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Abstract

An algorithm for rapid computation of Richards's smooth molecular surface is described.
The entire surface is computed analytically, triangulated, and displayed at interactive rates. The
faster speeds for our program have been achieved by algorithmic improvements, parallelizing the
computations, and by taking advantage of the special geometrical properties of such surfaces.
Our algorithm is easily parallelizable and it has a time complexity of O(k log k) over n processors,
where n is the number of atoms of the molecule and k is the average number of neighbors per
atom.

1 Introduction

The smooth molecular surface of a molecule is de�ned as the surface which an exterior probe-sphere

touches as it is rolled over the spherical atoms of that molecule. This de�nition of a molecular surface

was �rst proposed by Richards [16]. This surface is useful in studying the structure and interactions

of proteins, in particular for attacking the protein-substrate docking problem. An example of such

a molecular surface for Felix with a probe-sphere radius of 1:4�A can be seen in Figure 1.

Present systems to compute the surfaces of molecules are batch-oriented. They take a few minutes

to compute the surface for a couple of thousand atoms. Our goal has been to compute and display

these surfaces at interactive rates, by taking advantage of results from the �eld of computational

geometry, making further algorithmic improvements, and parallelizing the computations.

Interactive computation of molecular surfaces should bene�t biochemists in three important

ways. First, the ability to change the probe-radius interactively helps one study the surface. Second,

it helps in visualizing the changing surface of a molecule as its atom positions are changed. These

changes in atom positions could be due to user-de�ned forces as the user attempts to modify a

molecular model on a computer. Third, it assists in incorporating the e�ects of the solvent into

the overall potential energy computations during the interactive modi�cations of a molecule on a

computer.

2 Previous and Related Work

The �rst molecular surface computation algorithms were numerical in nature (ie. they were com-

puted by sampling) Connolly [2], Greer [12]. Connolly [2] computes the sampled surface (also known

as the dot-surface) by placing a probe tangent to either one atom, or two atoms, or three atoms and
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Figure 1: Smooth Molecular Surface for Felix

checking to see if it intersects any of the other neighboring atoms. If it does not and it is tangent to

(i) one atom, then a dot is placed at the point of tangency between the probe and that atom, (ii)

two atoms, then a concave arc of dots connecting the two points of tangency is created, (iii) three

atoms, then a concave spherical triangle of dots is created between the three points of tangency.

This generates a dot-representation of the entire surface.

The analytic computation of the molecular surface was also �rst done by Connolly [3], [4]. Here

a molecular surface is represented by a collection of spherical and toroidal patches as follows:

� The molecular surface for the regions of a molecule where the probe is in contact with a single

atom are modeled by convex spherical patches.

� The molecular surface for the regions of a molecule where the probe is in simultaneous contact

with two atoms are modeled by saddle-shaped toroidal patches.

� The molecular surface for the regions where the probe is in simultaneous contact with three

atoms are modeled by concave spherical triangular patches.

The issues of triangulation of such surfaces are discussed by Connolly in [5].

Only recently have the issues of algorithmic complexity of these algorithms begun to be ad-

dressed. Let n be the number of atoms in a molecule and let k be the average number of neighboring

atoms for an atom in the molecule. By neighboring we mean the atoms that are near enough to
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a�ect probe placement on a particular atom. Yip and Elber [18] present an algorithm for compu-

tation of the list of neighboring atoms that is linear in n. It is based on spatial subdivision by a

global grid. Perrot et al. [13], [14] present a O(kn) algorithm that generates an approximation to the

solvent-accessible surface. In this approximation, every concave spherical triangular patch between

three atoms is represented by a planar triangle with vertices at the centers of these three atoms.

Saddle-shaped toroidal regions and convex spherical patches are ignored. In terms of sequential

algorithmic complexity this is good, however some points remain unaddressed here. This algorithm

is inherently sequential, as it always needs to start from some concave spherical triangular region of

the molecule and from there it proceeds by adding an adjacent face at a time. Besides being hard

to parallelize, it fails for the cases where the solvent-accessible surface folds back to intersect itself

or where the molecule has two or more sub-parts connected by only two overlapping spheres. Also,

it cannot generate the interior cavities of a molecule.

In computational geometry, the �-hull has been de�ned as a generalization of the convex hull

of point-sets by Edelsbrunner, Kirkpatrick, and Seidel [6], [8]. For � > 0, the �-hull of a set of

points P in two-dimensions is de�ned to be the intersection of all closed complements of discs with

radius � that contain all points of P . If we generalize this notion of �-hulls over point-sets to the

corresponding hulls over spheres of unequal radii in three-dimensions, we would get the molecular

surface (along with the surface de�ning the interior cavities of the molecule). It has been shown

in [8] that it is possible to compute the �-hulls from the Voronoi diagram of the points of P . For

� = 1 the �-hull over the set of points P is the same as their convex hull. Richards [16] had also

suggested computing the molecular surface by computing a 3D Voronoi diagram �rst and then using

its faces to determine which nearby atoms to consider.

Edelsbrunner and M�ucke [9] extend the de�nition of �-hulls to points in three-dimensions. Here

an �-shape over a set of points P has been de�ned to be the polytope that approximates the �-hull

over P , by replacing circular arcs of the �-hull by straight edges and spherical caps by triangles.

An �-shape of a set of points P is a subset of the Delaunay triangulation of P . Edelsbrunner in [7],

extends the concept of �-shapes to deal with weighted points (i.e. spheres with possibly unequal

and non-zero radii) in three-dimensions. An �-shape of a set of weighted points Pw is a subset of

the regular triangulation of Pw. Since these methods involve computing the entire triangulation

�rst and then culling away the parts that are not required, their complexity is O(n2) in time. This

is worst-case optimal, since an �-shape in three-dimensions could have a complexity of O(n2). We

next discuss a di�erent approach that works better for environments where the maximum density

of P in a given volume is some constant smaller than n. Molecules are a good example of such

environments.

3 Our Approach

Our goal has been to formulate a parallel analytical molecular surface algorithm that has expected

linear complexity with respect to the total number of atoms of a molecule. For achieving this goal,

we have avoided computation of the complete three-dimensional regular triangulation over the entire

set of atoms - a process that takes time O(n2), where n is the number of atoms in the molecule.

Molecules considered as a collection of weighted points in three-dimensions, where the coordinates

of each point pi correspond to the center of atom i and the weight ri is the radius of atom i, have
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two interesting properties: (i) the minimum distance dij between any two points pi and pj is strictly

positive, dij > 0 and (ii) the set of all the weights can be bounded from above and below by non-zero

values, rmin � ri � rmax. We take advantage of the �rst property to arrive at better running times

for our algorithm. Stated simply, the �rst property says that the number of neighboring atoms

within a �xed distance from any atom i, is always bounded from above by a constant kmax that

depends on the minimum spacing between any two atoms. If the average number of neighbors for an

atom is k, then we can just compute an approximation to the power cell (discussed in Section 3.1),

which we call a feasible cell, by considering only these neighbors. Each feasible cell can be computed

in parallel in time O(k log k). For n atoms, this task requires n processors, each processor computing

the feasible cell for one atom.

3.1 Formal Notation

Here we consider the underlying space to be three-dimensional Euclidean Space <3, although these

results can be generalized to higher dimensions.

LetM = fS1; . . . ; Sng, be a set of spheres, where each sphere, Si, is expressed as a pair < ci; ri >,

ci being the center of the sphere and ri being the radius of the sphere.

Let x; y be two points. De�ne d(x; y) to be the Euclidean distance between x and y. The power of

a point x with respect to a sphere Si is de�ned as p(x;Si) = d2(x; ci)�ri
2 Thus, p(x;Si) < 0;= 0;> 0,

depending on whether x lies inside Si, on the boundary of Si, or outside Si, respectively.

Henceforth, we shall be assuming that the atoms of a molecule are represented as spheres and

will be using the terms atom i and Si interchangeably. Let the radius of the probe-sphere be R.

Then we de�ne the extended-radius sphere for atom i to be 	i =< ci; ri+R >. This extended-radius

sphere 	i is the locus of the possible centers of the probe-sphere when it is in contact with atom i.

De�ne a chordale �ij of two spheres 	i and 	j as �ij = fxjp(x;	i) = p(x;	j)g. �ij is a plane

perpendicular to the line joining ci and cj . If 	i and 	j overlap, �ij passes through the circle that

is common to the boundaries of 	i and 	j . If 	i and 	j do not overlap, it lies between ci and cj .

De�ne the halfspace Hij as Hij = fxjp(x;	i) < p(x;	j)g.

Thus, whereas �ij = �ji, Hij 6= Hji. De�ne the feasible cell, Fi, for atom i as Fi = \jHij .

So far, the de�nitions that we have given for a feasible cell correspond exactly to the power cells

of a power diagram as de�ned by Aurenhammer [1]. The reason we prefer to use a di�erent term

for these will be made clear in Section 3.3.

3.2 Determination of Neighboring Atoms

Determination of neighboring atoms can be done by spatial grid subdivision into voxels, and assign-

ing atoms to appropriate voxels. We de�ne the region of in
uence, �i, for atom i to be the sphere

< ci; ri + 2R+maxnj=1 rj >. Then for computing the list of neighboring atoms, Ni, for atom i, one

needs to �nd all the atoms that are close enough to a�ect probe placement on atom i. Formally,

Ni = fjjd(ci; cj ) < ri + 2R+ rjg, or equivalently, Ni = fjj	i \	j 6= �g. Intuitively, an atom j is a

neighbor to atom i, if it is possible to place a probe such that it is in contact with both Si and Sj
(without considering any hindrance due to other atoms). Since, by de�nition Ni � �i, to compute

the list of neighboring atoms for atom i, one needs to look at all the atoms that lie in the voxels that
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intersect �i. Let the average number of neighboring atoms be k. Note that k grows as R3 assuming

that the atoms are uniformly distributed. In Figure 2 atoms j1 and j3 are neighbors to atom i, but

atom j2 is not.

Atom i

Atom j
1

Atom j
2

Atom j
32Rri

rj
3

 

Figure 2: Determination of Neighboring Atoms

3.3 Determination of Surface Atoms

Here the aim is to determine the atoms that are buried in the interior of the molecule and would

not therefore directly participate in the �nal de�nition of the smooth molecular surface. This step

is not crucial to the linear time complexity of the overall algorithm but it helps in improving the

execution times.

For every atom i, we �rst compute Ni as described in Section 3.2. Then we compute Fi =

\j�NiHij . If Fi = �, atom i is totally buried and cannot be a surface atom. This checking for nullity

is done by Seidel's randomized linear programming algorithm that has linear time and is quite fast

in practice [17].

It might be useful to point out how the feasible cells Fi we are computing are di�erent from

the power cells described by Aurenhammer [1]. The di�erence arises from the fact that each of

these cells Fi are being computed independently of the other, and for each cell Fi we consider only

the hyperplanes whose indices occur in Ni. This is best illustrated by Figure 3, where the two

types of cells are shown. Thus, for construction of Fi we use only those chordales �ij , as de�ned in

section 3.1, that arise from overlapping extended-radius spheres 	i and 	j . However, for forming

the power cells Ci, we use all the chordales �ij regardless of whether 	i and 	j intersect or not.

In Figure 3, we show these di�erences for power cells and feasible cells de�ned over circles. The

power cell C3 contains two edges and one vertex as does the corresponding feasible cell F3. However,

whereas the power cells C1 and C2 have two edges and one vertex, the corresponding feasible cells

F1 and F2 have only one edge each, with no vertices.

We should also point out here that the feasible cells that occur on the boundary atoms are not

compact (actually, they are neither closed nor bounded). Although the details of triangulation of

these surfaces will appear elsewhere we would like to mention here that we use the vertices of Fi
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(a) Power Cells
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Figure 3: Di�erence between Power Cells and Feasible Cells

during triangulation. For this purpose we would like all Fi to be compact (closed and bounded)

polytopes. To achieve this we bound the entire molecule by four extra planes forming a regular

tetrahedron. These are included in Ni, for all i.

3.4 Determination of Surface Patches

Determination of the vertices de�ning the convex spherical, concave spherical and toroidal patches

is the most crucial (and time-consuming) part of the whole algorithm.

If one computes a three-dimensional �-shape polytope for the set of atoms in a molecule, with

� = probe-radius, then the torii occur along the edges, the concave spherical triangular patches corre-

spond to the faces, and the convex spherical patches correspond to the vertices of this polytope. The

method given by Edelsbrunner [7] �nds these edges by �rst computing the entire three-dimensional

regular triangulation, an O(n2) approach. We show here an equivalent method for computing the

three-dimensional �-hulls for molecules in parallel time O(k log k) over n processors

To compute Fi, we compute the convex hull of the points dual to the Hij in the dual-space, as

described in [15]. This is an O(k log k) time process. After this, we compute the dual of the convex

hull to get the feasible cell Fi. The intersection of the feasible cell Fi with 	i gives rise to a set

of closed components on 	i. Since Fi is convex, these components will be non-intersecting. Each

of these closed components @cj ,divide 	i into two connected regions, say Rj0 and Rj1 . For one of

these, say Rjm , it will be true that Rjm = Rjm \ Fi. We de�ne Rjm to be the interior of the closed

component @cj . To �nd these components, we determine the edges and faces of Fi that intersect 	i.

After a connected component has been determined on 	i, it is easy to generate the surface

patches. The arcs de�ning the boundary of this component determine the locus of the center of

the probe while it is in contact with two atoms. These therefore are used to generate the toroidal

patches. The vertices of this component, where two arcs intersect, de�ne the positions of the center

of the probe while it is in contact with three atoms. These are used to generate the concave spherical

triangular patches. The interiors of the components on 	i, correspond to the positions of the center

of the probe while it is tangent to only atom i. These are used to generate the convex spherical
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patches.

This is shown in the Figure 4 for a component de�ned by three hyperplanes. The interior of this

component is shown unshaded.

Convex
Spherical

Concave
Spherical

Toroidal

Figure 4: Determination of Molecular Surface Patches from Components

3.5 Parallelization

Our approach to computing the smooth molecular surface can be parallelized over all the atoms

of the molecule. Since each of the steps as described above can be carried out independently for

each atom, the complexity of our algorithm over n processors would be O(k log k). If the number

of available processors p < n, we can allocate n
p atoms per processor to get a time complexity of

O(nk logkp ). These bounds hold in a CREW PRAM model of parallel computation.

3.6 Robustness

In the algorithms for computing the convex hull of a set of points, it is assumed that the points are

in a general position, ie. no more than d points lie on the same d � 1 dimensional hyperplane. In

reality this assumption often fails to hold, leading to problems. For example, planar benzene rings

occur often in proteins, causing six carbon and six hydrogen atoms to be all coplanar.

One of the recent approaches to solving this problem has been to perturb the input point set

slightly to avoid these degeneracies. We are using the deterministic perturbation scheme proposed

by Emiris and Canny [10], which perturbs the jth dimension of the ith point as:

pi;j(�) = pi;j + �(ij mod q)1 � i � n; 1 � j � d (1)

where � is a symbolic in�nitesimal and q is the smallest prime greater than n.
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4 Results

Our implementation has been done on Pixel-Planes 5 [11], although it is general enough to be easily

portable to any other parallel architecture. Table 1 shows our timings for computation and display

of the molecular surface for various molecules for a probe-radius of 1:4�A. For these results we were

using either a con�guration of 13 or 26 Intel i860 graphics processors as shown below. At present,

we are representing the molecular surface by triangles and the column No. of Triangles in the table

below refers to the complexity of the computed surface. As can be seen the value of k is fairly

constant for a given probe-radius over di�erent molecules.

Molecule No. of atoms Times (in sec) k No. of Triangles

13 procs 26 procs

Crambin 396 0.46 0.25 45 18.5K

Felix 613 0.76 0.41 41 36.5K

Dihydrofolate reductase 3123 3.23 1.63 44 95.5K

Superoxide dismutase 4386 4.51 2.25 46 125.4K

Table 1: Smooth Molecular Surface Generation Times

Figure 5 shows the smooth molecular surfaces for Crambin with probe-sphere radii of (a) 1:0�A,

(b) 1:4�A, (c) 2:8�A, and (d) 5:0�A. Figure 6 shows the smooth molecular surface for Dihydrofo-

late reductase with probe-sphere radius of 1:4�A. Figure 7 shows the smooth molecular surface for

Superoxide dismutase with probe-sphere radius of 1:4�A.

5 Conclusions and Future Work

We have presented a parallel algorithm for computing the molecular surfaces in parallel time

O(k log k) over n processors. This is su�ciently general enough to be used for computation of

�-hulls and �-shapes for a given value of � as long as no two points are arbitrarily close. Our

algorithm would give an order of magnitude improvement over the best known previous algorithms

for molecules with large values of n - both in sequential as well as in parallel implementations.

At present we are not using any incremental temporal information in constructing these surfaces.

Thus, if the atoms move slightly from their positions, the whole surface has to be recomputed from

the beginning. Assuming the atoms of the molecule move along continuous trajectories, it should

be possible to compute such surfaces (and indeed �-hulls and �-shapes) incrementally by using the

information from previous time steps.
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(a)

(b)

Figure 5: Smooth Molecular Surfaces for Crambin
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(c)

(d)

Figure 5: Smooth Molecular Surfaces for Crambin(contd)
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Figure 6: Smooth Molecular Surface for Dihydrofolate reductase

Figure 7: Smooth Molecular Surface for Superoxide dismutase
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