Case Study:
Cinematic VR

Derek Juba
Amitabh Varshney
Cinematic VR

- 3D Video
- 360 Video
Cinematic VR

- 3D Video
 - What depth to use?
 - Close-up vs. “Close-up”

- 360 Video
 - Where is the crew?
 - Where should the viewer look?
Cinematic VR Displays

- Theatrical
 - Analglyph
 - Polarized

- Home
 - Autostereoscopic
 - Active Shutter
 - Head-Mounted Displays
 - Cardboard
Analglyph

- Red/Cyan lenses
 - Or Blue/Yellow, etc.

- Reduces color perception

- Cheap

https://en.wikipedia.org/wiki/Anaglyph_3D
Light Combinations

White = (R)ed + (G)reen + (B)lue

(C)yan = G + B

(M)agenta = R + B

(Y)ellow = R + G
Analglyph

Red Lens

White → R
R → R
G → Black
B → Black
Black → Black
Analglyph

Red Lens

White \rightarrow R
R \rightarrow R
G \rightarrow Black
B \rightarrow Black
Black \rightarrow Black

Cyan Lens

White \rightarrow G + B
R \rightarrow Black
G \rightarrow G
B \rightarrow B
Black \rightarrow Black
Polarized

- Differently polarized lenses
 - Horizontal/Vertical, Left/Right Handed

- Full color perception
 - Reduces brightness

- Relatively cheap
Polarized

Linear Polarization

https://en.wikipedia.org/wiki/Polarized_3D_system/
Polarized

Circular Polarization

Head-Mounted Displays

- Cinema software available
 - Rift, Gear VR, Cardboard, etc.

- Virtual screen can reduce simulator sickness
Cardboard (Mobile)

- Cheap
- Portable

But...

- No Tracking
- 3D less portable
- Low resolution

https://store.google.com/product/google_cardboard