to improve

the quality of their components and users will end up using more thoroughly tested

components.

46

4.6.4 Fault Detection

By now we have observed significant induced coverage to the provider com-

ponents from testing their users, including both code coverage and parameter value

range coverage. The real question we want to ask is: will such coverage help detect

faults within the components? To answer this question, we seeded faults in one

provider component, and observed whether such faults were detected when running

the test suites of both the component that contained the seeded faults and the

component(s) that directly or indirectly used it.

Given that a significant number of faults must be seeded and tested indi-

vidually to ensure the validity of our study, and that each round of testing for

all components may be very time consuming (about an hour for each fault in our

study), our subject system for this analysis was limited to a sub-CDG from Fig-

ure 4.3. The sub-CDG included MPICH2 as the provider component, PETSc as a

component that directly uses MPICH2, and TAO and SLEPc as components that

indirectly use MPICH2 through PETSc. Two categories of faults were seeded to

simulate real-world faults, which were:

1. operator faults: a change of an operator in the source code, including both

arithmetic operators (’+’, ’-’, ’*’ and ’/’) and comparison operators (’>’, ’<’,

’ !=’, ’>=’, ’<=’ and ’==’).

2. constant faults: a change of a constant value defined in macros in the source

code. Non-zero constants are changed to zero, and vice versa.

47

In order to choose the locations to seed faults in an unbiased way, first we

found all lines in the source code of MPICH2 that were covered by at least one of

the four subject components above. Then for each such opportunity, we randomly

generated a probability value between 0 and 1. When the probability exceeded a

threshold, we chose that line to seed a fault. Since there were far more opportunities

for operator faults than constant faults, we used different thresholds for the two

fault categories. In our study, there were 6516 opportunities to seed operator faults,

and 16 opportunities to seed constant faults. To generate a reasonable number of

faults that covers both categories effectively, the probability threshold was set as

0.985 for operator faults, and 0.0 for constant faults. We included all opportunities

for constant faults given that their total number was very small. As a result, 96

opportunities for operator faults and all 16 opportunities for constant faults were

chosen.

The testing results are shown in Figure 4.8. Each four boxes in a column

represents the test results for the four components built on/from the source code of

MPICH2 which has a single fault seeded. A filled box means the fault is detected

by testing the corresponding component, while a blank box means the fault is not

detected. Table 4.6.4 presents a summary of the results. Several observations can

be made from the results:

1. All faults detected by users were also detected by the test suite of the provider

component, i.e., no extra faults were detected by users.

2. Among all 112 faults seeded, 87 of them were detected by MPICH2’s own test

48

Figure 4.8: Test results from all components on 112 faults seeded into MPICH2.

��� ��� ���

�� � ��

03,&+�

3(76F

7$2

6/(3F

���

��

Table 4.5: Summary of Fault Detection Results

Fault Faults Provider PETSc TAO & Union Extra
Types Seeded SLEPc Union Extra

Operator 96 75 21 21 75 0
Constant 16 12 3 3 3 0

All 112 87 24 24 87 0

suite, 24 of them were detected by testing its direct user (PETSc), and 24 of

them were detected by testing its indirect users (TAO & SLEPc).

3. All faults detected by direct users were also detected by indirect users.

The first observation is not encouraging, but is quite reasonable for this case

study. From Table 4.2 we can see that only 0.2% of MPICH2’s code is covered

exclusively by its users, while its own tests cover 47.8% lines. Thus the probability

that a fault is seeded in the code which is exclusively covered by the users is less

than 0.004. When choosing 112 faults uniformly among the code covered by either

component, it is quite likely that no faults are seeded in such portion of MPICH2. We

manually examined the code after the study and found that there were only 48 lines

that were covered exclusively by MPICH2’s users, and none of the automatically-

seeded faults resided in those lines. This fact is consistent with our result.

49

The second observation shows testing MPICH2’s users alone can detect about

20% of all seeded faults. Recall that all faults were seeded in the code covered by

at least one component. Considering the fact that testing users alone covers about

15.3% lines of MPICH2’s source code, while the union of all components’ induced

line coverage is 48.0% (refer to Table 4.2), The probability a fault is seeded in the

code covered by users is about 30%. Thus the result of fault detection is roughly

consistent with code coverage.

The third observation implies that faults are unlikely to be hidden by distance

in the CDG. In other words, faults in a provider component are still discoverable by

testing users that are far in the CDG from the component.

The second and third observation reveal the coherence between induced cov-

erage and propagated faults from the provider component to its users. Since we

already see considerable induced coverage in both subject communities, it is reason-

able to claim that component users will help to find faults in the provider component

by running their own test suites.

Finally, we are only testing one of MPICH2’s direct users and two indirect

users for fault detection. There are many more users of this component. We can

expect more code to be covered exclusively by its users.

50

4.7 Summary

This empirical study is driven by our original research conjecture – that in

the context of compatibility testing across shared software components, it may be

profitable to optimize testing processes across multiple components, rather than

within individual components as is generally done today. To explore this idea, we

have conducted an initial study of two groups of user components that functionally

depend on two common provider components. We reviewed their current testing

processes, investigated how much their test efforts overlap and whether the total

costs or quality could be improved if their testing activities are coordinated. The

results suggest that the test cases designed and run by component users can be

individually less comprehensive than those by component providers, but in some

cases can exhibit new behaviors not covered by the original provider’s test cases. In

addition, we have found that testing done at different levels in a CDG by different

components that use the same provider component appear to be complementary.

Finally, these results suggest that test results from the higher level components might

provide useful feedback for understanding usage patterns or operational profiles from

a component user’s perspective. Component developers could use this feedback

to improve their own test suites. In conclusion, both overlaps and synergies do

exist in the testing process of the subject systems. Thus it is worthwhile to build

a collaborative testing infrastructure, which can help individual testers of avoid

redundant test effort, and utilize the synergies to improve the test quality of their

own components.

51

Chapter 5: Collaborative Testing Infrastructure

In the previous chapter, I described an empirical study aiming at exploring

overlaps and synergies in the functional testing processes of components that share

provider components. The result of our study over two subject component as-

semblies confirmed the existence of such overlaps and synergies. It is therefore

worthwhile to build an infrastructure to support collaborative testing, which could

eliminate overlaps and use the synergies to achieve better testing quality for all

participants.

This chapter presents our work on building an example collaborative testing

infrastructure. The core component is a web-service based data sharing reposi-

tory called Conch, which allows testing tools for different component developers

and testers to share their testing artifacts and results. To support scalable caching

and sharing of testing artifacts in the format of virtual machine images , we also

developed Ede, an environment differencing engine. Last, we built an ad-hoc col-

laborative testing process upon this infrastructure, and evaluated its effectiveness

as well as performance over a set of example components.

52

5.1 Environment Model

Collaborative activities work when individual efforts can be leveraged in a

common group activity or used as artifacts. For instance, configuration manage-

ment systems allow individual developers to modify source code independently and

then merge their changes into a common version. In order to leverage independent

testing efforts of component-based software systems, it is necessary to control the

test environment in which a component is built and tested so that test results will

be comparable across different testers. Thus, we provide a notional definition of a

test environment as follows:

Definition 1: An environment where a component built and tested in includes

all pre-built component instances in a system, the tools to be used to build the

new component, all source code needed by the build, and all other controllable

factors known to determine the result of the component’s build process and the

correct functioning of the component.

Controlling the environment in this way maximizes the likelihood that two

testers building and testing the same component can share and combine their test

results. That is, any differences in results should be attributable only to differences

in how the components were tested, not in where or by whom they were tested.

To gain this control, we attempt to standardize the test environment used by each

tester. We have identified several factors that may affect the build and functional

testing of components, and therefore must be captured by the test environment.

These factors include:

53

• Hardware parameters (processor type, memory system, etc.)

• Operating system (architecture, kernel version, system core libraries, etc.)

• Build environment (compiler, compiler options, extra instrumentation inserted,

etc.)

• Provider components (versions, their build settings and installation options,

etc.)

Of course, this approach is not bullet-proof. We cannot, for example, account

for unknowable or random factors, such as transient hardware faults in one

tester’s computing device, which surely affect how a component behaves.

A Virtual Machine(VM) with an installed operating system and pre-built core

components is an intuitive way to encapsulate an environment, and sharing of pre-

built environments then becomes sharing of VM images. In order to describe the

environment encapsulated in a VM image, we associate an XML description file with

each shared VM image. The description contains information about the hardware

parameters of the VM, operating system information, pre-built components and

their build options, and other information that may affect the test results. When

accessing the repository, test tools search for VM images instantiating specific en-

vironments based on the description files.

The information contained in a typical description file is shown in Figure 5.1.

In this environment there are six components, including the operating system and

a compiler. Two of them (SQLite and APR) are built from source code, and their

54

Figure 5.1: Simplified example environment description for a VM

Component

name

compiler-used

sqlite3-1.3.5

gcc-4.4.6

build-flag with-apr=✄/usr/local/✁�✂✄

build-flag CFLAGS=✄-O0✄

Component

name apr-1.4.5

bdb-6.0.20

compiler-used gcc-4.4.6

build-flag CFLAGS=✄-O0✄

Component
name
status system-prebuilt

neon-1.6
Component

name
status system-prebuilt

gcc-4.4.6
Compiler

name
status system-prebuilt

Ubunt-12.04
OS

name
archtecture X86_64

2
Hardware

cpu_cores
cpu_frequency 2.8GHz

RAM 1024M

build flags are shown. The other components, except the operating system, are pre-

built binary packages provided in the Ubuntu 12.04 software distribution. Three

hardware parameters are also included in this environment.

5.2 Conch Data Sharing Repository

To facilitate data sharing among testers and their tools, we have designed and

implemented a web-service based data repository called Conch. The structure of

Conch is shown in Figure 5.2. The repository uses a MySQL database as the back-

end, and provides a set of data query and management methods wrapped as web

services. The web services are described using WSDL [38] and can be accessed via

standard SOAP [39] protocols. Using the protocols, testers or other third-parties

55

Figure 5.2: The Conch Data Sharing Repository

can easily write tools and plug-ins that allow their automated test systems to access

the repository, to analyze repository data, and to coordinate their testing processes

with those of other testers.

Depending on the type of collaborations between automated test tools, the

data types shared in the repository can be different, thus the data schema for the

repository can be customized too. For the sharing scenarios we consider in this dis-

sertation, the data stored in Conch has five major types: (1) component metadata,

(2) component dependency relationships, (3) test case metadata, (4) test results,

and (5) virtual machine artifacts (environments).

When an automated test tool submits test results to the repository, a unique

test data record is created for each result. Each test data record is associated with

the environment in which the test activity was performed, and with an outcome or

test result, such as test success or failure. Other information regarding the tests

(e.g., the raw output of running such tests) can also be stored in the repository

56

Figure 5.3: Request for SQLite dependency data

Conch Request

command_name getCDG

001

component SQLite

command_session

Figure 5.4: Conch response with SQLite dependency data

Conch Response

command_name getCDG

001

component SQLite

command_session

CDG [+ gcc pgcc intelc] ncurses tclsh

for other test tools to interpret. Testers and their tools can retrieve existing test

results by searching through the environment descriptions of existing test results.

Users can submit or query test data by sending and receiving messages to/from the

repository via Web service interfaces.

A response from the Conch server may contain links to access data, instead of

actual data. For example, a response may contain a URL that points to a virtual

machine image file. The information shown in Figure 5.3 and Figure 5.4 illustrates

the content of example message exchanges for a user’s request for dependency in-

formation for the SQLite component. The dependency data is returned back to

the requester as a string in the server’s response. The data request is initiated by a

user-side automatic testing system that provides Conch with the information in Fig-

ure 5.3, and the response is in the form of an XML file that contains the information

in Figure 5.4.

57

5.3 Sharing Virtual Machines with Environment Differencing

Before building and testing a component, an environment that contains all

its provider components must be prepared. Such an environment can be encapsu-

lated as a virtual machine (VM) image. However, unlike test results or component

metadata, the size of a VM image can be very large1. Moreover, the sheer number

of potential pre-built environments that could be shared among testers and their

tools makes it difficult to store the VM images in the repository, and limited net-

work bandwidth makes it challenging to transfer the environments over a wide-area

network, if they are cached locally at individual testers’ sites.

To overcome these challenges, we have developed a tool called Ede (Environment

Differencing Engine) [40] that supports automated Environment Differencing. When-

ever a new environment containing a pristine operating system is prepared, Ede

creates a signature file for the whole operating system, which includes the state of

all existing files. After building and installing additional components in this en-

vironment, Ede inspects all files and records all changes as a delta file. A delta

file records file deletions and creations, permission changes, etc., and can be au-

tomatically applied to another VM that has the same pristine operating system

installed.

The high-level design of Ede is shown in Figure 5.5. Ede can have multiple

clients and environment providers, and the system in Figure 5.5 has one of each.

1The size of a virtual machine image that encapsulates just a Linux operating system can easily

be greater than 1 GB, even with only a minimal installation.

58

Figure 5.5: High-level Design of Ede Infrastructure

Data

Repository

Ede Client

Local Agent

VM1

Agent ✄

Environment

Provider

File Server

Every Ede client has two parts: a local agent and virtual machine(VM) instance(s).

The local agent acquires pristine virtual machine instances, and controls the state

of each VM instance managed by the agent by applying the update operations. The

local agent accomplishes this by communicating with a process called VM agent

running inside each VM instance. The process is invoked when the VM boots up

and executes commands for various tasks required for managing the VM state.

When the VM agent receives from the local agent the information on the

system environment that needs to be provisioned, it first queries the data repository

to search for a prebuilt system environment. If found, the agent updates the VM

state to the specified state and informs the local agent that the environment is

ready. Otherwise, the local agent is responsible for provisioning the desired system

environment locally, which means that required components should be built in the

VM from a pristine state or from another locally stored system environment.

59

With help from Ede, test tools that target at systems with common compo-

nents can share their pre-built environments by storing only delta files, along with

environment descriptions, in the repository. Sharing pre-built environments will

save time for provisioning a new environment, compared to building an environ-

ment from scratch. Consider the components illustrated in the CDG of Figure 3.1.

Testing components D and F requires an environment where G is installed. How-

ever, a tool that tests component D can save test effort and focus on testing only

component D if the tool can reuse a pre-built environment in which F is already

built. In this case, the tool testing component F will first retrieve from the Conch

repository a delta file for a VM that has G installed. The tool can then restore

the full VM locally by invoking Ede, build and test F in the VM, then create yet

another delta file that contains both G and F in the corresponding VM. This delta

file and its description file are then stored into the repository for later sharing.

Environment Differencing requires individual test tools to locally store root

virtual machine images, which encapsulate environments with a pristine operating

system installed on a specific hardware platform. Whenever a tester needs a pre-built

environment that is available in the Conch repository, the test tool can download

the desired delta file and automatically apply it using Ede. Storing delta files and

transferring them over a wide area network is not too expensive. The size of a typical

delta file is small (often between 10MB and 100MB), and the patch process does not

take long (usually less than one minute). This enables the repository to store many

environments created during test sessions. This approach is more cost effective than

our previous approach of transferring whole virtual machine images [33].

60

5.4 Ad-hoc Collaborative Testing Process

In this section we describe an ad-hoc collaborative test process for component-

based software systems implemented upon the Conch data sharing repository and

the Ede environment differencing engine. In this process, pre-built environments and

functional test results are shared by different testers, as well as coverage information

for provider components induced from testing their user components. Testers of

different components collaborate by sharing test data stored in the Conch repository

and do not need to directly communicate with each other in order to benefit from

the collaboration.

5.4.1 Testing Procedures for Component-based Systems

Before introducing the collaborative testing process, we need to revisit the

process for testing a single component-based software system. A component-based

system can be considered as a top-level user component plus all the provider com-

ponents that it depends on. Thus whenever a provider component is updated, part

or the whole of this component-based system needs to be rebuilt and tested to vali-

date whether the newer version of the modified component still works in the system

correctly. Three steps should be followed for the system validation activity at such

changes:

1. Build and run functional tests of the new version of the provider component

in desired environments.

61

2. Build and run functional tests of all other provider components dependent

upon the modified component directly or indirectly.

3. Build and run functional tests of the user component.

Consider, for instance, the Subversion system in Figure 5.6. If a new APR

version is available for the Subversion system, Subversion testers will first need to

build the APR version on system configurations they support, and then run the test

suite of APR to make sure it functions correctly on the configurations. Afterward,

all other components that directly and indirectly depend on the APR component

need to be rebuilt and functionally tested with the new APR version. If everything

works correctly, testers will build and test Subversion last to make sure it behaves

correctly.

Since components are developed and maintained by separate groups, when

APR is updated, testers of not only Subversion but also all other components in

Figure 5.6 that use APR may be interested in the effects of the update. Thus

part of the building and testing work conducted by testers of Subversion may also

be repeated by testers of other components. In addition, as seen in Figure 1.1,

APR is used by multiple other systems as well. It is very likely that testers of

those components repeat the identical build and test activity that may have already

been conducted by other testers. Hence the opportunity to reuse existing pre-

built environments and functional test results generated by other testers does exist

if component-based systems are tested collaboratively. In Chapter 5.4.2, we will

discuss how to use Conch to share pre-built environments and functional test results

62

and save test time by avoiding redundant work.

A component typically accesses only a subset of code regions in its provider

components when its test cases are executed. In the example of testing Subversion

upon a newer version of APR, testers would run the whole test suite of Subversion.

However by sharing code coverage data, a regression test tool for Subversion can

keep the mapping between individual test cases and the code regions in APR covered

by executing the test cases. Thus the regression test tools for Subversion and for all

other user components of APR should be notified when the APR code is changed.

Then, the tools can execute only the selected test cases relevant to the change by

analyzing the coverage data, and this will contribute to reducing the test workload

further.

If a regression test fails for a revision of a provider component when it used to

pass with a previous revision of the provider component, it means either the newer

version introduces a new fault that makes the test fail, or there are problems in the

failed test itself. In the former case, testers may provide feedback to the developer

of the provider component, so that the fault can get fixed in later revisions. In the

latter case, the testers can fix the erroneous test. In either case, the developers and

testers benefit from receiving regression test results promptly.

5.4.2 Collaborative Build and Functional Testing

In a component-based software system, build testing of a specific component

can be considered as a part of its functional testing, because the component can

63

be functionally tested only if it can be successfully built in an environment (or

configuration). In addition, all the components on which it depends (i.e., its provider

components) must also be built and function correctly.

Assuming that an operating system deployed on a hardware platform provides

hardware independence, one of the primary interests of component testers will be to

test the correct build and behavior of their components on a large set of heteroge-

neous environments. Note that an environment on which a component is to be built

and tested is an instantiated subgraph of a CDG – i.e., all its provider components

are assigned a specific version already.

Given a component and an environment, a test tool can use Algorithm 1 to

provision the environment. The algorithm is designed to reuse existing pre-built

environments in Conch as much as possible to rapidly provision the environment

before building and testing the component. There is no guarantee that a desired

environment is already shared by others, nor is it mandatory for all testers to share

their pre-built environments. We call this testing process ad-hoc collaborative test-

ing.

In this algorithm, C is the subject component to be tested, Env is the desired

environment in which C will be tested, and Repo is the data sharing repository

that stores pre-built environments as VM artifacts. If the desired environment Env

is already instantiated (by this tester or a different tester) and available in the repos-

itory, the test tool can simply retrieve the VM that encapsulates the environment,

and build and test C (line 1–3). Otherwise, the tool retrieves all provider compo-

nents and their versions contained in Env (line 5), finds a pre-built environment

64

Algorithm 1: RapidTest(C, Env, Repo)

Data:
C : subject component
Env : target environment
Repo: repository that includes pre-built environments

1 if Env exists in Repo then
2 Retrieve Env from Repo;
3 Build and test component C in Env ;

4 else
5 P ← getProviders(Env);
6 subEnv ← findBestMatch(Env, Repo);
7 P’ ← getProviders(subEnv);
8 Build and test P − P’ on subEnv ;
9 Build and test component C on subEnv ;

10 end

from Repo that requires the minimum extra build effort to create the desired en-

vironment (line 6). The tool can then build the extra components required by C

(line 7–8), and finally build and test C (line 9).

The procedure findBestMatch() can be implemented using either historical

records or heuristics to find a partial environment that a test tool can modify to

meet its requirements. In the special case that no pre-built environment is found and

subEnv is empty, the test tool will have to start from scratch – i.e., all components

contained in the environment Env (except the operating system) must be built and

tested.

65

Figure 5.6: Subject Systems on Ubuntu for collaborative Testing

SVNKit

Subvers ion

Serf

*

APR-Util

**

*

Neon

BerkeleyDB

*

*

*

APR

*

OpenSSL

SQLite

Zlib

GNU Compiler

Ubuntu

5.5 Evaluation

In this section we evaluate the benefits of applying the ad-hoc collaborative

testing process described in the previous sections to test components with overlap-

ping regions in their CDGs, compared to testing the components in isolation.

In Section 5.5.1, we evaluate the benefits of the collaborative testing process

with two sets of top-level components that share provider components, as shown in

Figures 5.6 and 5.7. While replaying the version release history of the components

contained in the CDGs over a period of time, we conducted compatibility testing

using Rachet [33] at each component version release, and measured the building

and testing time that could be saved when different sharing strategies supported by

Conch are applied.

66

In Chapter 5.5.2 we demonstrate the value of collaborative regression testing

in the development process. We ran the regression tests of user components at new

provider component version releases, and found bugs in both provider components

and user components’ test cases. That is, developers can discover problems caused

by the changes in their provider components quickly after the problems are intro-

duced, as well as can find previously undiscovered problems in users’ tests. We also

have developed a tool that uses regression test data stored in Conch, selects test

cases that have to be rerun when a provider component changes, and then triggers

the regression tests with the selected test cases. The tool uses Jenkins [26] as the

automatic regression test client. We evaluate the collaborative testing process with

the version release history of the components in Figure 5.6 over one year.

5.5.1 Collaborative Build and Functional Testing

In order to evaluate the benefits of collaborative testing, we first recorded

the wall-clock time required for building and testing the components in the CDGs

shown in Figures 5.6 and 5.7 on an environment (i.e., a VM image) sandboxed

with VirtualBox. For each component, the recorded time includes only the time

required for building and testing the component itself, assuming that all its provider

components are already built in the environment. Only default test suites supplied

with the component source code are executed and the running times are measured.

In Figure 5.6, the top-level components are SVNKit and Serf. SVNKit is an Open

Source Pure Java Subversion Library, and Serf is a high performance C-based HTTP

67

Figure 5.7: Subject Systems on Debian for Collaborative Testing

Ns3

*

**

*

*

XChat

*

* *

Anjuta

*

Xbmc

*

*

Bluefish

*

Py thon

*

BerkeleyDB

LibXML2 GTK+

OpenSSL

Bzip2SQLite

GNU Compiler

Debian

client library. In Figure 5.7, the top-level components are Anjuta, Ns3, Bluefish,

Xchat and XBMC, all of which are user applications in the Debian Linux system.

The CDGs also show the components on which the top-level components depend

(i.e. their provider components). Brief descriptions of the components are given in

Table 5.1.

For each component, we replayed all its version releases over one year (be-

tween 8/3/2012 and 8/3/2013). At each version release, we test the compatibility of

the version with existing versions of its provider components, and also trigger com-

patibility testing of all its user components. For the existing provider component

versions, we used the versions released between 8/3/2011 and 8/3/2012. The direct-

dependency coverage (DD coverage [33]) criterion is used to compute configurations

68

Table 5.1: Subject Components

Component Description

SVNKit Open Source pure Java Subversion library
Subversion version control system
Neon HTTP and WebDAV client library
Zlib compression library
BerkeleyDB library for embedded database
APR supporting library for Apache projects
APR-util support library for APR
SQLite SQL database engine
Openssl open source toolkit for SSL/TLS
Gcc GNU C compiler
Ubuntu Ubuntu Operating System
Anjuta GNOME Integrated Development Environment
Ns3 discrete-event network simulator
Bluefish editor targeted towards programmers
XChat multi-platform IRC chat program
XBMC open Source Home Theater Software
Python object-oriented programming language
LibXML2 XML C parser and toolkit of Gnome
GTK+ toolkit for creating GUI on multiple platforms
Bzip2 high-quality, open-source data compressor
Debian operating system

newly introduced because of the version releases. The recorded times required for

building and testing components are then used to simulate the total test time using

the following three sharing strategies. We used the time cost of successfully building

each component and executing all its tests for the simulation, so that the simulated

time cost reflects the worst scenario.

Strategy 1: No sharing. This is the baseline strategy, which is the most

time-consuming, because testing any component in a CDG requires both building

and functional testing of all its provider components (i.e., all the components in the

CDG sub-graph rooted at the component being tested), before building and testing

the target component. In this strategy, there is no test data sharing between testers

69

at all. Strategy 2: Sharing test results only. Test tools share functional test

results for each component tested. Provider components still must be built, but their

functional tests will not be run if the results are available in the Conch repository.

That is, the tools execute functional tests of the provider components only when

there has been no previous test session that contains the test results. Strategy 3:

Sharing test results and pre-built environments. Test tools share not only

functional test results, but also pre-built environments. In this strategy, a test tool

can select a pre-built environment in the format of a Virtual Machine delta file from

the repository, and only build and test the components missing from the retrieved

environment.

For Strategies 2 and 3, when a new component version is released, we expect

that different developer groups will start testing their components with the new

version at different times. Then the group that starts its testing later will have more

opportunities to reuse test results and artifacts produced during the test sessions

performed by other groups. For a fair evaluation, we have the repository notify the

different developer groups in random orders for Strategies 2 and 3, and we repeated

each simulation 100 times and computed the average times. We assume a bandwidth

of 4MB/s for transferring VM delta files over the Internet.

To better understand the amount of work that can be saved by sharing test

information via the Conch repository, we added up the times required for building

and testing newly introduced configurations at each version release of the provider

components of the top-level components. We call the sum the total configuration

preparation cost. Table 5.2 shows the total configuration preparation cost for

70

each top-level component shown in Figures 5.6 and 5.7.

In Table 5.2, the first column shows the names of the top-level components in

both CDGs, the next three columns present the average configuration preparation

cost (in hours) for each component in our simulation for the different strategies, and

the last two columns show the configuration preparation cost saving in percent for

Strategy 2 and 3, respectively, compared to Strategy 1. The table shows that sharing

functional test results alone reduces the preparation cost by 10% to 15% for most

components. We see huge time savings when testers start sharing test results and

pre-built test environments. The total cost was reduced by 52.2% for testing SVNKit

and Serf, and by 77.2% for testing the top-level Debian components. These results

clearly show that testers can significantly reduce their testing workload by sharing

their test results and pre-built environments with other testers though Conch.

5.5.2 Continuous Collaborative Regression Testing

In this section we replay the continuous development of three provider com-

ponents, APR, Openssl and SQLite, contained in the combined CDG in Figure 5.6

using their version release history between 8/3/2012 and 8/3/2013. Our tool moni-

tors the code repositories of the three components. Whenever there are source code

changes in any of the components, the tool (1) identifies all user components whose

regression tests could be affected, (2) automatically builds the affected user compo-

nent(s) as well as all other required components relying on the new provider com-

ponents, and (3) reruns the selected regression tests whose result could be affected

71

Table 5.2: Configuration Preparation Cost(hours) and Benefits(%)

Comp. Strategy 1 Strategy 2 Strategy 3 Save-2 Save-3

SVNKit 2194.4 1863.9 1050.0 15.1 52.2
Serf 12.1 9.6 5.0 20.7 58.7

total 2206.5 1873.5 1055.0 15.1 52.2

Anjuta 2311.1 2036.1 327.8 11.9 85.8
Ns3 2330.6 2055.6 438.9 11.8 81.2

Bluefish 2500.0 2219.4 591.7 11.2 76.3
XChat 2972.2 2700.0 1072.2 9.2 63.9
XBMC 2344.4 2080.6 411.1 11.3 82.5

total 12458.3 11091.7 2841.7 11.0 77.2

by the code changes. Pre-built environments are reused to reduce the component

build times.

We considered two user components, Subversion and Serf, from Figure 5.6.

The components rely on the three provider components described above and also

have default regression test suites. The regression tests were performed for fixed

versions of the user components (Subversion 1.8.1 and Serf 1.3.0) on the days when

there were code changes for at least one of the provider components.

During the one year time period, there were 80 APR revisions, 148 Openssl re-

visions and 221 SQLite revisions. From all those revisions, we had to build and test

Subversion 241 times and Serf 148 times. We now demonstrate four observed ben-

efits from running regression tests of user components when a provider component

changes.

Detecting faults in provider components: Regression tests for user components

can reveal faults in provider components, and the fault-revealing test cases of the

user components can be carved as new test cases of provider components. Techniques

have been developed that potentially enable automatic carving of such test cases [41].

72

One example we found was that the test case wc-queries-test of the Subver-

sion failed when it was built with SQLite revision d7a25cc797. The error occurred

because a series of valid queries to SQLite returned errors.

We manually carved out the queries and created a unit test for SQLite and

confirmed that the test case exposes the identical fault. Even though the fault was

fixed in later releases, this example suggests that our automatic regression testing

process can be used to detect faults relevant to provider components quickly, and

also to produce new test cases that can detect the faults, thereby contributing to

enriching the test suites of the provider components. Moreover, developers of other

user components can also benefit from finding such faults because they are informed

of the faults and can avoid spending time to find out the causes.

Discovering problems in accessing provider components: When changes in

a provider component cause problems in building and testing user components, the

collaborative testing process can be used to notify the provider component develop-

ers of the problems, so that they can use the information to pinpoint the origins of

the problems.

In our experiment we found that multiple test cases of Serf and Subversion

failed with the error message: Couldn’t perform atomic initialization, when

they were built and tested with some revisions of SQLite – for example, revision

62225b4a4c). A simple Web search result revealed that many SQLite users ex-

perienced the same problem. The problem occurred when the SQLite library was

linked in an obsolete way that was no longer supported. If SQLite developers had

73

been informed of the problem quickly, they could have fixed the problem, or at least

could have updated user documentation so that users could be made aware of the

problem.

Discovering faults in user components or in their test suites: When user

components are built with a new provider component version, running regression

tests for the user components can often reveal faults in their own test cases.

For example, Subversion’s test cases written in Python encountered unhan-

dled exception errors, when Subversion was built and tested with specific SQLite

revisions (e.g. revision 6f21d9cbf5). This example suggests that the quality of user

components and their test suites can be improved if and when our collaborative

testing process is adopted by provider and user component developers.

Reducing the number of regression tests to run: We also observed that

maintaining a mapping between the individual test cases of user components and

code coverage information for provider components can greatly reduce the number

of test cases that must be rerun when a provider component changes. When the

changed part of the provider component is not previously covered by a regression

test, we don’t necessarily need to rerun that test. User component testers can share

their unit-test coverage data for provider components in Conch, and such a mapping

can be easily obtained by analyzing the coverage data.

Our experimental result is presented in Table 5.3. The “Rerun-Required Up-

dates” row in the table shows the percentage of provider component revisions that

caused rerunning the regression tests of its user components, compared to the num-

74

Table 5.3: Regression Test Selection Results

Subversion Serf

APR SQLite APR Openssl

Rerun-Required Updates 29% 72% 9% 55%
Reduced Test Suite Size 80% 59% 98% 30%

ber of revisions that contain source code changes. As we can see, when the source

code of APR changes, the regression tests are triggered in only 29% of such changes.

The “Reduced Test Suite Size” row shows the average percentage of selected regres-

sion tests of user components that must be rerun, compared to the total number of

regression tests. In the 29% cases when changes in APR triggered regression tests

of Subversion, we don’t need to return the whole regression test suite of Subver-

sion either. On average, only 80% of the regression tests need to be rerun. From

Table 5.3, this trend also exists for other evaluated components. It is evident that

testers can save considerable effort on regression testing if they share the coverage

information across components and properly use them for regression test selection.

5.6 Summary

As a step toward making collaboration between testers of component-based

software systems easier, we have developed infrastructure and support tools, which

include a model to specify test environments, a sharing repository for exchanging

test data, an initial implementation of a collaborative testing process, and an em-

pirical evaluation of the process. The model for test environments can accurately

capture the hardware, system and inter-component relationships for build and test-

75

ing processes, so that test data shared between testers are comparable. The data

sharing repository enables test tools to easily store or retrieve test data by querying

the repository. By applying the developed approach to an example testing pro-

cess, we have shown that developers not only saves significant time for build and

functional testing, but also can improve regression test effectiveness.

76

Chapter 6: Coordinated Collaborative Testing Process

In the last chapter, I introduced the collaborative testing infrastructure that

consists of the Conch data sharing repository and the environment differencing en-

gine Ede. I also built an ad-hoc collaborative testing process utilizing Conch and

Ede for data sharing. This process was designed to work in a greedy fashion with-

out careful coordination between developer groups. However, in today’s continuous

regression testing processes, multiple groups may start to conduct regression testing

at every component update, if their components are affected by the update. This

is a rational choice for the groups because the configurations that contain the new

component version are newly introduced and the groups intend to minimize the time

in which potential compatibility faults are exposed to their user community. How-

ever, the strategy increases redundancy in test effort spent by the groups, especially

if there are inter-component dependencies or if the component is shared by multiple

groups.

In this chapter, I present a coordinated collaborative regression testing process

for multiple developer groups, with the objectives of reducing the overall test re-

dundancy across the groups as well as minimizing the time in which compatibility

faults are exposed to the user community. The process involves a test scheduling

77

and notification mechanism across developer groups, so that each group is made

aware of the configurations under test by other groups, enabling the groups to

avoid performing redundant tests. I apply this process to a set of software systems

with shared components in an Ubuntu distribution, emulate the application of the

process over the 2-year history of the component development, and evaluate the

cost and effectiveness of the process. Our experiments show that the coordinated

collaborative testing process can greatly reduce test redundancy and can discover

cross-component compatibility faults quickly.

6.1 Coordinated Collaborative Testing Process

We first outline notification-based test coordination, and then describe the

detailed decision algorithm to distribute testing tasks to different developer groups,

based on the availability, credibility and the performance of developer groups.

6.1.1 Notification Scheme for Coordinated Collaborative Testing

The Conch test data sharing repository not only maintains the dependency

relationships between components, but also monitors the source code repository of

the components to track their update releases [7]. For the purpose of discovering

compatibility faults as soon as possible, whenever Conch sees a new version of a

component, the developer groups of all user components of the updated component

are notified, and they immediately start testing the new regression configurations.

But because no group has yet tested or shared regression configurations containing

78

the new component version, the developer groups will not find reusable test results

or configurations in Conch. Therefore, multiple groups will start testing identical

configurations locally because they still need to minimize compatibility fault expo-

sure time. As a result, the groups will end up performing redundant tests. That

is, ad-hoc collaborative testing without proper coordination will waste testing time

and testing resources of the developer groups.

To avoid the redundancy yet still achieve efficient regression testing, we en-

hance the notification scheme used in Conch to support coordination across multiple

developer groups. This is different from ad-hoc collaborative testing in two aspects.

First, for a new component version release, Conch notifies the affected user compo-

nent developer groups to start testing the shared portion of regression configurations,

in an order determined based on the availability, past test performance, and the fail-

ure rate of the groups. Second, if a set of new regression configurations that contain

the new version is assigned to a developer group and is currently being tested, Conch

monitors the test status, and notifies other groups of the status, if they request it.

The groups can wait for the result to become available, or start testing the config-

urations locally. If they choose to wait, Conch will notify them when the result is

ready. This scheme allows developer groups to conduct testing independently, and

make their own decisions about whether or not to perform redundant tests.

79

6.1.2 Strategy for Coordinated Collaboration

When a component is shared by multiple developer groups and a new version

of the component is released, sets of regression configurations defined for its user

components have to be tested by the groups. Because the component is shared,

there must be overlaps in the regression configuration sets, and the overlaps – a set

of partial configurations – must be tested first. Conch selects one of the developer

groups to test those partial configurations without causing test redundancy, based

on the following factors:

• Availability: a binary value that indicates whether a developer group can

immediately start testing a set of new regression configurations

• Performance: how fast a developer group can complete testing on their

testing resources

• Reliability: how likely a developer group can complete assigned testing tasks

The performance factor of a developer group G is defined as the ratio of

the execution time required to run a sample test suite using the testing resources of

the group and the resources at the Conch repository, as shown in Equation 6.1.

PF (G) =
TG

TConch

(6.1)

We next define the test failure rate of a developer group G to quantitatively

measure the reliability of the group. It is defined as the ratio of the number of failed

test suite executions and the total number of test suite executions by the group.

80

TFR(G) =
FCG

TCG

(6.2)

In Equation 6.2, TCG is the total number of test suite execution requests that

have been assigned to the group G, and FCG is the number of test suite execution

requests that failed to complete successfully. Reasons for failure to run a test suite

may include abnormal termination of the test suite execution and failure to report

test results back to Conch (e.g., because the test developer resource crashes, or loses

its network connection), but does not refer to the success or failure of individual

test case executions.

Based on the performance factor and the failure rate of a developer group G,

we define the Expected Performance Factor (EPF) of the group as:

EPF (G) =
PF (G)

(1− TFR(G))
(6.3)

The EPF value will be small when both the performance factor value and the

failure rate are small, and Conch prefers to distribute testing workload to a group

with the smallest EPF value.

When a provider component is updated, we first determine the user compo-

nents for which functionality might be affected by the updated provider component.

Then we compute the regression configurations for the user components and also

compute the overlaps between the configurations. The overlaps are a set of partial

regression configurations on which the updated component has to be built and run

without any faults. A developer group selected by applying Algorithm 2, will then

81

be requested to build and test the updated component over the partial configuration

set.

Algorithm 2: CoordinateTester(C, CDG, A, PFs, FRs)

Data:
C : updated provider component
CDG: component dependency graph
A: availability of groups
PFs : performance factor values of groups
FRs : failure rate values of groups

1 groups ← available direct user comp. developer groups ;
2 sort groups by EPF ;
3 while groups 6= ∅ do
4 group ← groups.getNext() ;
5 result ← assigntask(group, C) ;
6 update FR of the group ;
7 if result == Success then
8 update result in Conch ;
9 Conch notifies subscribers of C ’s results ;

10 break ;

11 end

12 end

Algorithm 2 first identifies the developer groups of direct user components of

the updated component C and eliminates the groups that cannot start regression

testing immediately.1 The candidate groups are sorted by the EPF values and then

the group with the smallest EPF value will be requested to test C over the given

regression configuration (Line 5). If the group completes (or fails to complete) the

test, the FR value of the group will be updated accordingly.

If other groups request the result from testing C over the regression configu-

ration while the test is under execution, Conch simply notifies the groups that the

1 Developer groups of indirect user components are not considered because they can reuse the

results produced by a direct user component developer group.

82

result is not yet available.

The groups can choose to run the same test using their resources, or instead

wait for the result by subscribing to the test in Conch, and then run other tasks.

If the test execution is completed, all groups interested in the test result will be

notified (line 7-11). Otherwise, the next group in the sorted list of groups will be

assigned to execute the test.

By applying the algorithm, our experiments will show that Conch can coordi-

nate multiple collaborating developer groups, while minimizing both redundant test

effort across the groups and the exposure time of compatibility faults introduced by

component updates.

6.1.3 Regression Testing based on Cross-Component Coverage

We have presented a strategy to coordinate multiple developer groups, while

avoiding redundant test effort. However, in the end we are still running full test

suites of all user components that might be affected by the updated provider com-

ponent – i.e., if there are user-provider relationships between the components in a

CDG. We showed in Chapter 5 that developers can save test effort up to 70% by se-

lectively running regression test cases based on the mapping between the individual

test cases of user components and the code coverage of provider components.

In this part of the dissertation, coverage-based regression testing is conducted

at two different granularity levels. If Conch maintains the code coverage mappings

between each user component test case and each provider component, only a subset

83

of the test cases that cover the updated regions of the provider component must be

run. If Conch maintains the mappings between the test suite of a user component

and each provider component and if a provider component update is relevant to

one or more test cases of the user component, we rerun the whole test suite at a

provider component update. We describe in the next section why Conch maintains

only coarse-grained mappings.

6.2 Experiments

In this section we evaluate the effectiveness and performance of the coordi-

nated collaborative testing process presented in Chapter 6.1. We selected a set of

subject components, obtained and sampled their evolution history, emulated the

regression testing processes that would be performed by the developer groups of the

components, and evaluated the performance and the effectiveness of our coordinated

collaborative testing approach versus other approaches.

6.2.1 Subject Components

We picked twelve subject components (i.e., 12 developer groups) from the

Ubuntu platform for our experiment. The components and their dependency rela-

tionships are shown as the CDG in Figure 6.1. We also obtained the update history

of these components over roughly a one and half year period between October 2013

and March 2015. The subject components fall into various categories, including an

interpreter (Python), an encryption library (OpenSSL), database systems (SQLite,

84

Table 6.1: Subject Components

Component Description Versions

Bzip2 high-quality, open-source data compressor 6
Zlib compression library 3
Tcl a dynamic programming language 6
Openssl open source toolkit for SSL/TLS 18
SQLite in-memory SQL database engine 15
Python object-oriented programming language 5
BerkeleyDB library for embedded database 4
LibXML2 XML C parser and toolkit of Gnome 10
Ns3 discrete-event network simulator 2
XBMC open source home theater software 2
Subversion version control system 26
Ubuntu operating system 3

BerkeleyDB), system utilities (Bzip2, zlib), and a GUI application (XBMC). Three

Ubuntu releases are considered. Table 6.1 contains brief descriptions of the compo-

nents and the number of versions of each component.

The source code released by component developers is included as-is in the

Ubuntu distribution, but in many cases the components are customized by Ubuntu

developers to address compatibility issues. The developers maintain and update the

code using version control systems like Bazaar [42] or Subversion [43]. Figure 6.2

shows the 87 total component versions released during the test period, ordered by

day from the start of the test period.

6.2.2 Testing Strategies

Developers are pressured to complete testing their components with a limited

amount of testing time and resources, and such pressure drives developers to conduct

testing over only a sampled subset of configurations.

Among many different sampling strategies, one naive but commonly used

85

Figure 6.1: Subject Components for Continuous Collaborative Testing

Ns3

*

*

LibXML2

*

Subversion

*

* BerkeleyDB

Xbmc

*

*

*

Python

OpenSSL

Bzip2

*

Zlib Tcl

*

Ubuntu

SQLite

86

Figure 6.2: Subject Components Update History

strategy is to run the test suite of a component under development over a set of

regression configurations of the component, where each configuration contains the

latest version of all provider components. Developers of a component then compute

regression configurations and run its test suite when they release a new version of

their component. If we apply this strategy to the component update history in

Figure 3.2, for example, the developers of the component B would test B2 and B3

over the regression configurations {B2,E1,G1} and {B3,E2,G1} respectively, and the

developers of D would test D2 over {D2,F1,G1}, when D2 is released. However, A1

would never be tested over the configurations that contain new provider component

versions (e.g., {A1,B2,D1,E1,F1,G1}), because there is no update record of A – i.e.,

in this strategy, the developers of A never monitor the changes in A’s provider com-

ponents and simply assume that A will function correctly over the configurations.

The second strategy we consider is that developers of a component constantly

monitor the updates of all provider components, and run the test suite of their

87

components whenever a new provider version is available. For this strategy, we

assume that developers test their components in an isolated way without sharing any

test results. We call this strategy eager testing and this would be the practice when

developers want to perform very thorough and timely compatibility testing over new

provider components. If all developers adopt this strategy, each component will be

tested over all its regression configurations, but the downside is that developers

will end up performing redundant tests, since different groups do not coordinate

their testing of overlapping components. In the running example in Figure 3.2, the

component A will be tested over all 21 regression configurations with the eager testing

strategy, and therefore the developers of A can quickly notice if a compatibility fault

is introduced by including a specific provider component version in a regression

configuration. However, the developers of B will also test B over all its regression

configurations. In total, 55 regression configurations will be considered for testing

by the developer groups, and clearly there will be a significant amount of overlap in

the test effort expended by the groups.

The third strategy is ad-hoc collaborative testing. As described in Chap-

ter 6.1.1, developers can aid each other by sharing test data through the Conch repos-

itory. In this strategy, developers always query Conch first to search for reusable test

data. We consider three variants of ad-hoc collaborative testing. The first variant

is to maximize the reuse of test data, by serializing the work required for testing

each regression configuration between developer groups. The second variant is to

minimize fault exposure time by allowing all developer groups to start testing their

regression configurations immediately after each provider component update. In the

88

last variant, developers also apply the coverage-based test case selection technique

described in Chapter 6.1.3, in addition to the second variant.

In our experiments, we collected the cumulative testing time and the max-

imum fault exposure time to compare the strategies above and the coordinated

collaborative testing strategy described in Chapter 6.1.2.

6.2.3 Experimental Setup

Virtual machines (VMs) are used to install components contained in regression

configurations, and then execute their test suites. Each VM is configured to have

two virtual CPUs, 4GB of virtual memory, and 80GB of virtual disk space. Ubuntu

is used as the operating system and all VMs are hosted on a private cloud cluster

running OpenStack [44]. Default test suites provided by the original component

developers are used to test the functionality of the installed components, but we

excluded a subset of the full BerkeleyDB test cases because these test cases took too

long (more than a week) to finish. They are designed for stress testing instead of

functional testing, and including them will bias our experimental result to a specific

component. 2

To replay the component update history shown in Figure 6.2, we first per-

formed eager testing for the top-level components in Figure 6.1. That is, we did all

the test activities that must be performed by the 12 developer groups, and measured

2The test suite execution times vary widely between components. For example, the default

test suite of bzip2 only contains 6 test cases, each taking less than a second. On the other hand,

subversion and BerkeleyDB have comprehensive test suites that take hours to days.

89

the time required to install components and run their test suites. The results from

test case execution are also recorded. The test data acquired from eager testing is

then reused to simulate the tests for the other testing strategies.

For coverage-based test case selection, we also maintain the coverage for each

user/provider component pair. For example, we collect the OpenSSL (the provider)

code regions covered by running the test suite of XBMC (the user). If no code

region is covered, we do not need to retest XBMC when a new OpenSSL version is

later released. The coverage mappings are updated when a new version of XBMC

or Ubuntu is released. Gcov, the coverage collection tool of the GNU compiler

collection 3,was used to collect the coverage information.

The performance of computing resources at multiple developer sites are as-

sumed to be heterogeneous. We used a Gaussian distribution with mean value 1

to model the performance factor distribution, and performed experiments using 5

distributions each with different standard deviation values between 0.1 and 0.5 (See

Table 6.2). We also need to model test failure rates for different developer groups.

We assume that a developer group that successfully completed executing a test suite

within a pre-defined time to completion would have a higher probability to succeed

again at the next test request, and also assume that the inverse holds. This char-

acteristic is modeled by using the test failure rate of a group to estimate the time

to the next failure. Each time a developer group starts executing the test suite of

a component, we generate a random value from an exponential distribution based

on the current test failure rate of the group as an input. The value represents the

3http://gcc.gnu.org

90

expected time to the next failure. If the value is greater than the pre-defined time

required for executing the test suite, we report the test execution is a success. The

test failure rate is adjusted after each test execution. The initial failure rate is set

to 0.1 for all developer groups.4

6.2.4 Experimental Results

Given the CDG in Figure 6.1 and the update history in Figure 6.2, there

are 87 regression configurations. However, there was a compatibility fault between

OpenSSL and its user components when testing the regression configurations gener-

ated by 9 component update events. The failures made all other user components

untestable. So in the following results that compare test execution times across

testing strategies, we used the results obtained by testing components over the 78

remaining configurations. In this section, we are interested in answering the follow-

ing research questions:

1. RQ1: How efficient is the coordinated collaborative testing strategy com-

pared to other strategies?

2. RQ2: Is the coordinated collaborative testing strategy effective in revealing

cross-component compatibility faults?

4We also tried other initial failure rate values, and did not observe a significant impact on our

results, unless the initial failure rate was unreasonably high for everyone.

91

6.2.4.1 Comparing Cumulative Test Execution Time

In order to answer RQ1, we compared the cumulative test execution times

required to test components over the regression configurations by all developers for

the different sampling strategies. We added up the times all the individual groups

spent to install components and run their test suites. Table 6.2 shows the cumulative

time (in hours) when different testing strategies are used. For each strategy, we show

multiple results obtained by using different performance factor distributions with the

5 different standard deviation values.

In Table 6.2, we find that naive testing has a very short cumulative time.

This is because when using naive testing, only 75 unique regression configurations

are covered at all tester sites, while all the other strategies cover the same set of

377 unique regression configurations. At the other extreme, eager testing took

the longest total time, because developer groups test their components in isolation,

not removing any redundancy. With the ad-hoc collaborative testing strategy, the

cumulative time is reduced to about 30% of eager testing, if developers prefer to

maximize the test data reuse (Ad-hoc max reuse). However, the time savings com-

pared to eager testing is negligible, if developers prefer to minimize the exposure time

of latent faults (Ad-hoc min exp. time). We see better results when the coverage-

based test case selection is also applied to(Ad-hoc min exp. time, cov-sel), because

developers can skip executing many test cases based on the cross-component code

coverage information. The coordinated collaborative testing strategy (Coordinated,

cov-sel.) performed the best, and reduces the cumulative time to roughly 9% of the

92

Table 6.2: Cumulative Time in Testing Strategies (in hours)

Standard Deviation for PF
0.1 0.2 0.3 0.4 0.5

Naive testing 73.1 73.6 73.5 73.7 73.5
Eager testing 593.9 596.6 592.4 592.5 593.3
Ad-hoc max reuse 177.4 178.0 177.3 177.8 177.6
Ad-hoc min exp. time 574.7 577.4 575.3 574.2 575.3
Ad-hoc min exp. time, cov-sel. 127.7 128.1 127.1 126.4 127.5
Coordinated, cov-sel. 54.4 55.1 54.5 55.3 54.6

time required for eager testing. The strategy even outperformed the naive testing

strategy, because it coordinates developers to not spend test effort unnecessarily.

Furthermore, Coordinated, cov-sel. can help developers find compatibility faults

earlier, as we now describe.

6.2.4.2 Comparing Maximum Fault Exposure Time

The cumulative test execution time represents the overall test effort across

multiple developer groups, but it is also important to reduce the time until a com-

patibility bug can be discovered. We measured the maximum fault exposure

time, which is the maximum time until every compatibility fault introduced by a

provider component update is discovered, assuming that the fault can be discovered

by testing components over regression configurations computed at the update. A

smaller value means that faults are discovered earlier.

In Figure 6.3, we compared the maximum fault exposure times obtained by

running the regression testing process for the 78 provider component updates, for

two testing strategies that performed very well in the previous experiment: (1) the

third variant of Ad-hoc collaboration (Ad-hoc min exp. time, cov-sel), and (2) the

93

coordinated collaborative testing strategy (Coordinated, cov-sel.). The x-axis repre-

sents the 78 provider component update events ordered by the fault exposure time.

As described previously, we considered a regression configuration in this experiment

only if we could install all components contained in the configuration, and also had

to be able to complete running the test suites of the components. The y-axis shows

the estimated maximum fault exposure time (in hours).

Figure 6.3: Maximum Fault Exposure Time

Maximum fault exposure time obtained by running the regression testing process with the strategies
Ad-hoc min exp. time, cov-sel and Coordinated, cov-sel.

We observe that the fault exposure time is very short for roughly half the

component updates. In fact, for 7 updates (bzip2 and zlib updates), we did not need

to test any user components, because both strategies use the coverage-based test

case selection and the updated code regions of the components were not covered

94

by running the test suites of the user components. We observe that the maximum

fault exposure times are similar between the strategies, and also that the ad-hoc

strategy shows a little bit better results for a few updates. This is because multiple

developer groups simultaneously test shared components contained in a regression

configuration with the ad-hoc strategy. In contrast, for the coordinated testing each

component in the configuration is always tested by only one developer group, as

discussed in Chapter 6.1.2. Test failures also contribute to making the difference

larger, because Conch has to choose another group to retest the component if a

group fails to complete an assigned testing task.

Overall, the results in Figure 6.3 and Table 6.2 show that developer groups can

reduce redundancy in their test efforts within a software community by adopting

coordinated collaborative testing, and the coordination does not delay the testing

processes of individual developers.

6.2.4.3 Analyzing Cross-Component Compatibility Faults

In order to determine whether coordinated collaborative testing can be effec-

tive in revealing cross-component compatibility faults (RQ2), we analyzed faults

that could have been discovered if the coordinated collaborated testing had been

performed as part of a continuous integration practice, which is a core practice in

agile software development [45]. We classify the faults captured in the subject com-

ponents in our experiments into three categories, and discuss further in the following

paragraphs.

95

First, coordinated collaborative testing can be used to discover cross-component

compatibility faults introduced by a provider component update. One example fault

discovered in our experiments is that XBMC and Python fail to work with a newer

version of OpenSSL (1.0.1e-5). When theOpenSSL developers released a new version

on 12/22/2013, users who installed the version experienced a fault with the error

message: “OpenSSL version mismatch. Built against 1000105f, you have 10001060”.

This fault was classified as a critical bug in the Debian bug tracking system. If coor-

dinated collaborative testing had been performed before the release, the fault could

have been fixed before being released to a user community.

Second, user components can fail due to behavioral changes in provider compo-

nents. Provider component developers may change the behavior of externally visible

APIs in a new version, without noticing that the changes could create compatibil-

ity faults with user components. For example, the SQLite developers changed the

progress handler() API code in version 3.8.4. Although the new version passed all

regression test cases, a test case in a user component test suite (in this case, the test

case test sqlite in the Python test suite.) captured the fault5.

Third, faults in a component can be discovered by user component developers.

Component developers often use the latest, but maybe unstable, provider component

versions (or builds). If user component developers conduct coordinated collaborative

testing continuously, they can aid provider component developers by running the

test suite of the provider components. For example, two test cases, “test urllib2net”

and “test urllibnet”, access the Python document webpage during execution, but a

5http://bugs.python.org/issue18873

96

change in the page made the test cases fail6. In another example, a Python security

update was applied to the Python core but not applied to all modules of all Python

versions7. With coordinated collaborative testing, a few test cases in the “test ssl”

user component could find the faults.

In addition to being able to detect faults, coordinated collaborative testing

via Conch can also help developers by providing the capability to reproduce the

configurations that contain compatibility faults, as virtual machine images.

6.3 Summary

In this chapter, we have presented a coordinated collaborative regression test-

ing strategy that makes use of a scheduling algorithm to distribute testing workload

across multiple developer groups based on both the capability and the reliability of

the different developer groups. Through a comparative study against naive test-

ing, eager testing, and ad-hoc collaborative testing, we have demonstrated that

coordinated collaborative regression testing can help component developers quickly

discover compatibility faults while also reducing redundancy in the total test effort

expended by the developer groups. We also showed examples of the kinds of com-

patibility faults that can be exposed by adopting coordinated collaborative testing

as part of a continuous integration process.

6http://bugs.python.org/issue21115, and https://bugs.python.org/issue20939
7https://www.python.org/dev/peps/pep-0476/

97

Chapter 7: Conclusions and Future Work

This chapter concludes my dissertation by reviewing the thesis research and

its contributions. Future research directions are also discussed.

7.1 Thesis and Contributions

The thesis I support in this dissertation is: By avoiding redundant work, col-

laborating across testing processes, and using information obtained through testing

multiple related software components, testers of shared components can not only save

test effort, but also improve the test effectiveness of each component as well as each

component-based software system. The goal of my thesis research is to explore the

types and amount of overlaps and synergies that may exist in the testing processes

of shared software components, and to develop tools and techniques that rely on

that information to improve testing efficiency as well as quality of components. The

contributions made by this dissertation include:

A collaborative testing infrastructure

Sharing test data is the core functionality required to support collaborative testing.

From the result of our empirical study, component developers can save significant

98

effort by reusing testing results and artifacts that are shared between developers,

and improve the test quality by utilizing the shared information. For this purpose,

we developed the Conch web service based data sharing repository to enable auto-

mated testing tools used by isolated component developers and/or testers to share

their testing data, and the Ede environment differencing engine to support scalable

caching and sharing of portable testing environment in the form of virtual machine

images. Component developer groups can easily modify their existing automated

testing tools to use our infrastructure to enable collaboration.

When performing regression testing of systems that share components, we ob-

served that a large amount of test effort was spent on building the same partial

testing environments and running redundant functional test suites in the same test-

ing environments. To evaluate the effectiveness of our infrastructure, we selected

two sets of software systems that share provider components, simulated their regres-

sion testing processes relying on our infrastructure for collaboration, using one year

of historical component revision data. Simulation results show that a large amount

of testing time spent by testers of these systems can be saved through collabora-

tion, without missing any faults that were discovered when testing these systems in

isolation.

Two collaborative testing processes

Based on the testing data sharing tools, we further developed two collaborative

testing processes that characterize two user scenarios. The first is an ad-hoc col-

laborative testing process. In this process, component developers follow their own

99

schedule to perform compatibility testing locally. Their automated testing tools

query Conch before building any testing environment, or running any functional

test suite. If such data have already been shared by other component developers,

they will simply reuse them. Otherwise, they still build their environments and run

the tests locally, and optionally share them to Conch. The second is a coordinated

collaborative testing process. In this process, testers run their regression test suites

as soon as their provider component is updated, for the purpose of minimizing the

time window of finding any possible compatibility faults that may have been intro-

duced by the new provider component version. Conch actively assigns regression

testing tasks among affected component testers to avoid redundant effort. For better

performance, Conch utilizes performance histories of individual testers to decide to

whom a task will be assigned.

To evaluate the effectiveness and efficiency of these two processes, we ran

simulations over historical data of real-world sets of components, and compared

using our collaborative testing processes versus testing everything in isolation. A

large amount of test effort was saved in both cases, and we also found that 1)

compatibility faults which were not identified by isolated testing were discovered

by our collaborative testing processes; and 2) using the coordinated collaborative

testing process, compatibility faults were found much faster than they were in the

real-world setting. Thus, the two collaborative testing processes have proved to ben

both efficient and effective.

100

7.2 Future Work

My dissertation research is an initial study to search for benefits of collabora-

tive testing. Several possible extensions and improvements can be made based on

the current work.

Improve Scheduling Algorithm In the coordinated collaborative testing pro-

cess, Conch can schedule a common testing task to one of the affected component

developers to avoid redundant testing. We considered availability, reliability and

performance in a simple model, and used these factors to determine who the task

will be assigned to. This coordinated collaborative testing process can be expanded

upon in the future. First, a more refined tester model instead of the variable of

testers’ performance factor should be used by the scheduling algorithm. The new

model needs to capture more real behaviors of testers, and should consider many

other factors, such as network bandwidth and task assigning overhead. Second, in

addition to minimizing redundancy, target optimization should also be taken into

consideration. For example, testers may want to utilize all idle machines to fin-

ish testing all configurations as soon as possible. Third, individual testers should

be able to specify their preference over configurations to test. Last, when multi-

ple testers are available, we could assign different parts of the same test suite to

different testers, so that the overall progress of testing all new configurations can

be finished sooner, and the maximum exposure time of compatibility faults can be

further reduced.

Modify Popular Tools to Support Conch

101

Our work used Rachet [33] as the example automated testing tool of isolated

component developers for experimental simulation. However, this technique does not

require testers to have a specific tool in order to enable collaborative testing. Conch

provides a web service that can be easily supported by different tools with minimum

modification. Nowadays, there are some widely used continuous testing platforms

including Jenkins [26]. Jenkins provides various ways of connecting different testing

tools via a wide selection of extensions and plugins. From the system perspective, we

would like to explore how testing projects which are already using existing systems

like Jenkins for their continuous integration testing can utilize our infrastructure for

collaboration.

Our data sharing infrastructure uses virtual machine images to encapsulate

prebuilt configurations, and relies on Ede to make sharing of prebuilt configura-

tions efficient. Recently, light-weight container techniques are also used to pack

applications and their dependencies, transport them across sites and platforms, and

deploy them in various environments. Popular tools like Docker [46] can wrap up

software components in a complete file system that contains everything they need

to run, including code, runtime, system tools, system libraries, etc. In future work,

we will consider using Docker to capture prebuilt environments, and share these

environments in addition to virtual machine incremental files through Conch. Us-

ing Docker-wrapped environments will allow testers to easily rebuild their testing

environments on various resources, including cloud resources.

Improve Tests of Individual Components

My dissertation research shows that testing of user components can test extra

102

parts of provider components that are not covered by the test suites of the provider

components themselves. In the future, we would like to work on automatic test

case generation for the provider components, so that if a user component test is

accessing uncovered parts of a provider component, we can create a local test case

automatically for the provider component. In this way, the coverage of the provider

component is permanently improved. There are existing techniques that may be

related to this topic. For example, Elbaum et al. developed techniques that generate

unit test cases from system test cases [41]. However, their techniques still require

specific language support, and there are still a lot of challenges, such as recording

the access patterns from the user components to the provider components, and

recreating the state of the provider component using a local unit test.

Improve Security and Consistency In the dissertation research we did not con-

sider security issues like malicious collaborators or unreliable shared data, neither

does Conch have a policy for scenarios when data shared from different testers con-

flicts. In the future, we can start addressing these issues in several ways. To limit the

effects of incorrect testing results being shared from unreliable sources or malicious

users, the Conch repository should have a mechanism to check inconsistency in the

shared data. If any data shared by a user conflicts with existing data, the conflict-

ing data should be marked and further verified, and users of these inconsistent data

should also be notified. To prevent collaborators from gaming the collaboration pol-

icy and relying on others to finish their own testing tasks, the scheduling algorithm

should be carefully designed and reviewed to make sure tasks are balanced between

participating developers.

103

Bibliography

[1] Floris Erich, Chintan Amrit, and Maya Daneva. A mapping study on coop-
eration between information system development and operations. In Andreas
Jedlitschka, Pasi Kuvaja, Marco Kuhrmann, Tomi Mnnist, Jrgen Mnch, and
Mikko Raatikainen, editors, Product-Focused Software Process Improvement,
volume 8892 of Lecture Notes in Computer Science, pages 277–280. Springer
International Publishing, 2014.

[2] Robert Cecil Martin. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[3] Ilchul Yoon, Alan Sussman, Atif Memon, and Adam Porter. Towards incre-
mental component compatibility testing. In Proceedings of CBSE ’11, pages
119–128, 2011.

[4] William E. Lewis. Software Testing and Continuous Quality Improvement,
Third Edition. Auerbach Publications, Boston, MA, USA, 2nd edition, 2008.

[5] Leonardo Mariani, Sofia Papagiannakis, and Mauro Pezze. Compatibility and
regression testing of COTS-component-based software. In Proc. of ICSE ’07,
pages 85–95, Washington, DC, USA, 2007. IEEE Computer Society.

[6] Teng Long, Ilchul Yoon, Adam Porter, Alan Sussman, and Atif Memon. Overlap
and synergy in testing software components across loosely-coupled communi-
ties. In Proc. of ISSRE’12, Dallas, TX, USA, 2012. IEEE Computer Society.

[7] Teng Long, Ilchul Yoon, Atif Memon, Adam Porter, and Alan Sussman. En-
abling collaborative testing across shared software components. In Proceedings
of the 17th International ACM Sigsoft Symposium on Component-based Soft-
ware Engineering, CBSE ’14, pages 55–64, New York, NY, USA, 2014. ACM.

[8] Teng Long, Ilchul Yoon, Alan Sussman, Adam Porter, and Atif Memon. Scal-
able system environment caching and sharing for distributed virtual machines.
In Proceedings of the 2014 IEEE 28th International Symposium on Parallel and

104

Distributed Processing Workshops and PhD Forum, IPDPSW ’14, Phoenix, Ari-
zona, USA, 2014. IEEE Computer Society.

[9] Christof Ebert and Philip De Neve. Surviving global software development.
IEEE Softw., 18(2):62–69, March 2001.

[10] Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu. Can
distributed software development be agile? Commun. ACM, 49(10):41–46,
October 2006.

[11] Andrew Begel and Thomas Zimmermann. Keeping up with your friends: Func-
tion foo, library bar.dll, and work item 24. In Proc. of the First Workshop on
Web2.0 for Software Engineering, May 2010.

[12] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald Gall, and
Brendan Murphy. Does distributed development affect software quality? an
empirical case study of windows vista. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages 518–528, 2009.

[13] Bogdan Korel and Ali M. Al-Yami. Automated regression test generation.
SIGSOFT Softw. Eng. Notes, 23(2):143–152, March 1998.

[14] K. Taneja and Tao Xie. Diffgen: Automated regression unit-test generation.
In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM Inter-
national Conference on, pages 407–410, Sept 2008.

[15] G. Rothermel, R.H. Untch, Chengyun Chu, and M.J. Harrold. Prioritizing
test cases for regression testing. Software Engineering, IEEE Transactions on,
27(10):929–948, Oct 2001.

[16] H. Srikanth, L. Williams, and J. Osborne. System test case prioritization of
new and regression test cases. In Empirical Software Engineering, 2005. 2005
International Symposium on, pages 10 pp.–, Nov 2005.

[17] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selec-
tion technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, April 1997.

[18] Yanping Chen, Robert L. Probert, and D. Paul Sims. Specification-based re-
gression test selection with risk analysis. In Proceedings of the 2002 Conference
of the Centre for Advanced Studies on Collaborative Research, CASCON ’02,
pages 1–. IBM Press, 2002.

[19] Alessandro Orso, Hyunsook Do, Gregg Rothermel, Mary Jean Harrold, and
David S. Rosenblum. Using component metadata to regression test component-
based software. Software Testing, Verification and Reliability, 17(2):61–94,
2007.

105

[20] Chengying Mao, Yansheng Lu, and Jinlong Zhang. Regression testing for
component-based software via built-in test design. In Proceedings of the 2007
ACM Symposium on Applied Computing, SAC ’07, pages 1416–1421, New York,
NY, USA, 2007. ACM.

[21] Seojin Kim, Sungjin Park, Jeonghyun Yun, and Younghoo Lee. Automated
continuous integration of component-based software: An industrial experience.
In Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’08, pages 423–426, Washington, DC, USA,
2008. IEEE Computer Society.

[22] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improv-
ing regression testing in continuous integration development environments. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2014, pages 235–245, New York, NY, USA,
2014. ACM.

[23] Agneta Nilsson, Jan Bosch, and Christian Berger. Visualizing testing activities
to support continuous integration: A multiple case study. In Giovanni Cantone
and Michele Marchesi, editors, Agile Processes in Software Engineering and
Extreme Programming, volume 179 of Lecture Notes in Business Information
Processing, pages 171–186. Springer International Publishing, 2014.

[24] Atif M. Memon, Ishan Banerjee, Nada Hashmi, and Adithya Nagarajan. DART:
A framework for regression testing nightly/daily builds of GUI applications.
In Proceedings of the 19th International Conference on Software Maintenance,
pages 410–419, Sep. 2003.

[25] Cruisecontrol. cruisecontrol.sourceforge.net/, 2010.

[26] Jenkins: an extendable open source continuous integration server.
http://jenkins-ci.org/, 2013.

[27] Automatic testing of Debian-format packages. launchpad.net/autopkgtest, 2015.

[28] Sabrina Souto, Divya Gopinath, Marcelo d’Amorim, Darko Marinov, Sarfraz
Khurshid, and Don Batory. Faster bug detection for software product lines with
incomplete feature models. In Proceedings of the 19th International Conference
on Software Product Line, SPLC ’15, pages 151–160, New York, NY, USA,
2015. ACM.

[29] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional, 2001.

[30] B.P. Lamancha, O. Diaz, M. Azanza, and M. Polo. Software product line
testing: A feature oriented approach. In Industrial Technology (ICIT), 2012
IEEE International Conference on, pages 298–305, March 2012.

106

[31] He Jifeng, Xiaoshan Li, and Zhiming Liu. Component-based software engi-
neering the need to link methods and their theories. In Proc. of ICTAC05,
International Colloquium on Theoretical Aspects of Computing, Lecture Notes
in Computer Science 3722, pages 72–97. Springer, 2005.

[32] P. Brereton and D. Budgen. Component-based systems: a classification of
issues. Computer, 33(11):54–62, Nov 2000.

[33] Ilchul Yoon, Alan Sussman, Atif Memon, and Adam Porter. Effective and
scalable software compatibility testing. In Proc. of ISSTA ’08, pages 63–74,
New York, NY, USA, 2008.

[34] Launchpad: a software collaboration platform. launchpad.net, 2014.

[35] SourceForge: an Open Source community resource. sourceforge.net, 2014.

[36] Gregor Gssler, Sussane Graf, Mila Majster-Cederbaum, M. Martens, and
Joseph Sifakis. An approach to modelling and verification of component based
systems. In Jan Leeuwen, GiuseppeF. Italiano, Wiebe Hoek, Christoph Meinel,
Harald Sack, and Frantiek Plil, editors, SOFSEM 2007: Theory and Practice of
Computer Science, volume 4362 of Lecture Notes in Computer Science, pages
295–308. Springer Berlin Heidelberg, 2007.

[37] Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques for testing component-based
software. In Engineering of Complex Computer Systems, 2001. Proceedings.
Seventh IEEE International Conference on, pages 222–232, 2001.

[38] Web Services Description Language (WSDL) 1.1. www.w3.org/TR/wsdl, 2001.

[39] SOAP Version 1.2. www.w3.org/TR/soap12-part1/, 2007.

[40] Teng Long, Ilchul Yoon, Alan Sussman, Adam Porter, and Atif Memon. Scal-
able system environment caching and sharing for distributed virtual machines.
In Proceedings of the IPDPS Workshop on High-Performance Grid and Cloud
Computing, 2014.

[41] S. Elbaum, Hui Nee Chin, M.B. Dwyer, and M. Jorde. Carving and replay-
ing differential unit test cases from system test cases. IEEE Transactions on
Software Engineering, 35(1):29–45, Jan 2009.

[42] Bazaar Version Control System. bazaar.canonical.com/en/, 2015.

[43] Apache Subversion: Enterprise-class centralized version control for the masses.
subversion.apache.org/, 2015.

[44] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: to-
ward an open-source solution for cloud computing. International Journal of
Computer Applications, 55(3):38–42, 2012.

107

[45] S. Stolberg. Enabling agile testing through continuous integration. In Proceed-
ings of the 2009 Agile Conference, pages 369–374, Aug 2009.

[46] Docker: An Open Platform for Distributed Applications.
http://www.docker.com/, 2015.

108

	List of Tables
	List of Figures
	Introduction
	Thesis Statement and Contributions

	Related Work
	Distributed Software Development
	Regression Testing
	Continuous Integration and Testing
	Software Product Lines Testing

	Background
	Component-based Software Systems
	Existing Testing and Collaboration methods
	Annotated Component Dependency Model
	Rachet Automatic Testing Framework
	Testing Regression Configurations

	Exploring Overlaps and Synergies
	Modeling How Components are Exercised
	Research Questions
	Metrics
	Subject Components
	Study Procedure
	Data and Analysis
	Build Testing
	Line/Branch Coverage
	Parameter Value Coverage
	Fault Detection

	Summary

	Collaborative Testing Infrastructure
	Environment Model
	Conch Data Sharing Repository
	Sharing Virtual Machines with Environment Differencing
	Ad-hoc Collaborative Testing Process
	Testing Procedures for Component-based Systems
	Collaborative Build and Functional Testing

	Evaluation
	Collaborative Build and Functional Testing
	Continuous Collaborative Regression Testing

	Summary

	Coordinated Collaborative Testing Process
	Coordinated Collaborative Testing Process
	Notification Scheme for Coordinated Collaborative Testing
	Strategy for Coordinated Collaboration
	Regression Testing based on Cross-Component Coverage

	Experiments
	Subject Components
	Testing Strategies
	Experimental Setup
	Experimental Results

	Summary

	Conclusions and Future Work
	Thesis and Contributions
	Future Work

	Bibliography

