RANDOM TOPICS

stochastic gradient descent

&

Monte Carlo
MASSIVE MODEL FITTING

minimize \(f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \)

least squares

\[
\text{minimize} \quad \frac{1}{2} \| Ax - b \|^2 = \sum_i \frac{1}{2} (a_i x - b_i)^2
\]

SVM

\[
\text{minimize} \quad \frac{1}{2} \| w \|^2 + h(LDw) = \frac{1}{2} \| w \|^2 + \sum_i h(l_i d_i w)
\]

low-rank factorization

\[
\text{minimize} \quad \frac{1}{2} \| D - XY \|^2 = \sum_{ij} \frac{1}{2} (d_{ij} - x_i y_j)^2
\]
THE BIG IDEA

minimize \[f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

True gradient

\[\nabla f = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) \]

Idea: choose a subset of the data

\[\Omega \subset [1, N] \]

\[\nabla f \approx g_\Omega = \frac{1}{|\Omega|} \sum_{i \in \Omega} \nabla f_i(x) \]

usually just one sample
INFINITE SAMPLE VS FINITE SAMPLE

finite sample

\[\text{minimize} \quad f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

We can solve finite sample problem to high accuracy….

infinite sample

…but true accuracy is limited by sample size

\[\text{minimize} \quad f(x) = \mathbb{E}_s[f_s(x)] = \int_s f_s(x)p(s)\,ds \]
SGD

select data

compute gradient

$$g_k = \frac{1}{M} \sum_{i=1}^{M} \nabla f_i(x, d_i)$$

update

$$x_k^{+1} = x_k - \tau_k g_k$$

- small error
 - solutions gets worse
- big error
 - solution improves
SGD

compute gradient

\[g^k \approx \nabla f(x, d_8) \]

update

\[x^{k+1} = x^k - \tau_k g^k \]

Error must decrease as we approach solution

classical solution

Shrink stepsize \(\lim_{k \to \infty} \tau_k = 0 \)

\[O(1/\sqrt{k}) \]

Variance reduction

Correct error in gradient approximations
EXAMPLE: WITHOUT DECREASING STEPSIZE

minimize \(\frac{1}{2} \| Ax - b \|^2 \)

inexact gradient

why does this happen?
DECREASING STEP SIZE

\[x^{k+1} = x^k - \tau_k \nabla f_k(x) \]

\[\tau_k = \frac{a}{b + k} \]

(almost) equivalent to choose larger sample

used for **strongly convex** problems

big stepsize

small stepsize
AVERAGING

\[x^{k+1} = x^k - \tau_k \nabla f_k(x) \]

\[\tau_k = \frac{a}{\sqrt{k + b}} \]

"ergodic" averaging

\[\bar{x}^{k+1} = \frac{1}{k+1} \sum x_i \]

why is this bad?

used for \textbf{weakly convex} problems

does this limit convergence rate?
AVERAGING

ergodic averaging

$$\bar{x}^{k+1} = \frac{1}{k+1} \sum x_i$$

compute without storage

$$\bar{x}^{k+1} = \frac{k}{k+1} \bar{x}^k + \frac{1}{k+1} x^{k+1}$$

short memory version

$$\bar{x}^{k+1} = \frac{k}{k+\eta} \bar{x}^k + \frac{\eta}{k+\eta} x^{k+1}$$

tradeoff variance for bias

$$\eta \geq 1$$
Theorem

Suppose f is convex, $\|\nabla f(x)\| \leq G$, and that the diameter of $\text{dom}(f)$ is less than D. If we use the stepsize

$$ \tau_k = \frac{c}{\sqrt{k}}, $$

then

$$ \mathbb{E}[f(\bar{x}_k) - f^*] \leq \left(\frac{D^2}{c} + cG \right) \frac{2 + \log(k)}{\sqrt{k}} $$
KNOWN RATES: STRONGLY CONVEX

Shamir and Zhang, ICML '13

Theorem

Suppose f is strongly convex with parameter m, and that $\|\nabla f(x)\| \leq G$. If you use stepsize $\tau_k = 1/mk$, and the limited memory averaging

$$\bar{x}^{k+1} = \frac{k}{k + \eta} \bar{x}^k + \frac{\eta}{k + \eta} x^{k+1}$$

with $\eta \geq 1$, then

$$\mathbb{E}[f(\bar{x}_k) - f^*] \leq 58(1 + \eta/k) \left(\eta(\eta + 1) + \frac{(\eta + .5)^3(1 + \log k)}{k} \right) \frac{G^2}{mk}$$
EXAMPLE: SVM

PEGASOS: Primal Estimated sub-GrAdient SOlver for SVM

\[
\text{minimize} \quad \frac{1}{2}\|w\|^2 + Ch(Aw)
\]

\[\nabla h(x) = \begin{cases}
-1, & x < 1 \\
0, & \text{otherwise}
\end{cases}\]

note: this is a "subgradient" descent method
PEGOSOS

PEGASOS: Primal Estimated sub-GrAdient SOlver for SVM

\[\minimize \sum_i \frac{\lambda}{2} \|w\|^2 + h(a_i w) \]

While “not converged”:

\[\tau^k = \frac{1}{\lambda k} \]

If \(a_k^T w^k \geq 1 \):

\[w^{k+1} = w^k - \tau^k \lambda w^k \]

If \(a_k^T w^k < 1 \):

\[w^{k+1} = w^k - \tau^k (\lambda w^k - a_i^T) \]

\[\hat{w}^{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} w^k \]

not used in practice
PEGOSOS

- Stochastic methods
- Finite sample method
- Gradient method
You hope to converge before SGD gets slow!
but if you don’t…
use SGD as warm start for iterative method

Agarwal. “Effective Terascale Linear Learning.” ‘12
NOTE:
Behavior for over-parameterized problems is different!
This is why neural network SGD convergence fast
MONTE CARLO METHODS

Methods that involve randomly sampling a distribution
BAYESIAN LEARNING

estimate parameters in a model

\[\text{data} = M(\text{parameters}) \]

ingredients...

prior

probability distribution of unknown parameters

likelihood

probability of data given (unknown) parameters

measure these

estimate these

Thomas Bayes
BAYESIANS OFFER NO SOLUTIONS

Monte Carlo methods randomly sample this solution space

\[P(w|D, l) \]
WHY MONTE CARLO?

You need to know more than just a max/minimizer

"error bars"

\[
\Var(w) = \mathbb{E}[(w - \mu)(w - \mu)^T] = \int ww^T P(w) \, dw - \mu \mu^T
\]

\[
\mathbb{E}(w) = \int w P(w) \, dw
\]
WHY MONTE CARLO?

You’re incredibly lazy

\[\text{maximize } \log P(w) \]

I could differentiate this, I just don’t wanna

\[\arg \max \log P(w) \approx \max_k \{ P(w^k) \} \]
MARKOV CHAINS

What is an MC?

MC has steady state if

Irreducible: can visit any state starting at any state

Aperiodic: does not get trapped in deterministic cycles
METROPOLIS HASTINGS

Ingredients
- Proposal distribution: $q(y|x)$
- Posterior distribution: $p(x)$

MH Algorithm

Start with x^0
For $k = 1, 2, 3, \ldots$
Choose candidate y from $q(y|x^k)$
Compute acceptance probability

$$\alpha = \min \left\{ 1, \frac{p(y)q(x^k|y)}{p(x^k)q(y|x^k)} \right\}$$

Set $x^{k+1} = y$ with probability α
otherwise $x^{k+1} = x^k$
CONVERGENCE

Irreducible: support of q must contain support of p

Aperiodic: there is positive probability of jumping anywhere

Theorem

Suppose the support of q contains the support of p. Then the MH sampler has a stationary distribution, and the distribution is equal to p.
METROPOLIS ALGORITHM

ingredients

proposal distribution

\[q(y|x) \]

posterior distribution

\[p(x) \]

Assume proposal is symmetric

\[q(x^k|y) = q(y|x^k) \]

Metropolis Hastings

\[\alpha = \min \left\{ 1, \frac{p(y)q(x^k|y)}{p(x^k)q(y|x^k)} \right\} \]

Metropolis

\[\alpha = \min \left\{ 1, \frac{p(y)}{p(x^k)} \right\} \]
EXAMPLE: GMM

histogram of Metropolis iterates

Andrieu, Freitas, Doucet, Jordan '03
PROPERTIES OF MH

Pro’s

We don’t need a normalization constant for posterior
We can run many chains in parallel (cluster/GPU)
We don’t need any derivatives

\[
P(\text{parameters}|\text{data}) = \frac{P(\text{data}|\text{parameters})P(\text{parameters})}{P(\text{data})}
\]

\[
P(\text{parameters}|\text{data}) \propto P(\text{data}|\text{parameters})P(\text{parameters})
\]
PROPERTIES OF MH

This is bad...

Con’s

“Mixing time” depends on proposal distribution
• too wide = constant rejections = slow mixing
• too narrow = short movements = slow mixing

Samples only meaningful at stationary distribution
• “Burn in” samples must be discarded
• Many samples needed because of correlations
SIMULATED ANNEALING

maximize \(p(x) \)

Easy choice: run MCMC, then

\[
\max_k p(x^k)
\]

Better choice: sample the distribution

\[
p^{\frac{1}{T_k}}(x^k)
\]

“temperature”

Why is this better?

Where does the name come from?
CONVERGENCE

SA solves non-convex problem, even NP-complete problems, as time goes to infinity.

Theorem

Suppose the MCMC mixes fast enough that epsilon-dense sampling occurs in finite time starting at every temperature. For an annealing schedule with temperature

\[T_k = \frac{1}{C \log(k + T_0)} \]

simulated annealing converges to a global optima with probability 1.

Granville, "Simulated annealing: A proof of convergence"
WHEN TO USE SIMULATED ANNEALING

flow chart

Should I use simulated annealing?
No.

No practical way to choose temperature schedule
Too fast = stuck in local minimum (risky)
Too slow = no different from MCMC
Act of desperation!
GIBBS SAMPLER

Want to sample

\[P(x_1, x_2, x_3) \]

iterates

\[x^2 \sim P(x_1 | x_2^1, x_3^1, x_4^1, \ldots, x_n^1) \]
\[x^3 \sim P(x_2 | x_1^2, x_3^2, x_4^2, \ldots, x_n^2) \]
\[x^4 \sim P(x_3 | x_1^3, x_2^3, x_4^3, \ldots, x_n^3) \]
\[\ldots \]
GIBBS SAMPLER

Want to sample \(P(x_1, x_2, x_3) \)

on stage \(k \), pick some coordinate \(j \)

\[
q(y|x^k) = \begin{cases}
p(y_j|x_{jc}^k), & \text{if } y_{jc} = x_{jc}^k \\
0, & \text{otherwise}
\end{cases}
\]

\[
p(y) = p(y_j \text{ and } y_{jc})
\]

\[
\alpha = \frac{p(y)q(x^k|y)}{p(x^k)q(y|x^k)} = \frac{p(y)p(x_j^k|x_{jc}^k)}{p(x^k)p(y_j|y_{jc})} = \frac{p(y_{jc})}{p(x_{jc}^k)} = 1
\]

\[
P(B) = \frac{P(A \text{ and } B)}{P(A|B)}
\]
APPLICATION: SAMPLING
GRAPHICAL MODELS

Restricted Boltzmann Machine (RBM)

\[E(v, h) = -a^T v - b^T h - v^T W h \]

\[P(v, h) = \frac{1}{Z} e^{-E(v, h)} \]

“partition function”
APPLICATION: SAMPLING

GRAPHICAL MODELS

Restricted Boltzmann Machine (RBM)

\[E(v, h) = -a^Tv - b^Th - v^TWh \]

\[P(v, h) = \frac{1}{Z} e^{-E(v,h)} \]

\[P(v_i = 1|h) = \frac{P(v_i = 1|h)}{P(v_i = 0|h) + P(v_i = 1|h)} \]

\[= \frac{\exp(-a_i + \sum_j w_{ij}h_j + C)}{\exp(C) + \exp(-a_i + \sum_j w_{ij}h_j + C)} \]

\[= \frac{\exp(-a_i + \sum_j w_{ij}h_j)}{1 + \exp(-a_i + \sum_j w_{ij}h_j)} \]

\[= \sigma(-a_i + \sum_i w_{ij}h_j) \]

- remove normalization
- aggregate constant
- cancel constants
- sigmoid function
BLOCK GIBBS FOR RBM

stage 1
- freeze hidden
- randomly sample visible

\[
P(v_i = 1|h) = \sigma(-a_i + \sum_j w_{ij}h_j)
\]

stage 2
- freeze visible
- randomly sample hidden

\[
P(h_j = 1|v) = \sigma(-b_j + \sum_i w_{ij}v_i)
\]
DEEP BELIEF NETS

DBN = layered RBM

Each layer **only** depends on layer beneath it (feed forward)

Probability for each hidden node is sigmoid function
EXAMPLE: MNIST

Gan, Henao, Carlson, Carin ‘15

Train 3-layer DBN with 200 hidden units

trained on 60K MNIST digits

pre-training: layer-by-layer training

training: train all weights simultaneously

training done using Gibbs sampler

Gibbs sampler used to explore final solution
EXAMPLE: MNIST

training data

Learned features

observations sampled from deep belief network using Gibbs sampler
COMPARISON

<table>
<thead>
<tr>
<th>Method</th>
<th>Rate</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient/Splitting</td>
<td>e^{-ck}</td>
<td>you value reliability and precision (moderate speed, high accuracy)</td>
</tr>
<tr>
<td>SGD</td>
<td>$1/k$</td>
<td>you value speed over accuracy (high speed, moderate accuracy)</td>
</tr>
<tr>
<td>MCMC</td>
<td>$1/\sqrt{k}$</td>
<td>you value simplicity (no gradient) or need statistical inference (slow and inaccurate)</td>
</tr>
</tbody>
</table>
DO MATLAB EXERCISE
MCMC