HESSIAN

\[f(x) = f(x_1, x_2, x_3) \]

Last lecture…

\[\nabla f(x) = \begin{pmatrix} \partial_1 f(x) \\ \partial_2 f(x) \\ \partial_3 f(x) \end{pmatrix} \]

Today….

\[\nabla^2 f(x) = \begin{pmatrix} \partial_1^2 f(x) & \partial_1 \partial_2 f(x) & \partial_1 \partial_3 f(x) \\ \partial_2 \partial_1 f(x) & \partial_2^2 f(x) & \partial_2 \partial_3 f(x) \\ \partial_3 \partial_1 f(x) & \partial_3 \partial_2 f(x) & \partial_3^2 f(x) \end{pmatrix} \]

Is it symmetric?
TAYLOR’S THEOREM

\[f(x) = f(0) + xf'(0) + \frac{1}{2}x^2 f''(0) + O(x^3) \]

What's this?

In higher dimensions...

\[f(x) = f(0) + x^T \nabla f(0) + \frac{1}{2} x^T \nabla^2 f(0) x + O(\|x - x_0\|^3) \]

What's this?
QUADRATIC FORM

\[f(z) = f(x, y) = 4x^2 + 2xy - 3y^2 \]

\[f(z) = \frac{1}{2} \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 8 & 2 \\ 2 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} z^T \begin{pmatrix} 8 & 2 \\ 2 & -6 \end{pmatrix} z \]

In general

\[f(x) = c + g^T x + \frac{1}{2} x^T H x \]

gradient at 0

Hessian at 0
EXAMPLES

\[f(x) = c + g^T x + \frac{1}{2} x^T H x \]

Paraboloid
hyperboloid

What’s the difference? **Eigenvalues** of the Hessian
FACTORIZATION OF HESSIAN

\[f(x) = c + g^T x + \frac{1}{2} x^T H x \]

Spectral Theorem:

\[H = U D U^T \]

diagonal \hspace{2cm} orthogonal

\[f(x) = c + g^T x + \frac{1}{2} x^T U D U^T x \]

\[y = U^T x \]

\[f(y) = c + (U^T g)^T y + \frac{1}{2} y^T D y \]

\[f(y) = c + \sum_{i} (U^T g)_i y_i + \frac{1}{2} D_{ii} y_i^2 \]
FACTORIZATION OF HESSIAN

\[f(x) = c + g^T x + \frac{1}{2} x^T H x \]

\[y = U^T x \]

\[f(y) = c + \sum_i (U^T g)_i y_i + \frac{1}{2} D_{ii} y_i^2 \]

Curvature along each coordinate

Change of variables

WHAT DOES IT ALL MEAN?!?!
Behavior of a quadratic form determined only by eigenvalues!
EXAMPLES

\[f(x) = c + g^T x + \frac{1}{2} x^T H x \]

Positive definite Hessian
- **Convex**
- Unique minimizers

Indefinite Hessian
- non-convex
- No minimizers at all!
Application

PRINCIPLE COMPONENT ANALYSIS
GAUSSIAN DATA
GAUSSIAN DATA

Model

\[
e^{-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu)}
\]

calculate

\[
\mu = \mathbb{E}_i [x_i]
\]

\[
\Sigma = \mathbb{E}_i [(x_i - \mu)(x_i - \mu)^T]
\]
GAUSSIAN DATA

model

\[e^{-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu)} \]

log-likelihood is **quadratic**

\[-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu) \]

factor the covariance

\[-\frac{1}{2} (x - \mu)^t UD^{-1} U^t (x - \mu) \]

change variables: \(z \leftarrow U^t (x - \mu) \)

\[-\frac{1}{2} z^t D^{-1} z = \sum_j -\frac{1}{2\sigma_j^2} z_j^2 \]
GAUSSIAN DATA

model
\[e^{-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu)} \]

log-likelihood is **quadratic**
\[-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu) \]

factor the covariance
\[-\frac{1}{2} (x - \mu)^t UD^{-1} U^t (x - \mu) \]

change variables: \(z \leftarrow U^t (x - \mu) \)
\[-\frac{1}{2} z^t D^{-1} z = \sum_j -\frac{1}{2\sigma_j^2} z_j^2 \]
WHAT ABOUT NON-GAUSSIAN DATA?

model

\[e^{-\frac{1}{2} (x-\mu)^t \Sigma^{-1} (x-\mu)} \]
NUMERICAL LINEAR ALGEBRA
MINIMIZING QUADRATIC

\[f(x) = \frac{1}{2} x^T H x + g^T x + c \]

\[\nabla f(x) = H x + g = 0 \]

\[H x = -g \]

\[x = -H^{-1} g \]

How do we compute this??
GAUSSIAN ELIMINATION
WHAT’S WRONG WITH THIS?

Use row 2 to eliminate row 3:

\[
A_{k+1} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & a_{32}/a_{22} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}^{-1} A_k
\]

\[
\kappa = O(a_{32}^2/a_{22}^2)
\]

Is this bad? How bad?
WHAT’S WRONG WITH THIS?

Use row 2 to eliminate row 3:

\[
A_{k+1} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & a_{32}/a_{22} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}^{-1} A_k
\]

Poor conditioning = EXTREME BADNESS

Error is \(O(\kappa) \)

Example: \texttt{hilb(9)} operator in Matlab
BETTER SOLUTION:

LU / CHOLESKY

\[Ax = b \]

Factorize! \hspace{1cm} A = LU

\[
L = \begin{bmatrix}
 l_{11} & 0 & 0 & \cdots & 0 \\
 l_{21} & l_{22} & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 l_{n1} & l_{n2} & l_{n3} & \cdots & l_{nn}
\end{bmatrix} \hspace{1cm} U = \begin{bmatrix}
 u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
 0 & u_{22} & u_{23} & \cdots & u_{2n} \\
 0 & 0 & u_{33} & \cdots & u_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & u_{nn}
\end{bmatrix}
\]

Error is \(O(\sqrt{\kappa \epsilon}) \)

Complexity?

How long does it take to find \(A^{-1} b \)?
How to get x onto the axis using an orthogonal matrix?
HOUSEHOLDER REFLECTIONS

Reflect!

x

$\|x\| e_1$
$v = x - \|x\| e_1$
HOUSEHOLDER REFLECTIONS

\[\|x\| e_1 = x - 2 \frac{vv^T}{\|v\|^2} x \]
HOUSEHOLDER REFLECTIONS

\[Q = I - 2 \frac{vv^T}{\|v\|^2} \]

\[\|x\|e_1 = x - 2 \frac{vv^T}{\|v\|^2} x \]
QR USING HOUSEHOLDER

\[Q^T_{1} Q_{1} \]

Map to \(e_1 \)
QR USING HOUSEHOLDER

\[QT_1 \]

Map to \(e_2 \)
QR USING HOUSEHOLDER

\[QTQ_1^TQ_2^TQ_2 \]

Map to \(e_2 \)
QR USING HOUSEHOLDER

\[Q^T Q \]

Map to \(e_2 \)
BETTER STILL: QR

\[Ax = b \]

\[QRx = b \]

\[Q = \begin{bmatrix}
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
\end{bmatrix} \quad \quad R = \begin{pmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix} \]

Error is \(O(\sqrt{N}\epsilon) \)

\[A^{-1}b = R^{-1}Q^{T}b \]

Complexity?
THE BEST: SVD

\[Ax = b \]

\[A = U S V^T \]

\[A^{-1}b = VS^{-1}U^Tb \]

Advantages:

- SUPER numerically stable
- Can use pseudoinverse
- Non-square problems
- Sometimes the SVD is FREE

SLOW: 2-20X worse than QR. Complexity?
CHEATING FATE

Can we get better than cubic complexity?
CHEATING FATE:
WOODBURY IDENTITY

\[Ax = b \quad \rightarrow \quad A^{-1} \]

\[(A + \delta)x = b \quad \rightarrow \quad (A + \delta)^{-1} \]

\[(A + UV)^{-1} = A^{-1} - A^{-1}U(I + VA^{-1}U)^{-1}VA^{-1} \]

tall \quad **fat**

Small!
EXAMPLE: CHANGE BOUNDARY

\[
A = \begin{pmatrix}
 a_1 & b_1 & 0 & 0 & 0 \\
 b_1 & a_2 & b_2 & 0 & 0 \\
 0 & b_2 & a_3 & b_3 & 0 \\
 0 & 0 & b_3 & a_4 & b_4 \\
 0 & 0 & 0 & b_4 & a_5 \\
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
 a_1 & b_1 & 0 & 0 & c_1 \\
 b_1 & a_2 & b_2 & 0 & 0 \\
 0 & b_2 & a_3 & b_3 & 0 \\
 0 & 0 & b_3 & a_4 & b_4 \\
 c_1 & 0 & 0 & b_4 & a_5 \\
\end{pmatrix}
\]

\[
B = A + \begin{pmatrix}
 1 & 0 \\
 0 & 0 \\
 0 & 0 \\
 0 & 0 \\
 0 & 1 \\
\end{pmatrix} \begin{pmatrix}
 0 & 0 & 0 & 0 & c_1 \\
 c_1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\[
(A + UV)^{-1} = A^{-1} - A^{-1}U(I + VA^{-1}U)^{-1}VA^{-1}
\]

2X2 = CHEAP!
SPARSE SYSTEMS

Sparse $A \rightarrow A^{-1}$ Dense

Sparse Matrix

Sparse Cholesky
SPARSE SYSTEMS

Advantages over inverse:
- Beats complexity bound!
- Lower memory requirements

Disadvantage: Some matrices have bad “fill-in”
ITERATIVE METHODS

$$Ax = b$$

Only observe ACTION of A on vectors

Simplest: Richardson iteration

$$x_0 = 0$$

$$x_{k+1} = x_k + \tau(b - Ax_k)$$

Error analysis:

$$r_{k+1} = b - Ax_{k+1}$$

$$= b - Ax_k - \tau A(b - Ax_k)$$

$$= (I - \tau A)(b - Ax_k)$$

$$r_{k+1} = (I - \tau A)r_k$$
CONVERGENCE:
RICHARDSON

\[Ax = b \]

\[r_{k+1} = (I - \tau A)r_k \]
CONVERGENCE:
RICHARDSON

\[Ax = b \]

\[r_{k+1} = (I - \tau A)r_k \]

Only works for PD matrix!

\[1 - \tau \lambda_{max} > -1 \]

\[\tau < \frac{2}{\lambda_{max}} \]

\[\tau^* = \frac{2}{\lambda_{min} + \lambda_{max}} = \arg \min |1 - \tau \lambda_i| \]

\[\|1 - \tau^* A\|_2 = \frac{\kappa}{\kappa + 1} \]

Condition number
KRYLOV METHODS

\[Ax = b \]

Choose **A-conjugate** basis: \(\{p_k\} \)

\[\langle p_i, Ap_j \rangle = \langle p_i, p_j \rangle_A = 0 \]

Orthogonal in A inner-product

\[x = \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 + \alpha_4 p_4 \]

\[b = Ax = \alpha_1 Ap_1 + \alpha_2 Ap_2 + \alpha_3 Ap_3 + \alpha_4 Ap_4 \]

Try to figure these out
KRYLOV METHODS

\[b = Ax = \alpha_1 Ap_1 + \alpha_2 Ap_2 + \alpha_3 Ap_3 + \alpha_4 Ap_4 \]

\[\langle p_1, b \rangle = \alpha_1 \langle p_1, Ap_1 \rangle + \alpha_2 \langle p_1, Ap_2 \rangle + \alpha_3 \langle p_1, Ap_3 \rangle + \alpha_4 \langle p_1, Ap_4 \rangle \]

\[\langle p_1, b \rangle = \alpha_1 \langle p_1, Ap_1 \rangle \]

\[\alpha_1 = \frac{\langle p_1, b \rangle}{\langle p_1, Ap_1 \rangle} \]

Approximation \[x_1 = \alpha_1 p_1 \]

Residual \[r_1 = b - Ax_1 = \alpha_2 Ap_2 + \alpha_3 Ap_3 + \alpha_4 Ap_4 \]
KRYLOV METHODS

Approximation

\[x_1 = \alpha_1 p_1 \]

Residual

\[r_1 = b - Ax_1 = \alpha_2 Ap_2 + \alpha_3 Ap_3 + \alpha_4 Ap_4 \]

\[\langle p_2, r_1 \rangle = \alpha_2 \langle p_2, Ap_2 \rangle + \alpha_3 \langle p_2, Ap_3 \rangle + \alpha_4 \langle p_2, Ap_4 \rangle \]

\[\alpha_2 = \frac{\langle p_2, r_1 \rangle}{\langle p_2, Ap_2 \rangle} \]

\[x_2 = x_1 + \alpha_2 p_2 = \alpha_1 p_1 + \alpha_2 p_2 \]

\[r_2 = r_1 - \alpha_2 Ap_2 = \alpha_3 Ap_3 + \alpha_4 Ap_4 \]
How to choose \(\{p_k\} \)?

\[
\begin{align*}
 x_1 &= 0 \\
 p_1 &= b \\
 x_2 &= x_1 + \alpha p_1 \\
 r_2 &= b - \alpha A p_1 \\
 x_3 &= x_2 + \alpha_2 p_2 \\
 r_3 &= r_2 - \alpha_2 A p_2
\end{align*}
\]

(Generalized) Gram–Schmidt process

\[
\begin{align*}
 \alpha_1 &= \frac{\langle p_1, b \rangle}{\langle p_1, A p_1 \rangle} \\
 \alpha_2 &= \frac{\langle p_2, r_2 \rangle}{\langle p_2, A p_2 \rangle}
\end{align*}
\]

Gram–Schmidt process

\[
\begin{align*}
 \{p_1, r_2\} &\rightarrow p_2 \\
 \{p_1, p_2, r_3\} &\rightarrow p_3
\end{align*}
\]
GMRES

Gram–Schmidt process

\[\{p_1, p_2, r_3\} \rightarrow p_3 \]

\[\cdot \]

\[\cdot \]

\[x_k = x_{k-1} + \alpha_{k-1}p_{k-1} \]

\[r_k = r_{k-1} - \alpha_{k-1}Ap_{k-1} \]

Gram–Schmidt process

\[\{p_1, p_2, p_3, \cdots, p_{k-1}, r_k\} \rightarrow p_k \]
GMRES(K)

\[\{p_{k-4}, p_{k-3}, p_{k-2}, p_{k-1}, r_k\} \rightarrow p_k \]

- **Pros**
 - Low memory requirements
 - Constant iteration complexity

- **Cons**
 - No convergence theory (but works in practice)
CONJUGATE GRADIENTS

ONLY works when matrix is SPD

GMRES: \(\{ p_{k-4}, p_{k-3}, p_{k-2}, p_{k-1}, r_k \} \rightarrow p_k \)

Observation: \(\langle r_k, Ap_j \rangle = 0, \quad \forall j < k - 1 \)

Upshot: only need to remove \(p_{k-1} \) from \(r_k \)

\[
p_k = r_k - p_{k-1} \frac{\langle p_{k-1}, Ar_k \rangle}{\langle p_{k-1}, Ap_{k-1} \rangle}
\]

Only need to store \(x_k, r_k \)!

Linear iteration complexity!
CONVERGENCE

EXACT solution when $k = \text{number of eigenvalues}$

In terms of condition number

$$\frac{\|x_k - x^*\|_A}{\|x^*\|_A} \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k$$

Gets BAD when κ is big

Preconditioners

$$Ax = b \quad M \approx A^{-1} \quad MAx = Mb$$

$$\kappa(MA) \ll \kappa(A)$$
OTHER METHODS

- **MINRES**: solve ANY SYMMETRIC system
 - 2X more expensive than CG
- **QMR**: Works for ANY system
 - Similar to MINRES, but with no guarantees
(REALLY REALLY) LARGE MATRICES

Inversion
$O(N^3)$

Eigenvectors
$O(N^3)$

Storage
$O(N^2)$

100K x 100k = 80 Gb RAM

Randomized methods: handle big matrices with low complexity
NYSTROM APPROXIMATION

What if you have to factor a matrix that you don’t even have?

See Williams & Seeger '04
If number of columns is roughly the (effective) rank, then you’re ok!
NYSTROM APPROXIMATION

\[G \approx CW^{-1}C^T \]

See Williams & Seeger ‘04
WHY DOES IT WORK

For any semi-definite matrix...

\[G = X^T X \]

\[X = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \]

\[G = \begin{bmatrix} X_1^T \\ X_2^T \end{bmatrix} \begin{bmatrix} X_1 & X_2 \end{bmatrix} = \begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_2 \end{bmatrix} \]

\[C \]
NYSTROM APPROXIMATION

\[G = \begin{bmatrix} X_1^T \\ X_2^T \end{bmatrix} [X_1 \quad X_2] = \begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_2 \end{bmatrix} \]

\[C \]

\[\tilde{G}_k = C_k W_k^{-1} C_k^T = \begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_1 W_k^{-1} X_1^T X_2 \end{bmatrix} \]

when \#(sampled columns) = rank

\[\tilde{G}_k = C_k W_k^{-1} C_k^T = \begin{bmatrix} X_1^T X_1 & X_1^T X_2 \\ X_2^T X_1 & X_2^T X_2 \end{bmatrix} \]
STUFF YOU CAN DO WITH NYSTROM

\[G z \approx C W^{-1} C^T z \]

matrix multiply
(Kernel) least squares with ridge penalty

\[
\min_x x^T G x - x^T b + \frac{1}{2} \|x\|^2
\]

\[(G + I)x = b\]

\[x = (G + I)^{-1} b\]

using matrix inversion lemma

\[(I + G)^{-1} \approx (I + CW^{-1}C^T)^{-1} = I - C(W + C^TC)^{-1}C^T\]
STUFF YOU CAN DO WITH NYSTROM

\[G = CW^{-1}C^T \]

\[QR \]

\[= QRW^{-1}R^TQ^T \]

\[= Q\hat{W}Q^T \]

\[\text{SVD} \]

\[= Q\hat{U}\Sigma\hat{V}^TQ^T \]

\[= U\Sigma V^T \]
FOR GENERAL MATRICES?
Randomized SVD

Halko, Martins, Tropp, 2011

Sketch the matrix A

$A \Omega = B \quad \text{“Sketch”}$

Orthogonalize

$Q = \text{orth}(B)$

Approximate A

$A \approx Q Q^T A$

Factorize small matrix

$A \approx Q (\hat{U} \Sigma V^T)$

$A \approx U \Sigma V^T$