
Introduction to Linear Algebra I

Inner products

Cauchy-Schwarz inequality

Triangle inequality, reverse triangle inequality

Vector and matrix norms

Equivalence of `p norms

Basic norm inequalities (useful for proofs)

Matrices
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Basics

Sets, vector space

RN : N-dimensional Euclidean space

A vector a ∈ RN is an n-tuple [a1, a2, . . . , aN ], where ai ∈ R.
(think of vectors as a column vector or a N × 1 matrix.)

Inner product:
a,b ∈ RN , 〈a,b〉 =

∑N
i=1 aibi = aTb = bTa = 〈b, a〉

(Note that 〈a,b〉 ∈ R.)

Euclidean norm: Induced by the inner-product
a ∈ RN , ‖a‖2 =

√
〈a, a〉

Don’t confuse the norm ‖x‖2 with the absolute value |x |
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Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)

Given a,b ∈ RN ,
|〈a,b〉| ≤ ‖a‖2‖b‖2.

Probably the most important inequality
out there!

There is a book solely devoted to this
inequality.

When does it hold with equality?

Is used to derive the triangle inequality
shown next
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Triangle inequality

Lemma (Triangle inequality)

Given a,b ∈ RN ,
‖a + b‖2 ≤ ‖a‖2 + ‖b‖2.

Proof uses Cauchy-Schwarz inequality (do on board)

When does this inequality hold with equality?

Reverse (or inverse) triangle inequalities:

‖a + b‖2 ≥ ‖a‖2 − ‖b‖2
‖a + b‖2 ≥ ‖b‖2 − ‖a‖2
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What is a norm?

Assigns a positive number to each non-zero vector

Is only zero if the vector is an all-zero vector

Key aspect in proving uniqueness results

Norm properties

Homogeneity: ‖αx‖ = |α|‖x‖, for x ∈ RN and α ∈ R
Subadditivity: ‖x + y‖ ≤ ‖x‖+ ‖y‖, for x, y ∈ RN

Separability: If and only if ‖x‖ = 0, then x = 0
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It’s time to play “IS IT A NORM?!?”

‖x‖2
‖x‖0 counts the number of non-zeros in x

‖x‖1 or |x|
‖∇x‖2√
xTAx, for some matrix A.
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`p norms

Definition (`p norms)

p ≥ 1, a ∈ RN , ‖a‖p =

(
N∑
i=1

|ai |p
)1/p

`2 norm: p = 2, ‖a‖2 =
√∑

i |ai |2

`1 norm: p = 1, ‖a‖1 =
∑

i |ai |
`∞ norm: p =∞, ‖a‖∞ = maxi |ai |

Lemma (Minkowski’s inequality)

1 ≤ p ≤ ∞, ‖a + b‖p ≤ ‖a‖p + ‖b‖p
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`p-norm balls

Definition (`p ball)

ε ≥ 0, B`p(ε) = Bp(ε) = {a | ‖a‖p ≤ ε}

B`2(1) B`1(1) B`1(1)

Bp(1) is referred to as the unit ball (i.e, ε = 1) .
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Equivalence of norms

Given any two norms, say `p and `q, ∃ α, β > 0 such that

∀a ∈ RN , α‖a‖q ≤ ‖a‖p ≤ β‖a‖q.

‖a‖∞ ≤ ‖a‖2 ≤
√
N‖a‖∞

‖a‖∞ ≤ ‖a‖1 ≤ N‖a‖∞
‖a‖2 ≤ ‖a‖1 ≤

√
N‖a‖2

This implies that all p-norms behave—at least in principle—similarly

However, we will show that they have very distinct properties

Lemma (General equivalence of `p norms)

1 ≤ p < q, ‖a‖q ≤ ‖a‖p ≤ N1/p−1/q‖a‖q
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Two important inequalities

Hölder’s inequality:

|〈a,b〉| ≤ ‖a‖p‖b‖q with 1/p + 1/q = 1 and p, q ∈ [1,∞]

p and q are so-called dual norms

Generalization of the Cauchy-Schwarz inequality

Jensen’s inequality:

Let f (x) be a convex function with x1, x2 ∈ R and for t ∈ [0, 1]

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)

Also
f

(∑
i aixi∑
i ai

)
≤
∑

i ai f (xi )∑
i ai
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Collection of vectors, Subspaces

A set of T -vectors, V = {a1, a2, . . . , aT}

Linear combination:
∑T

k=1 αkak , αk ∈ R
Linearly independent: No vector in V can be written as linear
combination of others

Span: Span(V ) = {x | x =
∑

k αkak , αk ∈ R}

Definition (Subspace)

A collection of vectors V ⊂ RN is a subspace iff it is closed under linear
combinations

a,b ∈ V =⇒ αa + βb ∈ V , α, β ∈ R

Basis of a subspace: A linearly independent spanning set

Dimensionality of a subspace: #elements in a basis
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Matrix

A ∈ RM×N : A matrix of dimension M × N

A = [aij ] = [a1, a2, . . . , aN ], ai ∈ RM

rank(A) = largest number of linearly independent columns

rank(A) = rank(AT ) ≤ min(M,N)

A is full-rank if rank(A) = min(M,N).

Matrices are representations of linear operators.

A : RN → RM

x ∈ RN 7→ Ax ∈ RM

Examples of linear operators that aren’t matrices?
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Matrix norms

Definition (Spectral norm)

‖A‖2,2 = max
x6=0

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2

The norm used above is the induced norm or the `2-norm.

Quantifies the maximum increase in length of unit-norm vectors due
to the operation of the matrix A

‖A‖2,2 is equal to the largest singular value of A (more on this later)

‖Ax‖2 ≤ ‖A‖2,2‖x‖2 (Question: When is it equal?)

Lemma

‖AB‖2,2 ≤ ‖A‖2,2‖B‖2,2

Can you show this?

878O (Spring 2015) Introduction to linear algebra January 26, 2017 13 / 22



Induced matrix norms

Definition

‖A‖p,q = max
x6=0

‖Ax‖q
‖x‖p

= max
‖x‖p=1

‖Ax‖q

‖A‖2,2 the maximum singular value of A

‖A‖1,1 : maximum of the absolute column sums

‖A‖∞,∞ : maximum of the absolute row sums

‖Ax‖q ≤ ‖A‖p,q‖x‖p (by definition)

‖A‖22,2 ≤ ‖A‖1,1‖A‖∞,∞ (similar to Hölder’s inequality)

Note: We get lazy and write ‖A‖2 for ‖A‖2,2
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Other frequently-used matrix norms

Frobenius norm:

I Definition: ‖A‖F =
√∑

i,j |Ai,j |2

I Alternative definition: ‖A‖F =
√

trace(ATA) =
√

trace(AAT )

I The Frobenius norm is not an induced norm

Nuclear norm:

I Definition: ‖A‖∗ = trace(
√
ATA) =

∑min{M,N}
i=1 σi

I With σi being the singular values of the matrix A

I The nuclear norm is not an induced norm

ALL matrix norms are also equivalent → Wikipedia
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Eigenvectors and eigenvalues

Let A be a N × N square matrix

x is an eigenvector and λ is an eigenvalue of A is

Ax = λx

Intuition: eigenvectors are vectors in RN whose direction is
preserved under action of A; however, length may change

Eigen-decomposition: A = UDU−1
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Spectral Theorem

Theorem

If A = AH , then

The matrix is “symmetric”

all eigenvalues are real

eigenvectors with different eigenvalues are perpendicular

there exists a complete orthogonal basis of eigenvectors.
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Singular value decomposition (SVD)

Definition (SVD)

Any matrix A ∈ RM×N can be written as

A = UΣV T ,

where U ∈ RM×M and V ∈ RN×N are unitary and Σ ∈ RM×N is diagonal.

Diagonal entries of Σ = {σi} are called the singular values; they are
positive dand real. Typically, σ1 ≥ σ2 ≥ . . . ≥ σr
Singular values are the eigenvalues of

√
ATA and

√
AAT .

If A = AT , singular values are same as the eigenvalues

Geometric picture and other properties, read Wikipedia

Very useful matrix decomposition!
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Singular value decomposition (SVD)

Definition (SVD)

A matrix A ∈ RM×N can be written as

A = UΣV T ,

where U ∈ RM×Mand V ∈ RN×N are unitary and Σ ∈ RM×N is diagonal.

If A−1 exists, then A−1 = VΣ−1UT .

Even if A is singular, we can define a pseudo-inverse A† as follows:

A† = V Σ̂−1UT ,

where Σ̂−1 has the diagonal terms 1/σi if σi 6= 0, and zero otherwise

The ratio of the largest to smallest singular value is the so-called
condition number of A
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Solving y = Ax (square case)

Scenario: A is full-rank, M = N (square matrix)
(full rank implies that A−1 exists)

Given y, the unique solution x is

x̂ = A−1y

Geometric picture: A is a one-to-one, onto map from RN to RM = RN
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Block Inversion Formulas

(
A B
C D

)(
x
y

)
=

(
b
c

)
We can solve using elimination...(

I A−1B
C D

)(
x
y

)
=

(
b
c

)
(

I A−1B
C D

)(
x
y

)
=

(
A−1b
c

)
(

I A−1B
0 D − CA−1B

)(
x
y

)
=

(
A−1b

c − CA−1b

)
y = (D − CA−1B)−1(c − CA−1b)
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The Schur Complement

(
A B
C D

)(
x
y

)
=

(
b
c

)
“You Schur look great today!”

S = (D − CA−1B)

The Schur complement

S−1 is a diagonal entry in the matrix inverse

The block matrix is invertible iff S is invertible

Block matrix is PSD iff A, S are PSD
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