Walkthroughs of Complex Environments using
Image-based Simplification

Lucia Darsa

16532 NE 36" Ct. #LL303, Redmond, WA 98052, luciad@msn.com

Bruno Costa

Microsoft Corp., One Microsoft Way, Redmond WA 98052-6399,
brunos@microsoft.com

Amitabh Varshney

Department of Computer Science, State Universilty of New York, Stony Brook, NY
11794-4400, varshney@cs.sunysb.edu

We present an image-based technique to accelerate the navigation in com-
plex static environments. We perform an image-space simplification of
each sample of the scene taken at a particular viewpoint and dynami-
cally combine these simplified samples to produce images for arbitrary
viewpoints. Since the scene is converted into a bounded complexity repre-
sentation in the image space, with the base images rendered beforehand,
the rendering speed is relatively insensitive to the complexity of the scene.
The proposed method correctly simulates the kinetic depth effect (par-
allax), occlusion, and can resolve the missing visibility information. This
paper describes a suitable representation for the samples, a specific tech-
nique for simplifying them, and different morphing methods for combining
the sample information to reconstruct the scene. We use hardware tex-
ture mapping to implement the image-space warping and hardware affine
transformations to compute the viewpoint-dependent warping function.

1 Introduction

In contrast to a conventional geometry-based rendering pipeline image-based
renderers use pre-rendered images of the scene as the basic primitives to render
a scene—in place or in conjunction with usual 3D models. This makes it possi-
ble to achieve much higher levels of realism, not only when modeling with real
world photographs, but also when using synthetically generated imagery, since

Preprint submitted to Elsevier Preprint 2 October 1997

much more complex rendering algorithms can be used in the pre-navigation
step. Image-based rendering also decouples the navigation frame rate from the
complexity of the models, since only the fixed resolution images of the models
are used, making this approach potentially faster than traditional ones as the
model complexity continues to increase.

The trade-off of geometry complexity for images is not new. Texture mapping
was introduced in 74 by Catmull [§8], and has been used extensively since
then. Blinn and Newell [7] used pre-rendered images to map the surrounding
environment on reflective surfaces.

Image-based rendering has been used with two different but closely related
aims: enable the navigation of environments modeled by real-world photographs
and accelerate the navigation of synthetic environments. In the first case the
scene is not modeled on the computer and parameters such as depth informa-
tion are not easily available. In the second case, all the information necessary
for an image-based renderer can be retrieved from the original model.

Traditional approaches to graphics acceleration for the navigation of a three-
dimensional environment have involved:

— reducing the rendering complexity by using texture mapping [7,6], and by
using various levels of complexity in shading and illumination models [4].

— reducing the geometric complexity of the scene, by using level-of-detail hier-
archies [46,37,36,11,24,17,23], and by visibility-based culling [2,44,22,29,20].

— exploiting frame-to-frame coherence with one of the above [5,49].

However, as the complexity of the three-dimensional object-space has in-
creased beyond the bounded image-space resolution, image-based rendering
has begun to emerge as a viable alternative to the conventional three-dimensional
geometric modeling and rendering, in specific application domains. Image-
based rendering has been used to navigate (although with limited freedom of
movement) in environments modeled from real-world digitized images [9,43,33].
More recent approaches [19,26] generalize the idea of plenoptic modeling by
characterizing the complete flow of light in a given region of space. This can
be done for densely sampled arrays of images (digitized or synthetic) with-
out relying on depth information, resulting in a large amount of information
that limits its applicability to current environments without further research.
Promising results towards making these approaches feasible in real time ap-
pear in [42].

Combining simple geometric building blocks with view-dependent textures de-
rived from image-based rendering [16,3,30] has resulted in viable techniques
for navigation in environments that can be described by those simple blocks.
Also, [25] derived simple 3D scene models from photographs that allowed nav-
igation in a single image. They use a spidery mesh graphical user interface,

enabling the user to specify a vanishing point, background and foreground
objects in an existing picture easily. An interesting use of image-based ren-
dering for distributed virtual environments has been presented in [31]. In this
approach only a subset of the scene information that can not be extrapo-
lated from the previous frame is transmitted in a compressed form from the
server to the client, thereby dramatically reducing the required network band-
width. The potential of image-based rendering specifically for the navigation
in generic synthetic environments on single graphics machines however has
been investigated in fewer instances [10,40,32].

We have presented a conceptual discussion and an implemented system for the
problem of image-based rendering using image-space simplification and mor-
phing [14]. In this paper, we discuss the technique in more detail, present the
image-space simplification algorithm used, and compare the results of differ-
ent blending techniques. Given a collection of z-buffered images representing
an environment from fixed viewpoints and view directions, our approach first
constructs an image-space simplification of the scene as a pre-process, and
then reconstructs a view of this scene for arbitrary viewpoints and directions
in real-time. We achieve speed through the use of the commonly available
texture-mapping hardware, and partially rectify the visibility gaps (“tears”)
pointed out in previous work on image-based rendering [10,9] through morph-
ing.

In section 2, we present an overview of the image-based rendering area; in
section 3, we discuss the relation between the morphing problem and image-
based rendering. Section 4 describes the image-space simplification technique
in detail, and sections 5 and 6 discuss the navigation problem, comparing
various forms of node combination. Some results are presented in section 7.

2 Image-based Navigation

Image-based rendering uses images as the basic primitive for generating other
images, as opposed to the more traditional approach that renders directly
from geometric models. Image-based rendering can be described as a process
consisting of generally three steps:

— Sampling - samples from the scene model are obtained at discrete viewpoints
and viewing directions;

— Reconstruction - samples are organized into data structures that allow eval-
uation through some kind of interpolation;

— Resampling - sampled data is reprojected from a new viewpoint and direc-
tion, creating new views of the scene in real time.

This process can have a feedback, as in the case of “Talisman” [45], “Hier-
archical Image Caching” [40] and “Post-rendering 3D warping” [32], where
the original scene is periodically resampled as the navigation occurs. In these
cases, however, there won’t be a complete decoupling from the 3D scene com-
plexity, as new samples from the scene model will still have to be generated
in run-time, even if at a lower frame rate.

Images are a sampled version of the scene, viewed from a certain position
and direction, and not a full representation of the actual scene. Since the
images used as the basis for the rendering are generated and viewed from
different points of view, they represent view-dependent information only for
the originally generated positions. Thus, image-based rendering methods have
an inherent difficulty in dealing with view-dependent effects, such as specular
highlights, reflection, and refraction. However, view-independent effects that
are usually very expensive to simulate — such as diffuse reflections, soft shadows
and caustics — can be used with image-based rendering without any additional
runtime cost.

Navigation in an environment using image-based rendering can be classified
into three different levels based on freedom allowed in user-movement:

(i) Discrete viewpoints, discrete view directions
(ii) Discrete viewpoints, continuous view directions
(iii) Continuous viewpoints, continuous view directions

The first group is the simplest approach, providing a very limited immersive
experience and interaction. The sample images are rendered or digitized for
selected positions and selected viewing directions and during navigation the
one that is closest to the desired is displayed. One early instance of this situa-
tion is described in [27], and the same concept has been used at the consumer
level more recently [12].

The second group uses one image, or a series of images stitched together, to
represent the environment around a certain point of view, which is equivalent
to providing a complete sample of the plenoptic function [33] for that point.
This form of information enables the simulation of a rotation of the observer,
around the original point of view, to look in any direction by reprojecting the
given images to the new viewing frustum. To allow observer limited translation
(at discrete viewpoints), the solution is to have a set of environment maps,
each computed for a different viewpoint. If these points are carefully selected
and not very far from each other, it is possible to simulate movement by
selecting the closer environment map. This jump between discrete viewpoints
around which one can rotate almost freely allows for a quality of simulation
that can be considered acceptable for some situations, as shown by current
applications of Quicktime VR [9], for instance.

The last group gives the user the highest degree of freedom to continuously
translate and rotate. In “View Interpolation for Image Synthesis” [10], the
mapping function and the depth are obtained from the camera model and the
rendering. The mapping is applied as an image warping transformation, and
a binary combination of the images is performed based on depth—the front
most pixel wins. That technique is not actually based on environment maps,
but on single images with depth information. The movement of the observer
had to be restricted, though, to achieve the desired performance. In “Plenoptic
Modeling” [33], the nodes are represented by cylindrical maps, which the au-
thors describe as a complete sample of the plenoptic function. They focus on
the image-based modeling aspect of the problem, concentrating on the tech-
niques for reconstruction of a complete sample of the plenoptic function from a
set of overlapping partial samples from non-computer-generated sources (pho-
tographs or video frames). The navigation, however, required closely spaced
nodes and user input for proper matching. As they developed an ordering
algorithm that ensured pixels were drawn back to front, they avoided depth
comparisons in the warping and blending steps. “Post-Rendering 3D Warp-
ing” [32] uses the same image warping algorithm, but composite from different
warped reference images to obtain the final images. As more than one input
image is used, they have to perform depth comparisons to resolve hidden sur-
faces.

When the environment is modeled from photographs or video, the depth in-
formation has to be inferred from the disparities induced by translations of
the camera. This is an important problem in computer vision to which a con-
siderable effort has been dedicated [1]. However, the driving problem for our
work is smooth navigation in complex computer-generated virtual environ-
ments, that are slow to render, and for which we have access to z-buffered
images at fixed viewpoints and view-directions. Thus, our work falls in the
third category listed above.

3 Environment Mapping and Morphing

Changes of visibility that occur as an observer moves freely in an environment
can be simulated by using precomputed views of the scene at selected view-
points. Our technique samples the original scene from a set of fixed viewpoints,
associating a node with every selected position, consisting of an extended en-
vironment map with depth and color information for every direction, and also
the camera parameters. This is essentially a sampling of the plenoptic function,
that associates depth information to each direction, in addition to color.! We

1 This implies indirectly that the modeled world is opaque.

reconstruct the depth data, simplifying the scene in image-space, generating
a view dependent simplified scene.

\
\

\
\
— @ T @
\
\\ \

(a) (b)

Fig. 1. Visibility: (a) Rotation (b) Translation.

Each node provides limited information about the world, which is not suffi-
cient to determine the view from an arbitrary viewpoint and direction in the
reprojection phase. If the desired visualization parameters differ only in the
direction, there is no parallax and no new areas can become visible (see Fig-
ure 1). If they differ in the position, however, parallax is introduced and the
restricted information provided by a single node becomes evident.

This problem can be overcome by combining the information from neighbor-
ing nodes—through node morphing—to create an image for any viewpoint and
direction. Morphing two nodes involves two warpings to register the informa-
tion, followed by a combination [18]. The particular case of image morphing
is extensively discussed in [48]. The depth information and the visualization
parameters allow the determination of the mapping functions between the
original views and the new arbitrary view. After applying these mappings, the

warped information can be combined with local control, used to determine the
predominant information at each region.

A more detailed discussion of this form of morphing is presented in the next
sections. We will focus on a simpler case of two planar z-buffered images,
although it can be directly applied to environment maps.

3.1 Environment Map Warping

An adequate mathematical model for a continuous image with depth is a
function that relates points in a subset of the Euclidean plane to colors in a

color space and to depths. A z-buffered image can be considered as a function
I : U CR* = C x R, where C is a color space.

The class of rendering processes that are relevant to our application are those
that are able to yield a z-buffered image. Each of those processes can be seen
as a function R that maps a scene, S (the collection of models and information

that define a scene) and a projection P (a transformation derived from a set
of visualization parameters) into a z-buffered image:

R:SxP =T, (1)
P={P:R*— R*. (2)

~_

P<
T

p; P,

Fig. 2. Environment map morphing.

Given a z-buffered image I7 and the projection transformation P; that orig-
inated this image, we are interested in applying a reprojection using a new
set of visualization parameters described by P to obtain a new image [*. Our
specific case is depicted in the left side of Figure 2. This is a transformation
of the domain of definition of the original image, or a warping transformation
W = P o P!, that essentially reprojects the image to a different point of

view 2.

3.2 Environment Map Morphing

The information from a single node is not sufficient to generate an arbitrarily
different view, that is, this particular form of warping is not described in
general by an onto function. Therefore, to cover the domain of the resulting
image [” it is generally necessary to combine the information from two or more
nodes.

This combination is exemplified in Figure 3, which shows an image obtained in
real-time from the combination of two nodes. The top left node was originally
generated as a top view of the sphere; the top right node, as a side view. Notice
how the visibility information that is missing from the top view is completely
filled by the second node. Similarly, the visibility gaps in the second node are
covered by the first.

2 Tt also fills in the gaps in the domain of definition with a background color/depth,
and solves foldovers using z-buffering.

Fig. 3. Blending from two nodes (visibility gaps in black).

By applying the warping process described in the previous section to each node
individually, we get two different z-buffered images 17 and I —from P, and
Py, respectively—as illustrated in Figure 2. What remains is the combination
of 17 and I7', a range transformation B which, for each point (x,y), depends
solely on the values of the z-buffered images at that position, resulting in the
image [7 = B(17, I7"). Different forms of this blending function are described
in section 6.

4 Image-Space Simplification

Given an environment map with depth and color information at a viewpoint,
we have seen that it is possible to create views from new positions and direc-
tions by appropriately warping the environment map. To generate environment
maps for viewpoints intermediate to the previously selected nodes, we morph
neighboring environment maps into an intermediate one.

Our solution to the image-space-based rendering problem simplifies the envi-
ronment, as seen from a given viewpoint, by linear polygons. This polygonal
mesh is created by triangulating the depth information associated with the
environment map, as shown in the example in Figure 4(b). Each triangle in
this mesh represents an object (or part of an object) at a certain depth.

The parallax effect can then be correctly simulated by warping each of these
triangles appropriately. Since image warping can be efficiently performed with
hardware assistance through texture mapping, we determine the appropriate
projective transformation which is then applied to this mesh textured by the
environment map colors. The hardware z-buffer is used to resolve occlusions,
or mesh foldovers. Multiple nodes are used to fill in the gaps resulting from
mesh tears by combining z-buffered images from various nodes using alpha
blending and the stencil or the accumulation buffer [34].

Fig. 4. Range image triangulation: (a) Input image; (b) 2D texture coordinates; (c)
3D triangulation textured by input image

The polygonal mesh derived from the depth information is in fact a 3D trian-
gulation that, when viewed from the original viewpoint, will look exactly like
the flat image. The triangulation can be reprojected to any other arbitrary
viewpoint in space by using standard viewing transformations, such as in the
side view shown in Figure 4(c).

4.1 Choice of the Environment Map Geometry

Although spherical maps are the most natural way to represent the environ-
ment information, they are not necessarily the most convenient or efficient.
Other representations have been used, such as cubical [21] and cylindrical maps
[9,33]. Spheres are difficult to represent digitally without significant variation
in the information density, whereas cylinder-based techniques have the prob-
lem of limiting the field of view to avoid dealing with the caps.

Cylindrical maps are convenient for generating panoramic images—by stitch-
ing together several partially overlapping photographs from planar rotations
of the view direction.

Although cubes do not represent texture information homogeneously and have
discontinuities at the edges, the cube representation is the easiest to obtain
for synthetic images and can be stored as six conventional rectangular images,
which can be output by virtually any rendering software (see Figure 5). The
construction of cubical maps directly from photographs is difficult, requiring
complicated alignment and expensive 90° degree lenses, but it can be done by
stitching on an intermediate cylinder that is reprojected onto a cube. More-

Fig. 5. Unfolded cubical environment map.

Fig. 6. Cube reprojection in a given viewing direction.

over, each of the sides of a cube can be considered independently during most
of the process. These reasons led us to use cubical environment maps. A re-
projection of a cube texture-mapped by the environment of Figure 5 is shown
for a given view direction in Figure 6; the seams of the cube are highlighted
to indicate the new viewing direction.

4.2 Image-space Triangulation

This step of the algorithm corresponds to the inverse projection that takes the
z-buffered image space into the object space (such as P;', in Figure 2). The
goals of the triangulation step are:

— to match the object silhouettes, which correspond to depth discontinuities
in the range images, as accurately as possible;

~ to detect the areas in the depth information that are almost linear, and
approximate them by triangles, which effectively corresponds to a view-
dependent simplification of the object models.

— to refine more finely closer objects, where the parallax effect is more notice-

able.

10

Since this must be done while minimizing the error in the scene representa-
tion, it is important to subdivide the non-linear areas of the objects that are
away from discontinuities as well, so that the geometry representation is more
faithful, and the parallax effect within the objects can be simulated. Also, due
to the perspective projection, the more distant an object is, the less relevant it
is to the observer, and the less noticeable is its parallax effect. In this way, the
mesh should approximate the object edges, and its sampling density should
be inversely proportional to the depth.

Adaptive Top-down Sampling

The implemented algorithm constructs an image-space Delaunay triangulation
using a Voronoi diagram to adaptively sample the image based on the depth
component. The image-based simplification is similar to previous work by the
authors [13], but with a different objective.

(a) (b) (c)

Fig. 7. (a) Conventional image; (b) Voronoi cells (2,000 samples); (¢) Interpolated
Delaunay triangles (2,000 samples)

In [13], the goal was to represent color images minimizing the number of
samples required, by using adaptive sampling and reconstructing the images
using Gouraud shading. Figure 7(a) shows a conventional representation of an
image, with 640,000 samples organized in a regular grid. The adaptive form
of sampling and reconstruction is illustrated in Figures 7(b) and (c), which
show two different reconstruction methods for an 800 x 800 image sampled at
2,000 positions (0.3% of the final resolution).

In our current approach, we are interested in minimizing the number of sam-
ples in a depth image, which represents an underlying 3D scene. Each sample
represents the depth of the object with absolute fidelity at that point. To be
able to decide new sample positions, more complex information will be re-
quired, such as adjacency relations and distances, implying a structure for the
samples. A natural geometric concept is the area of dominance of each sample,
which is well captured by the Voronoi polygon of that sample, and will be the
basis of our representation.

11

Fig. 8. Voronoi diagram and its dual Delaunay triangulation

Given a set S of n points in a plane, the set of points p, such that p is closer
to one of the given points p; than to any other p; of 5 is called the Vorono:
polygon of p; in S (see Figure 8). In this way, each of the Voronoi polygons
is the intersection of the half planes that contain p; defined by the medians
between the point p; and each of the other points in S. The union of the
Voronoi polygons of all the points in S is a planar subdivision called Vorono:
diagram [35], such as the example in Figure 8.

There are various algorithms for the construction of Voronoi diagrams, but,
in this application new samples should be added incrementally to an existing
structure. The addition of a point to a Voronoi diagram is a local operation,
although it may affect the entire diagram in a worst case scenario. On the av-
erage, for randomly distributed points, it can be shown that a Voronoi polygon
has only six sides, or equivalently, that each vertex of a Delaunay triangula-
tion has six incident edges [41]. A complete implementation of incremental
construction of Voronoi diagrams is presented in [28].

Selection of the Samples Positions

To sample adaptively, it is necessary to devise a criterion that determines
where new samples may be needed. The heuristics for positioning of the sam-
ples are different for images and z-buffers, as the depth images need to be
sampled based on object proximity, and the silhouettes have to be maintained
for the parallax effect. We start from a basic set of samples, that can be just
a few points that cover the domain of interest of the image. The information
necessary to make further decisions will be based solely on the current set of
samples, as we assume that no other information about the continuous depth
image is available.

One way to decide where samples may be needed is a simple stack, as pro-
posed in [15] for sampling parametric curves. The stack is initialized with the
endpoints of the curve. The pair at the top of the stack is probed to test if
inserting a new sample between them is actually necessary. If the two samples
and the probe are reasonably collinear, the probe is discarded and that sam-
ple pair need not be considered again. Otherwise, two new segments will be

12

pushed onto the stack: one containing the new sample and the last endpoint,
the other containing the first endpoint and the new sample. Obviously, this
process is not immune to aliasing, and if applied for curves with localized high
frequency detail, it will fail to detect it. Note that this scheme generates the
samples in the order they occur along the curve. In our case, we want to gen-
erate samples in the interest area first, which corresponds to the use a breadth
first strategy, or a queue, instead of a depth first strategy.

This concept is extended to a priority queue that gives a higher preference
to the more important areas of the depth image. We used a simple priority
scheme that takes three factors into consideration: the difference in depth
between adjacent samples, the size of the Voronoi cells, and the proximity to
the observer. Between adjacent samples with high difference in depth, there
is probably an object silhouette and therefore one should sample higher in
that region. Large Voronoi cells need more samples too, since there is a high
probability that significant detail in them is lost. We could have used an object
identification information from the renderer, but we chose not to, so that fewer
restrictions were imposed on the set of renderers that could be used with our
system.

The above criteria can be easily evaluated by using the Voronoi diagram or
the Delaunay triangulation to structure the samples. Each Voronoi edge corre-
sponds to a pair of adjacent samples. If the priority is evaluated as samples are
added, and stored at each Voronoi edge, the edges can be placed in the priority
queue. The first edge of the queue is then probed repeatedly, possibly adding
more edges to the queue. Once an edge to be broken is selected, the probe
position will be chosen randomly between the endpoints of the edge. The ra-
tionale behind this decision is that endpoints of Voronoi edges are equidistant
from the neighboring samples, yielding a better sample distribution.

(b) ()
Fig. 9. Triangulation using depth and discontinuity.

Figure 9 shows an image, its depth image and the corresponding triangulation
(viewed from the original point of view), in which the farthest objects are
sampled more sparsely, and the areas near the edges are sampled finely.

Another triangulation created by inverse projecting depth information to 3D
is shown in the sequence in Figure 10, where an observer is moving away
from the spheres—10(b) shows the view from the position where the node
was generated. Note how the visibility changes are correctly handled, with

13

Fig. 10. Handling Visibility Changes in Translation.

the closer sphere covering a greater part of the other spheres (10(a)) and the
visibility gaps appearing where no information was available (10(c)). Methods
to fill-in these visibility gaps using information from neighboring nodes are
presented in Section 6.

Obtaining a Triangulation Directly

When using polygonal data as input, it is possible to construct a trinagula-
tion that matches the edges of the original objects exactly. This can be done
by using an object space hidden surface algorithm such as [47] to eliminate
invisible polygons, and keep the visible part of the remaining polygons. This
polygon mesh, however, is more closely dependent on the complexity of the
original scene. A mesh simplification algorithm, taking in consideration the
depth information coherence can be used to further simplify it.

4.3 View-dependent Texture Mapping

The projection transformation that relates the triangulation and the z-buffered
image, when applied to each vertex of the 3D triangulation, yields the texture
coordinates that have to be assigned to that vertex.

Simply assigning the texture coordinates, however, does not result in the de-
sired behavior, since the graphics engine generally interpolates the interior
pixels of each triangle using perspective correction. This texture mapping
correction, essentially a divide by z, is performed on a per-pixel basis for
the texture coordinates [39]. In our case, however, the texture maps already

Fig. 11. Handling Perspective: (a) Double Perspective; (b) Compensated.

14

have the necessary perspective distortion in them. Letting the hardware per-
form perspective correction results in an incorrect double perspective effect.
Figure 11(a) shows such double perspective effect for an oblique view of a
checkerboard pattern mapped to a square. Disabling perspective correction is
necessary to obtain the correct effect shown in (b). To achieve this effect in
OpenGL we transform the texture coordinates according to the depth of the
corresponding vertices so that the automatic perspective correction is nullified
[38]. Details of this transformation appear in the Appendix.

4.4 Triangle Quality Measure

Each triangle of the mesh carries a certain amount of texture information,
which we will measure by a triangle quality factor g. This quality is related to
the angle that the normals of the triangles make with the view ray, i.e., how
oblique is the triangle in relation to the image plane for a perspective pro-
jection. Triangles with greater angles are projected to proportionally smaller
areas in 2D and thus, less pixels will be texture mapped to it. The quality
that is assigned to each triangle can be calculated therefore as the dot prod-
uct between the normal to each triangle and the average ray direction, i.e.,
the ray connecting the barycenter of the triangle and the observer position:

q = [[N.B|| = | cos(0)]

Fig. 12. Triangulation qualities from two different nodes.

This is equivalent to the ratio between the orthogonal projected area in the ray
direction and the original area. Note that no triangles will have § > 90°, as the
triangulation contains only triangles that are visible from the original observer
position. When 6 is close to 0 degrees, the triangle is almost perpendicular
to the observer, and its quality will be close to 1, meaning that its texture
information is well represented. For a large angle, closer to 90 degrees, the face
is projected to a small area, and its quality will be close to 0.

15

The quality of the triangles is a static property, that is computed before nav-
igation for the observer in the original position. It denotes the proportion of
pixels from the texture map that are used in the representation of this tri-
angle. When the observer moves, this quality indicates how much a triangle
can be warped without noticeable error. If the quality of a triangle is low, a
modification in the observer position can cause it to become more visible, and
the low quality of its texture would become apparent. In this case, we combine
or replace it by a better quality triangle, from a triangulation of another node.
Figure 12 shows the qualities—indicated as gray levels with white being the
best—of the triangles of two different nodes viewed from the same position.

It is interesting to note that the triangle qualities can be automatically gener-
ated by any renderer that uses a Lambertian diffuse illumination model. This
is done by placing a point light source with no attenuation in the observer
position, and re-rendering the entire scene with no ambient illumination using
a white dull material for all objects. The equivalence is due to the Lamber-
tian diffuse component being based on the cosine of the normal with the light
source direction.

5 Single Node Navigation

A node consists of a cubical environment map and its triangulation as dis-
cussed in Section 4. An example of this is shown in Figure 13. The navigation

Fig. 13. Node triangulation viewed from within the node.

inside a node involves projecting these triangulations for a given viewpoint
and viewing direction. The projection and the subsequent z-buffering cor-
rectly handle the visibility and the perspective for regions where adequate
information is available.

The six sides of a node are not normally all visible at once. A cube divides the
space into six pyramidal regions that are joined by their apices at the center
of the cube . We cull the triangulations in large batches, by computing the
intersection of the viewing frustum with the six pyramidal regions to determine
which sides of the node can possibly take part in the view. In Figure 14, for

16

Fig. 14. View frustum culling.

(a) (b)

Fig. 15. Visibility gaps: (a) black; (b) filled by linear interpolation.

instance, just the triangles from the highlighted sides are sent through the
graphics pipeline.

When an observer translates, regions not visible from the original viewing
parameters appear. These visibility gaps can be either shown in a background
color or can be filled by a linear interpolation of the colors of their vertices.
Both options are shown in Figure 15, where the observer has moved down
and to the right from the original position, which was directly above the
sphere. In an image-based navigation system, the visibility information from
the original viewpoint is projected to a 2D plane and any obscured objects are
“lost”. Therefore, the system at this stage does not have any information to
fill uncovered areas and an interpolation is just a crude approximation that is
acceptable for very small gaps. Nevertheless, some systems rely on this type
of technique. We shall next discuss an approach that uses information from
other nodes to fill-in the missing visibility information where possible.

6 Multiple Node Navigation

Given a set of nodes, solving the visibility problem for a certain viewpoint
and direction involves two subproblems: selecting the appropriate nodes and
combining the information from these nodes. If the nodes are uniformly dis-
tributed, the selection of the nodes that are closer to the observer is a simple
solution that yields acceptable results. This is the approach that we have
implemented. The remainder of this section discusses the combination of in-
formation from two nodes. Combination of information from three or more

17

Fig. 16. Views from two different nodes.

nodes proceeds in the same manner if we are iteratively combining informa-
tion from two nodes at a time, until all or most of the visibility gaps are filled.
Figure 16 shows the visibility gaps (in black) from two different nodes that
will serve as a testbed to compare the different combinations.

The information from two different nodes has to be merged to form a new
view of the scene in real-time, combining or replacing triangles based on their
quality (see section 4.4). We next some ways to perform such merging.

6.1 Mesh Layering

This node merging technique begins by projecting the triangles of the visible
triangulations from the node that is closest to the observer. Clearly, if the
observer is not at the center of the node, visibility gaps can appear. The next
closest node is then reprojected, and the process can be repeated until all the
visibility gaps are filled, or a subset of the neighboring nodes has been used.
This approach is the only one currently implemented entirely in hardware,
and uses the hardware z-buffer for hidden surface removal. The combination
of the two images is then performed by comparing the z-values of the two
corresponding input pixels p; and ps:

P1, 21 < 22
p=]
p2, otherwise

Although this very simple scheme fills most of the visibility gaps, it suffers
from the drawback that, for triangles with similar z-values but different qual-
ities, the winner is determined solely by the depth ordering. As the triangle
qualities are not considered, parts of low quality triangles can dominate over
high quality ones that are slightly farther. Notice the discontinuities, especially
in the rainbow in Figure 17 generated using this method.

18

Fig. 17. Mesh Layering

6.2 Binary Merge

To allow the quality measure to play a significant role, we must be able to
obtain, for each pixel, the quality of the triangle it belongs to. The resulting
pixel is now computed by first comparing the z-values of the input pixels, as
follows:

p1, 21 < Z3 — 0, or
p= 0<]z1— 2z <dand ¢ > ¢
p2, otherwise
If the z values are sufficiently different, according to an arbitrary ¢ value, the
pixel that is closer to the observer wins; otherwise, the pixels are two different

representations for the same surface, and therefore the pixel that is output to
the final image will be the one that has a higher quality.

Fig. 18. Binary merge.

Although this function is not a continuous blend it yields good results. Fig-
ure 18 shows a combination using this technique (see Figure 12 for the triangle
qualities). To implement this scheme, we store the quality of each triangle on
a pixel-by-pixel basis in the stencil or alpha buffer during rasterization. We
retrieve color and depth information from the warped images in the frame
buffer, blend the values, and write the resulting image back to the frame
buffer. Note that if alpha buffer is used, Gouraud shading can be used to vary
the pixel-by-pixel qualities smoothly inside each triangle.

19

6.3 Sitmple Weighted Blending

Fig. 19. Weighted blending.

This method is an extension of the binary merge approach with the difference
that for close z-values, the output pixel is an interpolation of the pixels from
different nodes, with the alpha factor based on the relative quality values.
Since the quality values of two triangles do not, in general, sum to 1, we
choose the output pixel to be a quality-weighted average of the input pixels:

P1, 1 < Z9 — (S
p e p27 Z9 < 21 — (S
w, otherwise
¢+ q2

The result using this computation is shown in Figure 19, where the combina-
tion produced a smoother image.

6.4 Positional Weighted Blending

The weighted average technique can be further refined by considering the posi-
tion of the observer: the closer is the observer to the center of a node, the more
should be the influence of that node on the resulting image. This is achieved
by multiplying the qualities stored in the buffers by a factor proportional to
the distance d; of the observer from the center of the node ::

P, <22 d
p= P2, 2 <A d
t 1—1t d -
@11+ ()qu27 {=—2 otherwise
tq + (1~ 1)gz h +d;

This solution produces a smooth morphing between the nodes (see Figure 20).

20

Fig. 20. Positional weighted blending.

When the observer is exactly at the center of a node, the resulting image is
exact, and it becomes a combination of the two nodes as the observer moves.

Although the accumulation buffer of OpenGL can produce a weighted average
of two images it cannot be used here directly, since ¢; and ¢; do not sum to
1. For this, ¢; must be normalized on a pixel-by-pixel basis which makes this
approach impractical for OpenGL. However, in other systems it might be
possible to directly execute this solution in the graphics pipeline.

7 Results

We have tested our implementation on a model generated by us. The initial
model was ray-traced and two cubical environment maps, each consisting of
six 512x 512 images (with depth), were generated. From these 3M data points,
we obtained a simplified representation consisting of a total of 30K texture-
mapped triangles using the top-down approach described before to generate
a Delaunay triangulation.

We have measured the performance in two reference systems: a single SGI
Challenge R10000 processor with one raster manager, Infinite Reality with
64MB of texture memory and 2MB of secondary cache; and a Pentium Pro
200MHz with a Permedia N'T graphics card accelerator, with 4MB of video
memory. We compared mesh layering, binary merge, weighted blending, and
positional weighted blending schemes for the same navigation path consisting
of 250 frames between the two nodes. In the first system, for mesh layering
we achieved an average frame-rate of 9.59 frames per second, for binary merge
4.27 frames per second, for weighted blending 3.58 frames per second, and for
positional weighted blending 3.53 frames per second. In the second system, we
obtained an average frame-rate of 8.03 frames per second for mesh layering.
Our current implementation does not use triangle strips; from our past expe-
rience with triangle strips, the above frame-rates should roughly double with
triangle strips.

21

Fig. 21. Navigating in Image-Space: row 1 —node 1, row 2 — node 2, row 3 — positional
Weighted Blending of Node 1 and Node 2, row 4 — ray traced frames.

We have compared the results of the different blending methods presented,
using a squared distance error measurement for a reference sequence depicted
in the bottom row of Figure 21. The error grows quadratically from 0, for iden-
tical images, to 1, for entirely different images. Note that the measurements
were performed in the RGB space, which is not linear perceptually.

(a) (b)

Fig. 22. Mesh layering (a) versus Positional weighted blending (b).

Each reference frame was rendered using ray tracing from the 3D models, and
compared to the image-based rendering technique using the different blending
methods. A comparison chart indicating the error for each different view is

22

Error

0.07

0.06 —

0.05 —

0.04

| |[m Layering
W Binary
[1|0 Weighted

O Positional

0.03

0.02 —

0.01

LT e I i
1 2 3

4 5 View

Fig. 23. Blending techniques comparison for each different view

Error

0.022

0.0215

0.021 +—

0.0205 +—

0.02 1+— —

0.0195 —— —

0.019

Layering Binary Weighted Positional

Fig. 24. Average error

shown in Figure 23. The average error for each blending technique is shown
in Figure 24. The results indicate that, as expected, the error increases as
the observer moves away from the node centers. Also, the positional weighted
blending produces consistently the best results.

Other results are shown in Figures 18, 19, 20, and 21. The differences amongst
these figures although present are subtle and not very obvious at the scale at
which these figures have been reproduced in this paper. The difference between
mesh layering and positional weighted blending, for instance, is more obvious
in Figure 22 in the spurious triangles near the left side of the sphere in the
mesh layering approach.

Figure 21 shows frames of an animation obtained by blending two nodes using
the positional weighted average technique in software. The center of the first
node is directly in front of the rainbow torus, and the second is to the its left
and front of the first center. In the navigation, the observer starts near the
center of the first node, translates to the left, then rotates to the right and to
the bottom.

23

8 Conclusion

We have described an image-based rendering technique for navigation of 3D
environments by using viewpoint-dependent warping and morphing. The method
relies on a set of cubical environment maps that are pre-rendered from a col-
lection of fixed (and preferably uniformly distributed) viewpoints within the
virtual model. Every given viewpoint is represented by a node that consists
of a cubical environment map and an associated 3D triangulation of the six
faces of the map. We have described the construction of such triangulations
of the faces and discussed navigation by combining information from multi-
ple nodes. Our scheme relies heavily on, and derives its speed from, hardware
texture mapping facilities.

In our current implementation, reprojection of the second node is done for
the entire image. However, to speed-up the results, a mask can be created to
determine the visibility gaps exactly and the secondary projections restricted
to the missing parts of the scene. This can be done by using a binary stencil
and modifying the viewing frustum to be restricted to the bounding box of
the visibility gaps. A similar approach has been shown to work well [29].

The triangulation scheme that was used could take advantage of further im-
provements. Its current version is better suited when the sampling process is
expensive, since it never discards samples. In many situations, such as with
range images, the information is already fully sampled, and resampling it in-
curs a minimal cost. In these cases, it is better to use a technique that works
bottom up, by trying to combine similar areas that can be approximated by
a linear polygon, instead of top down, trying to guess sample positions. Also,
the triangulation of each of the sides of the environment map could not ac-
tually be performed in an entirely independent way, to avoid cracks at the
seams. A single integrated triangulation step may yield a better junction be-
tween the sides. The use of multi-resolution images, as well as multi-resolution
triangulations, could be useful, if the nodes are positioned sparsely.

The position of the nodes is currently determined manually by the user, as
part of the scene modeling. Ideally, a minimum amount of nodes should be
positioned in such a way so as to cover all the areas of interest in the scene.
Also, the problem of selecting the subset of the nodes that will be combined at
a given position during navigation must be solved in an efficient way, so that
the node reprojections are kept to a minimum. There is a clear coherence in
the node selection that adapts itself to a working set model, where the active
nodes are cached, and a node replacement occurs sparsely.

24

—
M
—
/ —
\//// M
<\

= >
image pleﬁ\\:\

Fig. A.1. Linear and perspective corrected interpolations.

Acknowledgement

We would like to thank CNPq (Brazilian Council of Scientific and Technologi-
cal Development) for the financial support to the first two authors. This work
has been supported in part by the National Science Foundation CAREER
award CCR-9502239. This research was performed at the Visualization labo-
ratory at SUNY Stony Brook.

A Disabling perspective correction

A texture coordinate in OpenGL is specified by a tuple (s,¢,r, ¢). After multi-
plying the texture coordinates by the texture matrix, OpenGL interprets the
result (s',t',1",¢) as homogeneous texture coordinates. This computation is
performed at each triangle vertex and the information is interpolated by the
rasterizer to yield a value for each pixel. If the interpolation used is linear, the
results differ from those obtained from the actual computation at each pixel,
as 1llustrated in Figure A.1. For the computation of the texture coordinates at
the pixel M, at the center of the image, linear interpolation yields (s + $2)/2,
which is incorrect since those are the texture coordinates of point L. With
perspective correction the computation at M must yield the coordinates of P.
This is done by linearly interpolating (s1/wy, t1/w1) and (sg/w2, t3/w,) at each
pixel where w; is the homogeneous coordinate of the polygon vertex i. The r
and ¢ texture coordinates are also divided by w;, and interpolated in the same
way, although they are not needed for simple texture mapping. At each pixel,
a division is performed using the interpolated values of (s/w,t/w,r/w, ¢/w),
vielding (s/q,t/q), which are the final texture coordinates. To disable this ef-
fect, which is not possible in OpenGL directly®, we transform, a priori, the

3 In other APls, such as Microsoft Direct3D, this feature can be disabled with a
single command.

25

original texture coordinates (s;,t;) into (w;s;, w;t;, 0,w;), so that at the end of
the transformation performed by OpenGL, we have (s;,1;), at no performance
cost. In our case, the 3D triangulation includes the depth of each vertex which
is the required w value.

References

[1]J. K. Aggarwal and N. Nandakumar. On the computation of motion from
sequences of images—a review. Proceedings of the IFFE, 76(8):917-935, August
1988.

[2] J. M. Airey. Increasing Update Rates in the Building Walkthrough System with
Automatic Model-Space Subdivision and Potentially Visible Set Calculations.
PhD thesis, University of North Carolina at Chapel Hill, Department of
Computer Science, Chapel Hill, NC 27599-3175, 1990.

[3] D. G. Aliaga. Visualization of complex models using dynamic texture-
based simplification. In IFEFE Visualization 96 Proceedings, pages 101-106.
ACM/SIGGRAPH Press, October 1996.

[4] L. D. Bergman, H. Fuchs, E. Grant, and S. Spach. Image rendering by
adaptive refinement. In David C. Evans and Russell J. Athay, editors, Computer
Graphics (SIGGRAPH ’86 Proceedings), volume 20, pages 29-37, August 1986.

[5] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen Zagier. Frameless
rendering: Double buffering considered harmful. In Proceedings of SIGGRAPH
94 (Orlando, Florida, July 24-29, 1994), Computer Graphics Proceedings,
Annual Conference Series, pages 175-176. ACM SIGGRAPH, July 1994.

[6] Jim F. Blinn. Simulation of wrinkled surfaces. In SIGGRAPH 78, pages 286—
292. ACM, 1978.

[7] Jim F. Blinn and M. E. Newell. Texture and reflection in computer generated
images. CACM, 19(10):542-547, October 1976.

[8] Ed Catmull. A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, University of Utah, 1974.

[9] Shenchang Eric Chen. Quicktime VR — an image-based approach to virtual
environment navigation. In Computer Graphics Annual Conference Series

(SIGGRAPH °95), pages 29-38. ACM, 1995.

[10] Shenchang Eric Chen and Lance Williams. View interpolation for image
synthesis. In Computer Graphics (SIGGRAPH 93 Proceedings), volume 27,
pages 279-288, August 1993.

[11] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P.
Brooks, Jr., and W. V. Wright. Simplification envelopes. In Proceedings of
SIGGRAPH 96 (New Orleans, LA, August 4-9, 1996), Computer Graphics

26

Proceedings, Annual Conference Series, pages 119 — 128. ACM SIGGRAPH,
ACM Press, August 1996.

[12] Cyan. Myst: The Surrealistic Adventure That Will Become Your World.
Broderbund Software, 1994.

[13] Lucia Darsa and Bruno Costa. Multi-resolution representation and
reconstruction of adaptively sampled images. In SIBGRAPI’96 Proceedings,
pages 321-328, October 1996.

[14] Lucia Darsa, Bruno Costa, and Amitabh Varshney. Navigating static
environments using image-space simplification and morphing. In Proceedings
of the 1997 Symposium on Interactive 3D Graphics, pages 25-34. ACM
SIGGRAPH, ACM Press, April 1997.

[15] Luiz Henrique de Figueiredo. Adaptive sampling of parametric curves. In Alan
Paeth, editor, Graphics Gems V, pages 173-178. AP Professional, San Diego,
CA, 1995.

[16] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and
rendering architecture from photographs: A hybrid geometry- and image-based
approach. In Proceedings of SIGGRAPH 96 (New Orleans, LA, August /-9,
1996), Computer Graphics Proceedings, Annual Conference Series, pages 11-20.
ACM SIGGRAPH, ACM Press, August 1996.

[17] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis for
surface of arbitrary topological type. Report 93-10-05, Department of Computer
Science, University of Washington, Seattle, WA, 1993.

[18] Jonas Gomes, Bruno Costa, Lucia Darsa, Luiz Velho, George Wolberg, and
John Berton. Warping and Morphing of Graphical Objects. SIGGRAPH 95
Course Notes #3, 1995.

[19] Steven J. Gortler, Radek Grzeszczuk, Richard Szelinski, and Michael F. Cohen.
The lumigraph. In Proceedings of SIGGRAPH ’96 (New Orleans, LA, August

4-9, 1996), Computer Graphics Proceedings, Annual Conference Series, pages
43-54. ACM SIGGRAPH, ACM Press, August 1996.

[20] N. Greene. Hierarchical polygon tiling with coverage masks. In Proceedings
of SIGGRAPH ’96 (New Orleans, LA, August /-9, 1996), Computer Graphics
Proceedings, Annual Conference Series, pages 65 — 74. ACM Siggraph, ACM
Press, August 1996.

[21] Ned Greene. Environment mapping and other applications of world projections.

IFFE CGEA, 6(11):21-29, November 1986.

[22] Ned Greene and M. Kass. Hierarchical Z-buffer visibility. In Computer Graphics
Proceedings, Annual Conference Series, 1993, pages 231-240, 1993.

[23] T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology simplification.
IFFEFE Transactions on Visualization and Computer Graphics, 2(2):171-184,
June 1996.

27

[24] H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH 96 (New
Orleans, LA, August 4-9, 1996), Computer Graphics Proceedings, Annual
Conference Series, pages 99 — 108. ACM SIGGRAPH, ACM Press, August
1996.

[25] Youichi Horry, Ken ichi Anjyo, and Kiyoshi Arai. Tour into the picture: Using
a spidery mesh interface to make animation from a single image. In Proceedings
of SIGGRAPH 97 (Los Angeles, CA, August 3-8, 1997), Computer Graphics
Proceedings, Annual Conference Series, pages 225-232. ACM SIGGRAPH,
ACM Press, August 1997.

[26] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of
SIGGRAPH 96 (New Orleans, LA, August 4-9, 1996), Computer Graphics
Proceedings, Annual Conference Series, pages 31-42. ACM SIGGRAPH, ACM
Press, August 1996.

[27] A. Lippman. Movie maps: An application of the optical videodisc to computer
graphics. In Computer Graphics (SIGGRAPH ’80 Proceedings), pages 32-43,
1980.

[28] Dani Lischinski. Incremental delaunay triangulation. In Paul S. Heckbert,
editor, Graphics Gems IV, pages 47-59. AP Professional, San Diego, CA, 1994.

[29] D. Luebke and C. Georges. Portals and mirrors: Simple, fast evaluation of
potentially visible sets. In Proceedings, 1995 Symposium on Interactive 3D
Graphics, pages 105 — 106, 1995.

[30] P. W. C. Maciel and P. Shirley. Visual navigation of large environments using
textured clusters. In Proceedings of the 1995 Symposium on Interactive 3D
Computer Graphics, pages 95-102, 1995.

[31] Y. Mann and D. Cohen-Or. Selective pixel transmission for navigating in remote
virtual environments. In Proceedings FUROGRAPHICS 97, pages C-201 — C—
206, 1997.

[32] William R. Mark, Leonard McMillan, and Gary Bishop. Post-rendering 3d
warping. In Proceedings of the 1997 Symposium on Interactive 3D Graphics,
pages 7-16. ACM SIGGRAPH, ACM Press, April 1997.

[33] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-
based rendering system. In Computer Graphics Annual Conference Series

(SIGGRAPH °95), pages 39-46. ACM, 1995.

[34] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Release 1. Addison-Wesley, 1993.

[35] F. P. Preparata and M. 1. Shamos. Computational Geometry: an Introduction.
Springer-Verlag, New York, NY, 1985.

[36] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering.
In Modeling in Computer Graphics, pages 455-465. Springer-Verlag, June—July
1993.

28

[37] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle
meshes. In Computer Graphics: Proceedings SIGGRAPH ’92, volume 26, No.
2, pages 65-70. ACM SIGGRAPH, 1992.

[38] Mark Segal. Personal communication, 1996.

[39] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli.
Fast shadows and lighting effects using texture mapping. Computer Graphics
(SIGGRAPH 92 Proceedings), 26(2):249-252, July 1992.

[40] Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose, and John
Snyder. Hierarchical image caching for accelerated walkthroughs of complex
environments. In Proceedings of SIGGRAPH 96 (New Orleans, LA, August

4-9, 1996), Computer Graphics Proceedings, Annual Conference Series, pages
75-82. ACM SIGGRAPH, ACM Press, August 1996.

[41] R. Sibson. Locally equiangular triangulations. The Computer Journal,
21(3):243-245, August 1978.

[42] P. Sloan, M. F. Cohen, and S. Gortler. Time critical lumigraph rendering. In
Proceedings of the 1997 Symposium on Interactive 3D Graphics, pages 17-23.
ACM SIGGRAPH, ACM Press, April 1997.

[43] Richard Szeliski. Video mosaics for virtual environments. IEEE CGEA, pages
22-30, March 1996.

[44] S. Teller and C. H. Séquin. Visibility preprocessing for interactive walkthroughs.
Computer Graphics: Proceedings of SIGGRAPH 91, 25, No. 4:61-69, 1991.

[45] Jay Torborg and James T. Kajiya. Talisman: Commodity realtime 3d graphics
for the pc. In Proceedings of SIGGRAPH ’96 (New Orleans, LA, August 4-9,
1996), Computer Graphics Proceedings, Annual Conference Series, pages 353
364. ACM SIGGRAPH, ACM Press, August 1996.

[46] Greg Turk. Re-tiling polygonal surfaces. Computer Graphics (SIGGRAPH ’92
Proceedings), 26(2):55-64, July 1992.

[47] K. Weiler. Polygon comparison using a graph representation. In Computer
Graphics (SIGGRAPH 80 Proceedings), pages 10-18, 1980.

[48] G. Wolberg. Digital Image Warping. IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[49] J. Xia and A. Varshney. Dynamic view-dependent simplification for polygonal
models. In [EEE Visualization 96 Proceedings. ACM/SIGGRAPH Press,
October 1996.

29

