
Salient Clustering for View-dependent Multiresolution Rendering

Rodrigo Barni, João Comba
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

Amitabh Varshney
Department of Computer Science and UMIACS

University of Maryland
College Park, United States of America

Figure 1. Saliency-guided view-dependent rendering: saliency (a) is used to perform clustering (b). Viewing position and saliency are used to estimate
cluster importance (c), which is passed to a fragment program that calculates the right resolution for each cluster inside the GPU. Final rendering (d).

Abstract—Perceptual information is quickly gaining impor-
tance in mesh representation, analysis and rendering. User
studies, eye tracking and other techniques are able to provide
ever more useful insights for many user-centric systems, which
form the bulk of computer graphics applications. In this work
we build upon the concept of Mesh Saliency — an automatic
measure of visual importance for triangle meshes based on
models of low-level human visual attention — applying it to the
problem of mesh segmentation and view-dependent rendering.
We introduce a technique for segmentation that partitions an
object into a set of face clusters, each encompassing a group
of locally interesting features; Mesh Saliency is incorporated
in a propagative mesh clustering framework, guiding cluster
seed selection and triangle propagation costs and leading to
a convergence of face clusters around perceptually impor-
tant features. We compare our technique with different fully
automatic segmentation algorithms, showing that it provides
similar or better segmentation without the need for user input.
We illustrate application of our clustering results through a
saliency-guided view-dependent rendering system, achieving
significant framerate increases with little loss of visual detail.

Keywords-saliency; segmentation; multiresolution;

I. INTRODUCTION

Perceptual considerations are becoming increasingly impor-
tant in mesh processing, analysis and display techniques [1].
User-centric systems form the bulk of computer graphics
applications, and displaying results that are visually appeal-
ing while maintaining interactivity for datasets that become
larger and more detailed is proving to be a difficult task.

Many techniques have been developed to tackle such a

problem; among them, mesh simplification and segmentation
proved to be particularly useful in reducing the overall size
of datasets to be processed or displayed [2]. Limitations
exist, though: greatly simplified meshes may lose features of
interest, and segmentation may group faces into clusters that
do not represent interesting regions of an object. If regions
of high interest in a particular dataset could be reliably
identified, these processes could be greatly improved.

Mesh saliency [3] provides exactly such information. Using
multi-scale curvature analysis based on a center-surround
operator, it reliably separates what most observers consider
to be interesting regions in an entirely automated process. In
this work we build upon the concept of mesh saliency, inte-
grating it into a mesh segmentation framework; results are
illustrated through mesh simplification and view-dependent
rendering applications. The main contributions of this work
are illustrated in Figure 1 and can be summarized as follows:

• Salient clustering: Saliency is used to determine clus-
ter starting points and propagation, joining triangles
into meaningful groups, each containing a set of lo-
cally interesting features. Segmentation results are as
good as or better than comparable techniques, and are
particularly suitable for perceptually-guided processes,
such as view-dependent rendering.

• Multi-resolution salient simplification: Mesh sim-
plification is achieved through saliency-guided QS-
lim [4], weighted by a cluster-localized saliency map
to preserve interesting cluster-level features. A multi-
resolution representation of the object is created, where

XXII Brazilian Symposium on Computer Graphics and Image Processing

1530-1834/09 $25.00 © 2009 IEEE

DOI 10.1109/SIBGRAPI.2009.34

56

regions of high cluster-level importance are preserved.
• Saliency-guided view-dependent rendering: Each

cluster is analyzed independently based on factors such
as saliency and expected screen-space area. Resolution
is preserved for clusters with high estimated saliency
and visibility. A GPU vertex contraction algorithm
computes updated vertex index lists in real time, thus
improving framerates while maintaining visual fidelity.

II. RELATED WORK

Sullivan et al.’s report on perceptually adaptive graphics
[1] discusses how perceptual information is used to eval-
uate and improve many visual applications, showing that
solutions where human perception is taken into account
provide greatly improved visual results. Howlett et al. have
conducted eye-tracking experiments to identify and predict
feature saliency for three-dimensional objects [5], and show
that higher visual fidelity can be attained on low level-of-
detail optimizations when using saliency as guiding element.

The work of [6] describes a method for partial matching of
triangular meshes, through identification of unique salient
features over a set of low level surface descriptors; it does
not assign perceptual importance to different regions of an
object. The concept of mesh saliency was first introduced
on [3], as a measure of regional importance based on multi-
scale curvature estimations. This technique is based on
computational models of human visual perception and is
able to reliably identify regions that most observers would
find of high visual importance. In [7] a user-guided simpli-
fication method is introduced, allowing preservation of key
perceptual features on very low level-of-detail optimizations
through user selection of interesting areas. No automatic
measure of perceptual importance is proposed.

Though methodologies vary — from adaptations of vec-
tor quantization algorithms [8] to Dijkstra-like propaga-
tion tuned for best rectangular fit [9] — most clustering
algorithms are guided either by simple geometric infor-
mation, such as distance and normal deviation [10] or
require user input to define interesting areas [9]. Exceptions
exist, though: [11] introduces a hierarchical segmentation
technique based on fuzzy clustering and spectral cuts. It
results, generally, in cuts at regions of deep concavities.
A technique for mesh decomposition based on expanding
spheres around each vertex is presented in [12]; while shape
analysis is performed at multiple scales, this is not translated
into a measure of perceptual importance. The segmentation
technique introduced in [13] uses visually-salient spectral
cuts, but saliency is defined only for entire mesh regions
and not on the vertex level. Intuitively meaningful results can
be obtained through this method, but no relative perceptual
importance is assigned to regions, compromising its use in
perceptually-guided multiresolution applications. Katz et al.

[14] introduces a method for segmentation through feature
point and core extraction. Feature points are defined as those
resting on the tips of prominent components of a model, and
not through perceptual importance estimation.

III. SALIENT CLUSTERING

Mesh segmentation consists of partitioning a triangular mesh
into a set of face clusters, each comprised of a subset of
the original triangles. Faces assigned to each cluster share
common properties, such as spatial proximity and orienta-
tion. Salient clustering, as introduced here, is the process
of segmenting a triangle mesh into a group of clusters,
where each cluster encompasses a local set of interesting
features as defined by mesh saliency. This section describes
a segmentation approach that reliably detects and groups
triangles belonging to interesting features by integrating
vertex-level mesh saliency information into a propagative
clustering framework.

A. Mesh Saliency

Inspired by the concept of saliency for 2D images presented
in [15], mesh saliency was introduced in [3] as a vertex-level
measure of regional importance. This method effectively
separates important regions from the surrounding context,
providing a reliable automatic measure of perceptual impor-
tance for triangle meshes. Mesh saliency applies the center-
surround operation presented in [15] to triangle meshes,
substituting local mesh curvature for image color. Vertex-
level mesh saliency Si(v) for a given vertex v is given by:

Si(v) = |G(C (v),σi)−G(C (v),2σi)| (1)

where G(C (v),σ) corresponds to a Gaussian-weighted av-
erage of the mean curvature C (v), and σi corresponds to the
standard deviation of the Gaussian filter at scale i (Figure
2). For all results presented in this work, we have used five
scales σi ∈ {2ε , 3ε , 4ε , 5ε , 6ε}, where ε is defined as 0.3%

Figure 2. Saliency computation uses a center-surround mechanism to
combine curvature information obtained at different scales.

57

of the length of the diagonal of the object’s bounding box.
Note that σi only determines the size of the neighborhood
being considered — for a given saliency computation, all
measurements are extracted from the same mesh.

B. Cluster Determination

Salient clustering is a variation of the chartification algo-
rithm presented in [10], modified to consider mesh saliency
information during seed initialization and cluster computa-
tion. Our method is composed of a seed initialization phase,
as well as iterative cluster growth and re-seeding phases
which are executed until convergence is reached.

Figure 3. Segmentations for the Grunt, Bunny, Hand and Goddess datasets.

Seed initialization is done by sampling regions of highest
importance in the mesh. A vertex pool is created, containing
the λc ∗C highest-saliency vertices, where λc is a user-
defined multiplier and C is the desired cluster count; C seeds
are then randomly chosen from this pool. Each cluster is
initialized with saliency, normal and position values. Faces
that share a seed vertex are placed on the cluster propagation
queue. For all our experiments λc was set to 5, which
was found to provide a large enough pool of perceptually
important vertices for adequate initial seed distribution.
Definition of cluster count is not addressed in this work,
but it should be a number closely matching the number of
important salient features in the mesh.

Cluster growth works through Dijkstra-like searches, per-
formed simultaneously for all clusters. The dual graph of
the mesh, where pairs of faces are connected by edges,
is used as propagation medium. Each search starts on the
highest-saliency face already in the queue; subsequent faces
are evaluated through a cost function that considers normal
deviation, distance and saliency variation. This promotes
fairly planar clusters over areas of similar saliency, thus
tending to encompass single prominent salient features or
sets of similar and closely-packed features. More accurately,
the edge cost between a face f on a cluster c and a candidate
face f ′ adjacent to it is defined by:

cost(f , f ′) =(λn− (µ(−→nc) ·−→n f ′)) ∗
(|µ(Sc)−S f ′ | ∗ |Sc0 −S f ′ | ∗ |S f −S f ′ |) ∗
(|x f ′ − x f |)

(2)

where µ(−→nc) is the mean cluster normal, −→n f ′ is the normal
vector for f ′, x f , x f ′ , S f and S f ′ are, respectively, the
centroids and saliency values for f and f ′, µ(Sc) is the
cluster mean saliency and Sc0 is the cluster starting saliency
value. Relative weight for normal contribution is adjusted by
λn. Note that the scale of each component is not important
— since each component multiplies the others, only relative
magnitude needs to be considered. Scale is assumed to
be constant for any given component in any given mesh.
Growth proceeds until all mesh faces are assigned to a
cluster. For all our experiments λn was set to 1.

Cluster re-seeding is performed next. Each cluster has its
seed and initial data updated; the new seed should be the
most interior high-saliency vertex possible. New seeds are
also selected through Dijkstra search, now starting from
cluster borders and advancing inwards. Edge cost is now
defined by a combination of distance and saliency variation:

cost(f , f ′) = (x f ′ − x f)∗ (S f ′/max(Sc)) (3)

where max(Sc) is the cluster maximum saliency value
detected during the growth phase. The new seed will be the
highest-saliency vertex belonging to the last face reached
during propagation.

Convergence happens through successive growth and re-
seeding phases: both are repeated in order until the new
seeds are identical to those encountered on the previous
iteration. As in [10], we check for the existence of possible
cycles in the convergence process; in such a case, any point
on the cycle is acceptable.

Figure 4 compares examples of triangle meshes partitioned
using salient clustering and non-salient propagative clus-
tering. Notice how in Figure 4.a each finger is effectively
isolated in a single cluster, while features are much less
distinct in 4.b.

(a) (b)

Figure 4. Comparison of clustering results: Salient clustering (a) and
non-salient propagative clustering (b).

C. Multi-resolution Salient Simplification

We extend the salient simplification method presented in [3]
to generate multi-resolution representations of a clustered
triangular mesh. This can be seen as an extension of the
quadrics-based simplification method (QSlim) where mesh
saliency is incorporated as a quadric weighting factor.

58

Our extension uses a cluster-localized saliency map to guide
simplification contractions, better preserving detail that is
significant inside a specific cluster. This map is computed by
normalizing saliency values inside each cluster, on a linear
scale that ranges from zero (at the cluster base saliency)
to one (at the cluster peak saliency), and then adding the
normalized saliency values to the cluster mean saliency:

Sci = ((Si−min(Sc))/(max(Sc)−min(Sc)))+ µ(Sc)
(4)

This localized map is smoothed and amplified as in [3],
and used to weight the quadrics computed by QSlim. Opti-
mization is performed over the entire mesh, so connectivity
at cluster boundaries can be maintained. Figure 5 com-
pares smoothed and amplified saliency to cluster-normalized
saliency.

(a) (b)

Figure 5. Saliency Comparison: smoothed and amplified saliency and
simplified mesh (a) and cluster-localized saliency and simplified mesh (b).

Globally important details are better preserved when the
original saliency is used, while regions with high lo-
cal saliency are preserved when we use cluster-localized
saliency values. Since our goal is to adaptively preserve
detail in a view-dependent manner during render-time, the
second option is preferred: using global saliency can lead to
vast regions of the model suffering from heavy optimization
while detail is carefully preserved on relatively small areas.
This would jeopardize our ability to select an adequate level-
of-detail in render-time; i.e. when regions that originally had
high saliency values are selected for extensive simplification.

IV. VIEW-DEPENDENT RENDERING

Multi-resolution rendering involves selecting the proper
level-of-detail for each rendered object based on application
requirements, which typically emphasize shorter rendering
times while maintaining the best possible visual result.
We propose a saliency-guided system, taking advantage of
results generated by saliency-guided mesh segmentation to
effectively estimate visual importance in real time, feeding
a GPU-based vertex contraction system. Figure 6 illustrates
the interconnection between system components.

Calculate Vertex-level
Mesh Saliency

Salient Clustering

Multi-resolution
Salient

Simplification

Cluster Resolution
 Determination

Perform Vertex
Contractions

Render

Preprocessing CPU GPU

RenderTime

Figure 6. System Overview: In a preprocessing stage a salient-based
clustering algorithm generates mesh clusters that are simplified based
on saliency information. CLOD selection through vertex contractions is
performed on the GPU using view-dependent information, generating an
array of vertex indices that define the multi-resolution mesh to be rendered.

Our technique works by estimating cluster screen-space
visibility and perceptual importance by comparing its po-
sition and orientation relative to the camera against a set
of cluster attributes. This data is then used to determine the
cluster rendering resolution, which serves as input to a GPU-
based level-of-detail selector that builds the proper vertex
index arrays to be used for rendering. While resolutions are
selected independently for each cluster and vertex indices
reference localized cluster vertex arrays, a global resolution-
matching step is executed to guarantee hole-free cluster
boundaries, removing the need for additional zippering and
minimizing face overlap. Salient clustering is an essential
component of our solution because it fulfills the following
requirements:

• Identify sets of triangles that comprise distinct
salient features of the original object: Different fea-
tures can have different levels of visual importance to
an observer. Having similar and spatially-close features
within a single cluster allows us to quickly select the
level of detail at run-time without the need for extensive
computation.

• Reduce processing and bandwidth requirements for
level-of-detail selection during render-time: Process-
ing a vertex list for multi-resolution rendering is a
time-consuming task; hence the use of GPU processing.
Dividing an object into clusters can reduce the number
of bits required to store a vertex index in GPU memory,
thus reducing the required bandwidth.

We evaluated different clustering techniques, and while most
of them were able to generate results that satisfied the
second requirement, all failed on properly detecting and
grouping perceptually interesting features without user input,
excepting saliency-guided mesh segmentation.

59

A. Cluster Resolution Determination

Once a global resolution target (Rglobal) for an object to
be rendered is chosen, we must determine how each cluster
will be optimized to generate the best possible visual results.
Two factors are taken into account when level-of-detail for a
cluster is being calculated: estimated screen-space visibility
and estimated visual importance.

Estimated screen-space visibility (Aest) is basically a factor
of the cluster distance from the camera, total area, mean nor-
mal and peak normal deviation. We assume, conservatively,
that when the vector pointing from the camera to the cluster
centroid is perfectly opposite to the cluster mean normal, the
entire cluster is visible. As the angle between these vectors
decreases, visible area decreases proportionally; when it is
smaller than the cluster peak normal deviation visibility can
be expected to be very low. More specifically, we define the
visualization angle factor as:

λangle = ∠(−−→vcam,µ(−→nc))− peak(−→nc) (5)

where −−→vcam is the vector from the camera to the cluster
centroid, µ(−→nc) is the cluster mean normal, and peak(−→nc) is
the cluster peak normal deviation (maximum angle between
the normal of a face belonging to the cluster and the cluster’s
mean normal). While this is not a precise measure of
visibility — to have such a measure visibility for every face
in the cluster would have to be evaluated — it is a suitable
approximation for our purposes. Additionally, distance from
the camera must be taken into account: the farther away
from the camera an object is, the smaller its associated area
will be. Distance factor is defined as:

λdist = |xc− pcam|− rc (6)

where xc is the cluster centroid, pcam is the camera position,
and rc is the radius of the cluster bounding sphere. Multi-
plying the visualization angle by the inverse of the distance
factor and by the cluster area gives us the combined screen-
space area estimate:

Aest = λangle ∗1/λdist ∗Acluster (7)

Note that the case where the distance factor (λdist) is zero
must be considered. Treatment is application-specific; for
our tests, when a value of zero was found, the last non-zero
value previously encountered was applied.

Visual importance estimation (Iest) takes into account
a cluster’s total, mean and peak saliency values. Highest
contribution is obtained when high values exist for the three
saliency metrics, giving us the visual importance estimate:

Iest = (Sc ∗ peak(Sc)∗µ(Sc))/Smesh (8)

where Smesh denotes accumulated saliency for the entire
mesh. Examples of importance estimation from different
points of view are shown in Figure 7.

Figure 7. Visual Importance Estimation: Lighter regions have greater
importance values.

Contraction distribution sorts clusters by Aest ∗ Iest . Those
with lower area and importance values are rendered with
lower resolution, while higher values have more detail
preserved. For practical purposes, we define a cluster’s
resolution by the number of vertex pair contractions to be
performed over its multi-resolution representation; contrac-
tions are then distributed across the cluster list in order. The
lowest importance cluster is assigned:

Rlocal = λperc ∗Rglobal (9)

contractions, where λperc is a user-defined percentage value.
Rlocal is clamped to the maximum number of contractions
allowed on the cluster. This number is then subtracted from
the global contraction target and the next cluster is evaluated,
until the global contraction target has been reached. If Rglobal
is not reached after the last cluster on the list is evaluated,
the process continues from the beginning of the list. For all
our experiments λperc was set to 0.02.

Neighbor matching is executed after all clusters have re-
ceived a contraction target: a vertex pair contraction can only
be performed if all contractions leading to it have already
been performed. To guarantee this, we keep the global
order of the last required pair contraction associated with
each vertex contraction. For each cluster, the largest parent-
contraction order is determined, and neighboring clusters are
evaluated; if the neighbor contraction stop point is smaller
than this largest contraction order, the neighbor stop point is
replaced by this value. This ensures gap-free boundaries, and
minimizes face overlap problems. Some overlap may still
occur, especially over regions where significant difference in
resolution targets for a local group of clusters is encountered,
but such artifacts are rare.

B. Level of Detail Selection

Vertex pair contractions over each cluster vertex list are
performed until a resolution is determined. This is con-
siderably time consuming: index lists must be processed
several times until all contractions are performed. Updated
lists must be uploaded to the GPU for rendering, thus
increasing CPU-GPU bandwidth usage. To speed up this
process, we introduce a GPU-based level-of-detail selector,
which performs the entire process on the GPU, and reduces

60

both execution and index list update times. Our GPU-based
level-of-detail selector is composed of a single fragment
shader, two framebuffer objects and a set of data textures.

Five textures hold the information required for the contrac-
tion process. The first two textures encode, for each vertex
of a given cluster, its initial and subsequent contractions:

• Base Vertex Index (BVI) texture (2D, RGBA32F):
initial contraction: vertex index (vi), contracted vertex
index (VC(vi)), 1D coordinates for the CVI texture (icvi)
and for both the SCI and CSP textures (isci).

• Contracted Vertex Index (CVI) texture (2D,
RGBA32F): subsequent contractions, same format
as the BVI texture.

Since a vertex is processed separately for each cluster,
we ensure that a vertex that appears on multiple clusters
undergoes the same number of contractions, thus avoiding
cracks in the final mesh. The remaining three textures encode
information used in this process:

• Shared Cluster Indices (SCI) texture (2D, RGBA32F):
IDs for all clusters associated with a given vertex.

• Vertex Contraction Order (VCO) texture (2D, R32F):
global pair contraction order of a given vertex.

• Cluster Stop Point (CSP) texture (1D, R32F): cluster
stop points selected during resolution estimation.

Framebuffer objects (FBOs) are used for both processing
(FBOP) and data format conversion (FBOC). The first
(FBOP) is used during the iterative vertex pair contraction
process and matches the information stored on the BVI and
CVI textures, having two surfaces (FBOPr and FBOPw) for
ping-pong rendering. The second (FBOC) is used for data
type conversion and copy. Both framebuffer objects share
the size defined for BVI. The vertex contraction shader takes
CVI, SCI, VCO and CSP as input textures, as well as the
texture associated with FBOPr and the widths and heights
for the CVI, SCI and VCO textures. It is executed over the
domain defined by FBOP, where each pixel maps directly to
one vertex index in the clustered index buffer. Level-of-detail
selection works as follows: The value maxContractionLevel

Algorithm 1 VERTEX CONTRACTION ALGORITHM

1: Read surface on FBOPr with initial BVI values
2: for i = 1 to maxContractionLevel do
3: Execute shader over FBOPr, writing on FBOPw
4: Swap FBOPr and FBOPw
5: end for
6: Write contents of FBOPr to FBOC
7: Copy FBOC to vertex index buffer for rendering

represents the highest level of any pair contraction target that
must be reached among all clusters, and can be calculated

with no additional complexity during the cluster resolution
determination step. The contraction shader is detailed on
Figure 8.

cluster 0 cluster 1

cluster 3

... cluster c-2 cluster c-1

...

...

vi VC(vi)

BVI

icvi

CVI

isci

c0

c1

c2

cluster 2

icvi!(ucvi,vcvi)

r g b a

icvi!(ucvi,vcvi)

VBO Cluster 0

x,y,z,...

x,y,z,...

x,y,z,...

...

SCI

CSP

vi VC(vi) icvi isci

isci!(usci,vsci)

c3
VCO

max
MAXORD

<

CONTRACTION NO CONTRACTION

Figure 8. Vertex contraction shader: first it checks if a vertex has a
contraction target (channel G: vertices with no target receive value -1).
If no target exists, the value is maintained; otherwise, coordinates stored
on channels B and A are decoded. The first is used to load contraction
data from CVI, while the second is used to access data from both SVI and
VCO. Each channel on SCI is used for additional texture indirection, now
reading from CSP; the four values read from CSP are compared, and the
highest order value MAXORD is selected. If the global vertex order, read
from VCO, is smaller than MAXORD the vertex must be contracted, and
the output value is updated with one read from CVI.

After the vertex contraction shader has executed maxCon-
tractionLevel times, FBOPr contains the updated index
array. We copy these values, through a single rendering pass,
to FBOC - which shares the same internal format as the
index buffer - from whence values are copied to the index
buffer to be used for rendering. Rounding problems when
unsigned integer values are manipulated by fragment shaders
were observed in some graphics cards. Unsigned short did
not present such errors, with the added benefit of lower
transfer times, so this format was adopted instead. However,
it limits clusters to a maximum of 216 vertices, a restriction
which can be easily enforced during pre-processing.

C. Rendering

Rendering is relatively straightforward. A single vertex index
buffer, with cluster-localized vertex indices, is bound at all
times. For each cluster, its vertex data buffer (where vertex
positions, normals, color, etc. are stored) is bound, and the
portion of the index buffer relative to the cluster is rendered.
Other cluster-level optimization algorithms, such as partial
ordering [16], can be used in conjunction with our method
without the need for adaptations.

61

V. RESULTS

We have tested our segmentation algorithm with several
datasets, covering a broad range of geometric and topo-
logical complexity. All experiments were conducted on an
Athlon 64 3500+, with 2GB of RAM and an NVIDIA
GeForce 8800 GTX 768 graphics card. Table I gives more
specific information on each dataset used. Execution times
for segmentation are given in Table II; while k-means
clustering takes considerably less time than our technique,
its results are relatively poor. Times for propagative segmen-
tation are similar to those of our technique, but it fails to
detect salient features, generally targeting flat regions.

Table I
DATASETS

Dataset Vertices Faces Edges Clusters
Grunt 26143 52282 78423 45
Bunny 35947 69451 104288 10
Hand 136663 273060 409724 10

Ganesh 206618 413236 619827 30
Goddess 137406 274822 412231 30

Armadillo 172974 345944 518916 45
Laçador 653891 1307794 1961691 45

Significantly better frame-rates - when compared both to full
resolution representations and optimization through CPU-
based pair contraction - were observed for all models when
using our method, for meshes rendered at 5% of the original
resolution. Computation time for each mesh update was
amortized over 10 frames for both the GPU and CPU
implementations. Table III summarize these results.

Table II
SALIENCY COMPUTATION AND CLUSTERING TIMES, IN SECONDS.

Dataset Saliency Salient Prop. K-Mean
Comp. Seg. Seg. Seg.

Grunt 8.516 13.859 21.203 0.14
Bunny 5.187 30.359 64.844 0.172
Hand 78.219 247.39 218.687 0.625

Ganesh 80.516 545.328 925.672 2.531
Goddess 56.531 578.61 833.843 0.906

Armadillo 91.047 417.265 623.688 1.609
Laçador 1747.53 6945.98 7141.34 8.063

Table III
FPS FOR FULL MESH, GPU VERTEX CONTRATION AND REFERENCE

CPU VERTEX CONTRACTION IMPLEMENTATION.

Dataset No CPU GPU
Opt. (5%) (5%) (35%) (60%)

Grunt 1087 685 2220 1759 1419
Bunny 817 475 2147 1507 1126
Hand 241 116 823 518 357

Ganesh 160 64 482 283 222
Goddess 216 127 839 423 328

Armadillo 184 93 783 341 262
Laçador 50 21 234 105 75

Advantage in relation to rendering the full-resolution mesh
decreases when less optimization is performed, but even at

as much as 60% of the original resolution improvements in
framerate are significative when amortization is performed.
Still, this loss could be minimized through greater amor-
tization, setting a cutoff point (optimizing meshes only
when significant simplification is required) or other render-
time resolution selection techniques. Rendering multiple
instances of the same optimized mesh, such as characters
or repeating scenery objects in massively populated envi-
ronments, will also decrease relative costs. As an example,
rendering nine instances of the Armadillo dataset at 60%
of its original resolution more than doubles the framerate:
from 20 FPS when rendering the full resolution mesh to 42
FPS when our method is enabled, with minimal visual loss.
Results practically indistinguishable from the original mesh
can be obtained at up to 35% simplification (Figures 9 and
10) and with minimal difference at 5% (Figure 11).

(a) Original (b) 35% (c) Difference

Figure 9. View-dependent rendering results for the Ganesh dataset, at
35% of original resolution, with framerate increasing from 64 to 283
FPS. Original mesh (a), simplified mesh (b) and inverted difference image,
showing nearly no difference (c).

Figure 10. Armadillo results. Original Mesh, Saliency-guided Simpli-
fication to 35% of original resolution and to 1% or original resolution
(progressive mesh backstop point). Most relevant details were preserved on
the mesh simplified to 35% when compared to the full resolution.

VI. CONCLUSIONS AND FUTURE WORK

A method to reliably segment a triangle mesh into a
set of clusters containing visually interesting features was
described in this work. Mesh saliency serves as a com-
putational model of perceptual importance to iteratively
determine face clusters through propagation from a starting
point selected from a pool of high-saliency vertices. No
user input is required, and salient regions are correctly
captured. Segmentation of equal or better quality than
comparable methods is achieved, in similar computational

62

times. Additional validation was performed through a view-
dependent rendering system, where salient clusters were
assigned different mesh resolutions at render-time based on
their visual importance, calculated from viewpoint informa-
tion and combined cluster saliency data; high simplification
rates were achieved with little visual loss, resulting in greatly
improved framerates.

Figure 11. Laçador Results. Detail from Original Mesh and Saliency-
guided Simplification to 5% of original resolution.

Further refinements are possible. Saliency computation can
benefit from better metrics for neighborhood determination,
such as geodesic distance; salient feature detection — recog-
nition of individual interesting features by local saliency
peak analysis — may improve both the results of the seg-
mentation process and of the cluster importance estimation
step. Validation of our visual importance metric through user
studies can provide a more solid basis for employing mesh
saliency as an automatic metric for perceptual importance.

REFERENCES

[1] C. O’Sullivan, S. Howlett, Y. Morvan, R. McDonnell,
and K. O’Conor, “Perceptually Adaptive Graphics,” in
STAR-Proceedings of Eurographics 2004, ser. State of
the Art Reports, C. Schlick and W. Purgathofer,
Eds., no. STAR-6. INRIA and the Eurographics
Association, 2004, pp. 141–164. [Online]. Available:
http://eg04.inrialpes.fr/Programme/STAR/STAR6.html

[2] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varsh-
ney, Level of Detail for 3D Graphics. New York, NY, USA:
Elsevier Science Inc., 2002.

[3] C. H. Lee, A. Varshney, and D. W. Jacobs, “Mesh saliency,”
ACM Trans. Graph., vol. 24, no. 3, pp. 659–666, 2005.

[4] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1997, pp. 209–216.

[5] S. Howlett, J. Hamill, and C. O’Sullivan, “Predicting and
evaluating saliency for simplified polygonal models,” ACM
Trans. Appl. Percept., vol. 2, no. 3, pp. 286–308, 2005.

[6] R. Gal and D. Cohen-Or, “Salient geometric features for
partial shape matching and similarity,” ACM Trans. Graph.,
vol. 25, no. 1, pp. 130–150, 2006.

[7] Y. Kho and M. Garland, “User-guided simplification,” in SI3D
’03: Proceedings of the 2003 symposium on Interactive 3D
graphics. New York, NY, USA: ACM Press, 2003, pp. 123–
126.

[8] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantizer design,” IEEE Transactions on Communications,
vol. 28, pp. 84–95, 1980.

[9] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart, “Rect-
angular multi-chart geometry images,” in Proceedings of the
4th Eurographics Symposium on Geometry Processing, 2006.

[10] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and
H. Hoppe, “Multi-chart geometry images,” in SGP ’03:
Proceedings of the 2003 Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2003, pp. 146–155.

[11] S. Katz and A. Tal, “Hierarchical mesh decomposition using
fuzzy clustering and cuts,” in SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers. New York, NY, USA: ACM Press,
2003, pp. 954–961.

[12] M. Mortara, G. Patané, M. Spagnuolo, B. Falcidieno,
and J. Rossignac, “Blowing bubbles for multi-scale analysis
and decomposition of triangle meshes,” Algorithmica, vol. 38,
no. 1, pp. 227–248, 2003.

[13] H. Zhang and R. Liu, “Mesh segmentation via recursive
and visually salient spectral cuts,” in Vision, Modeling, and
Visualization 2005, G. G. et al., Ed. Berlin: Akademische
Verlagsgesellschaft Aka GmbH, November 2005, pp.
429–436. [Online]. Available: http://www.vmv2005.uni-
erlangen.de

[14] S. Katz, G. Leifman, and A. Tal, “Mesh segmentation using
feature point and core extraction,” The Visual Computer,
vol. 21, no. 8-10, pp. 649–658, 2005.

[15] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based
visual attention for rapid scene analysis,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 20, no. 11,
pp. 1254–1259, 1998.

[16] D. Nehab, J. Barczak, and P. V. Sander, “Triangle order
optimization for graphics hardware computation culling,” in
SI3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games. New York, NY, USA: ACM Press,
2006, pp. 207–211.

63

