
View-Dependent Topology Simpli�cation

Jihad El-Sana and Amitabh Varshney

Department of Computer Science, State University of New York at Stony Brook,

Stony Brook, NY 11794-4400

fjihad,varshneyg@cs.sunysb.edu

Abstract. We propose a technique for performing view-dependent sim-

pli�cations for level-of-detail-based renderings of complex models. Our

method is based on exploiting frame-to-frame coherence and is tolerant

of various commonly found degeneracies in real-life polygonal models.

The algorithm proceeds by preprocessing the input dataset into a binary

tree of vertex collapses. This tree is used at run time to generate the

triangles for display. Dependencies to avoid mesh foldovers in manifold

regions of the input object are stored in the tree in an implicit fashion.

This obviates the need for any extra storage for dependency pointers and

suggests a potential for application to external memory prefetching algo-

rithms. We also propose a distance metric that can be used to unify the

geometry and genus simpli�cations with the view-dependent parameters

such as viewpoint, view-frustum, and local illumination.

1 Introduction

Interactive visualization of large geometric datasets in computer graphics is a
challenging task due to several reasons. One of the main reasons is that the
sizes of several present geometric datasets are one or more orders of magnitude
larger than what the current graphics hardware can display at interactive rates.
Further, the rate of growth in the complexity of such geometric datasets has out-
paced the advances in the graphics hardware rendering capabilities. As a result,
several algorithmic solutions have been proposed to bridge this gap between the
actual and desired rendering performances on such large datasets. These include
visibility-based culling, geometric multiresolution hierarchies, levels of detail in
illumination and shading, texture mapping, and image-based rendering. The fo-
cus of this paper is on de�ning geometric multiresolution hierarchies to enable a
view-dependent simpli�cation of the geometry as well as topology of the model
for interactive walkthroughs of high complexity polygonal datasets.

For some graphics systems such as those used in mechanical tolerancing and
medical volume visualization preservation of the topology of the input dataset is
an important criterion. However, for a wide variety of real-time graphics appli-
cations where interactivity is essential, preservation of the topology of the input
polygonal dataset is often not a requirement. For such applications geometry sim-
pli�cation has been shown to yield signi�cantly lower complexity approximations
if performed with genus simpli�cation than without. In this paper we demon-



(a) (b) (c) (d)

Fig. 1. Genus-simpli�cation based on light direction

strate a technique for performing topology simpli�cations in a view-dependent
manner. In our approach a hierarchy of vertex-pair collapses is identi�ed to form
a view dependence tree. Appropriate levels of detail are selected from this tree
at runtime to generate view-dependent simpli�cations. We also propose a dis-
tance metric that uses the coordinates and the normals of vertices, to de�ne
view- and light-dependent topology and geometry simpli�cations for polygonal
environments in a uni�ed manner.

2 Related Work

Related work on geometry simpli�cation has been well surveyed in several recent
papers [2, 3, 6, 9, 12]. In this paper we shall overview the related work in genus
simpli�cations and view-dependent simpli�cations. These two categories have
almost no overlap with the notable exception of [13].

2.1 Genus Simpli�cations

Rossignac and Borrel's algorithm [16] uses a global grid to subdivide a model.
Then the vertices of one cell are collapsed to a single vertex and the polygonal
mesh is appropriately updated. This approach can simplify the topology if the
desired simpli�cation regions fall within a grid cell. He et al [8] have used an
low-pass �lter to perform a controlled simpli�cation of the genus of a volumetric
objects. However, polygonal objects need to be voxelized. El-Sana and Varshney
[5] perform genus simpli�cation by extending the concept of �-hulls from points
and spheres to triangles. Their approach is based on convolving individual trian-
gles with a L

1
cube of side � and then computing their union. The convolution

operation e�ectively eliminates all holes that are less than size �.
Several algorithms for topology simpli�cation are based on vertex-pair col-

lapse method, though not in the context of view-dependent renderings. Schroeder
[18] has introduced vertex-split and vertex-merge operations on polygonal meshes
for modifying the topology of polygonal models. The simpli�cation is based on
the Euclidean distance and the vertex splits are performed along feature lines
and at corners. Garland and Heckbert [6] present a quadric error metric that
can be used to perform genus as well as geometric simpli�cations. The error at a



vertex v is stored in the form a 4� 4 symmetric matrix. The algorithm proceeds
by performing vertex-pair collapses and the error is accumulated from one ver-
tex to the other by summing these matrices. Popovi�c and Hoppe [15] introduce
the operator of a generalized vertex split to represent progressive changes to the
geometry as well as topology for triangulated geometric models. Progressive use
of this operator results in representation of a geometric model as a progressive

simplicial complex.

2.2 View-Dependent Simpli�cations

Most of the previous work on generating multiresolution hierarchies for LOD-
based rendering has concentrated on computing a �xed set of view-independent
levels of detail. At runtime an appropriate level of detail is selected based on
viewing parameters and displayed. Such methods are overly restrictive and do
not take into account �ner image-space feedback such as light position, visual
acuity, silhouettes, and view direction. Recent advances to address some of these
issues in a view-dependent manner take advantage of the temporal coherence to
adaptively re�ne or simplify the polygonal environment from one frame to the
next. Since most of the work in view-dependent simpli�cations is closely related
to the concept of progressive meshes we briey overview them next.

Progressive meshes have been introduced by Hoppe [9] as an elegant solu-
tion for a continuous resolution representation of polygonal meshes. Progressive
meshes are based upon two fundamental operators { edge collapse and its dual,
the vertex split, as shown in Figure 2. In this example the vertices n0 : : : n6 com-
prise the neighborhood of the edge pc. A polygonal mesh M̂ = Mk is simpli�ed

fα

fα

Vertex Split

 Edge Collapse

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

f
f

f

f

f

fβ
γ

δ

β
γ

δ

Fig. 2. Edge collapse and vertex split

into successively coarser meshes:Mk ecolk�1
! Mk�1 ecolk�2

! : : :M1 ecol0! M0 by
applying a sequence of edge collapses. One can retrieve the successively higher
detail meshes from the simplest mesh M0 by using a sequence of the dual trans-

formation, vertex-split: M0
vsplit0
! M1

vsplit1
! : : :Mk�1 vsplitk�1

! (M̂ =Mk)
Merge trees have been introduced by Xia et al [19] as a data-structure built

upon progressive meshes to enable real-time view-dependent rendering of an
object. Let the vertex p in Figure 2 be considered the parent of the vertex c

(as c is created from p through a vertex split). The merge tree is constructed in



a bottom-up fashion from the high-detail mesh M̂ to a low-detail mesh M0 by
storing these parent-child relationships in a hierarchical manner over the surface
of an object.

View-dependent simpli�cation is achieved by performing edge-collapses and
vertex-splits on the triangulation used for display depending upon view-dependent
parameters such as lighting (detail is directly proportional to intensity gradient),
polygon orientation, (high detail for silhouettes and low detail for backfacing re-
gions) and screen-space projection. Since there is a high temporal coherence the
selected levels in the merge tree change only gradually from frame to frame.
Unconstrained edge-collapses and vertex-splits during runtime can be shown to
result in mesh foldovers resulting in visual artifacts such as shading disconti-
nuities. To avoid these artifacts Xia et al propose the concept of dependencies
or constraints that necessitate the presence of the entire neighborhood of an
edge before it is collapsed (or its parent vertex is split). Thus, for the example
shown in Figure 2, the neighborhood of edge pc should consist exactly of vertices
n0 : : : n6 for c to collapse to p. Similarly, for the vertex p to split to c, the vertices
adjacent to p should be exactly the set n0 : : : n6.

View-Dependent Progressive Meshes Hoppe [10] has independently devel-
oped an algorithm that is similar to Xia et al [19]. Whereas Xia et al use the
Euclidean distance metric and collapse the shortest edge �rst to construct the
merge tree, Hoppe proceeds in a top-down fashion by minimizing an energy
function �rst de�ned in [9]. Hoppe uses screen-space projection and orientation
of the polygons to guide the run-time view-dependent simpli�cation. Like the
approach of Xia et al, this approach also requires constraints to prevent mesh
foldovers. However, unlike [19], Hoppe [10] empirically observes that for some
distance metrics (such as the energy minimization function described there), the
vertex-split/edge-collapse constraints limited to only the four faces f�, f�, f ,
and f� as shown in Figure 2 are adequate. However, this in general is not a
su�cient requirement for other distance metrics, such as the shortest-edge-�rst,
for which the entire neighborhood has to be stored as a constraint for vertex-
split/edge-collapse. In Section 4.2 we propose to de�ne these constraints in an
implicit manner thereby obviating the need to store them explicitly.

Gu�eziec et al [7] have developed a surface partition algorithm for a progressive
encoding scheme for surfaces in the form of a directed acyclic graph (DAG). The
DAG represents the partial ordering of the edge collapses with path compression.
De Floriani et al [4] have introduced the multi-triangulation(MT). The change
of level of detail in MT is achieved through a set of local operators that a�ect
fragments of the mesh. The dependencies between the fragments of the mesh are
used to construct a DAG of these fragments. This DAG is used at run time to
guide the change of the resolution of each fragment.

Schilling and Klein [17] have introduced a re�nement algorithm that is tex-
ture dependent. They measure the texture distortion in the simpli�ed mesh by
mapping the triangulation into the texture space and then measuring the er-
ror at vertices and edge intersections. In the vertex hierarchy they store the
sequence of the simpli�cation operations and the texture distortion with each



operation. Klein et al [11] have developed an illumination-dependent re�nement
algorithm for multiresolution meshes. The algorithm stores maximum deviation
from Phong interpolated normals and introduces correspondence between the
normals during the simpli�cation algorithm. In order to avoid aliasing artifacts
they recompute the normals at the vertices. In the vertex hierarchy they store
the geometric error and maximum normal deviation at each triangle.

2.3 View-Dependent Topology Simpli�cations

Luebke and Erikson [13] use a scheme based on de�ning a tight octree over the
vertices of the given model to generate hierarchical view-dependent simpli�-
cations. In a tight octree, each node of the octree is tightened to the smallest
axis-aligned bounding cube that encloses the relevant vertices before subdividing
further. If the screen-space projection of a given cell of an octree is too small,
all the vertices in that cell are collapsed to one vertex. Adaptive re�nement
is performed analogously. Marshall et al [14] have developed a view-dependent
topology simpli�cation algorithm based on a clustering approach and simpli�-
cation metric. The simpli�cation metric minimizes changes to the �nal image
rather than changes to the input model.

3 Overview

We present a technique for performing geometry and genus simpli�cations in a
view-dependent manner. We �rst construct a hierarchy of vertex-pair collapses
to construct a view dependence tree. We would like to note here that the view
dependence tree di�ers from trees constructed in the previous literature [10, 19] in
that it allows genus simpli�cations and it does not store any explicit constraints.
Details of how we construct the view dependence tree are given in Section 4.
In general for n vertices O(n2) vertex pairs are candidates for collapse. In our
current implementation we only consider O(n logn) candidate vertex pairs by
constructing an octree and considering only the nearest neighbors across adjacent
cells as candidates.

We have tried several distance metrics and have found that the combination
of the vertex coordinates with the normals yields the most acceptable results.
We discuss this multi-attribute metric further in Section 5. Almost all view-
dependent simpli�cation criteria make use of vertex normals. We discuss how
tests for backfacing regions, view-frustum, foveation, and local illumination can
be performed in a natural fashion by using our distance function. Our algorithm
that makes use of these criteria results in a visually better view-dependent sim-
pli�cation of a scene, than purely Euclidean-distance metrics. We discuss these
criteria further in Section 5.

4 View Dependence Tree Construction

A view dependence tree is a generalization of the merge tree introduced by Xia et
al in two important ways. First, a view dependence tree is capable of performing



genus-reducing simpli�cations whereas a merge tree can only perform genus-
preserving geometric simpli�cations. Second, a view dependence tree does not
store any explicit constraints. Instead implicit constraints are used to ensure
runtime consistency in the generated triangulations. We next describe these two
important di�erences.

4.1 Simplifying Genus

An edge collapse combines two vertices that are connected by an edge. A vertex-
pair collapse is a generalization of an edge collapse that combines any two ver-
tices. For a dataset with n vertices, O(n2) vertex pairs are possible. An algorithm
that selects from amongst these in a sorted order would take time O(n2 logn) {
too slow for most practical applications.

To generate the candidate vertex pairs more rapidly we construct an octree
over the vertices of the object. For each cell Ci of the octree we include the closest
pair of vertices (P1;P2) such that P1 lies in Ci, and P2 lies in Cj , where Ci and
Cj share a common subdividing plane �ij . This results in O(n logn) candidate
vertex pairs. We have found that this method works better than selecting vertex
pairs based on Delaunay tetrahedralizations or grid-based methods.

Once the vertex pairs have been selected, these together with all the edges
of the model are considered for possible collapses to build the view dependence
tree in the shortest-edge-�rst order. The distance metric that we have used to
compute the shortest edge is given by Equation 1 in Section 5. The resulting
view dependence tree is constructed much along the lines of a merge tree, except
for handling of constraints that is discussed next.

4.2 Implicit Constraints

In construction of a view dependence tree we keep track of the identi�cation
numbers of the vertices. If the model has n vertices at the highest level of detail
they are assigned vertex-ids 0; 1; : : : ; n� 1. Every time a vertex pair is collapsed
to generate a new vertex, the id of the new vertex is assigned to be one more
than the greatest vertex-id thus far. This process is continued till the entire view
dependence tree has been built. The order of the selection of vertex pairs to
collapse is made on the basis of the following criteria:

1. Shortest Distance First: We store all candidate vertex pairs in a priority
heap and select the vertex pair that has the shortest distance based on some
distance metric. For our current implementation we use a multi-attribute
distance metric de�ned by Equation 1.

2. Avoid Mesh Foldover: If the vertex pair collapse occurs along an edge (i.e.
is non-genus-reducing), and performing this collapse does not result in the
normals of any of the �nal triangles from being \ipped" with respect to
the pre-collapse triangles then we ag this collapse as valid, otherwise we go
back and test criteria (1) above with the next shortest edge.



For certain applications in which long and thin sliver triangles are not desirable
an additional test can be added to the above list that will ag a vertex pair
collapse as invalid if it results in creation of sliver triangles. All of the above
tests are done during the preprocessing stage; they are too costly to be performed
at runtime to determine view-dependent triangulations. The outcomes of these
tests are represented in the sequence in which the vertices are collapsed during
the preprocessing and are reected in the vertex ids.

4.3 Runtime Traversal

The list of vertices that are used for display at any frame i is de�ned as the set
of active vertices for that frame. Active vertices for display in frame i + 1 are
determined by collapsing or splitting from amongst the active vertices for frame
i based on the view-dependent criteria. The list of triangles that are displayed
in frame i comprise the set of active triangles for that frame. The determination
of active triangles for frame i + 1 proceeds in an interleaved fashion with the
determination of active vertices for frame i + 1 from frame i. Every time a
display vertex of frame i collapses or splits in frame i+ 1 we simply delete and
add appropriate triangles to the list of active triangles. For frame 0 we initialize
the lists of active vertices and active triangles to be the entire set of vertices and
triangles, respectively, in the model.

Before a vertex is split or collapsed at runtime we make a few simple checks
based on vertex ids to ensure the consistency of the generated triangulations and
avoid mesh foldovers. These can be simply stated as:

{ Vertex Split: A vertex p can be safely split at runtime if its vertex-id is
greater than the vertex-ids of all its neighbors.

{ Vertex Pair Collapse: A vertex pair (p; c) can be collapsed if the vertex-id
of the resulting vertex is less than the vertex-ids of the parents of the union
of the neighbors of vertices p and c.

The two above checks can be e�ciently implemented by storing two values with
every active vertex { (a) the maximum vertex-id of all its neighbors and (b) the
minimum vertex-id of the parents of all its neighbors. During each frame each
active vertex is visited once to evaluate its potential to split or collapse. If an
active vertex passes the view-dependent tests outlined in Section 5 these two
values stored locally at the vertex can be used to determine whether it will be
safe to split/collapse. These values are updated only when an active vertex or
one of its neighbors actually splits or collapses.

5 Unifying Geometry and Topology

One of the important issues in combining genus simpli�cation with geometry
simpli�cation is quantifying and prioritizing the changes in the genus of an object
relative to changes in its geometry. Consider for example the object shown in
Figure 3(a). Using simple Euclidean-distance-based metrics we �nd that the



distance between A and B is larger than that between B and C. The decision
to collapse vertices B and C will be topology-modifying whereas the collapse of
A and B will be a geometry simpli�cation.

Light

V

en

n

ln

v

l

Eye

(a) Geometry and topology simpli�cation (b) View-dependent simplifciaction

Fig. 3. View-dependent topology simpli�cations

Currently there are two techniques for deciding which collapse to perform
�rst: (a) Geometry First: Perform as many genus-preserving geometry simpli-
�cations as possible. When it is no longer possible to perform any geometry
simpli�cations any further for a given error bound, perform genus-reducing sim-
pli�cation. This is the approach taken in [18, 5]; (b) Equal Preference: Treat
genus-preserving and genus-reducing simpli�cations on an equal basis and make
decisions based only by the spatial distance in R3. This is the approach taken
in [6, 13].

We would like to be able to prioritize genus-preserving and genus-reducing
simpli�cations between the two above extremes. We observe that genus-reducing
simpli�cations are almost always characterized by a large di�erence in the nor-
mals of the surfaces that are merged. This suggests the use of the following
distance function between two points P0 = (v0;n0) and P1 = (v1;n1):

dist(P0;P1) =
kv0 � v1k2

(1 + n0:n1) + �
(1)

where vi = (xi; yi; zi) and ni = (nix ; niy ; niz ) denote the position and normal
respectively of point Pi and � is a user-speci�ed preference factor that prioritizes
the genus-preserving and genus-reducing simpli�cations. As an example, when
� = 0:1, genus-preserving geometry simpli�cations (that involve collapsing two
similarly oriented vertices) would be preferred over distances 21 times greater
than genus-reducing simpli�cation (that involve collapsing two oppositely ori-
ented vertices).

As shown in Figure 3(b) most of the view-dependent simpli�cations can be
cast in terms of computing the distance between two points with coordinate
positions and normals. Let us assume that the eye is located at position e and
has associated with it a vector ne that is the oppositely oriented with respect
to the look-at vector.

{ Triangle Position and Orientation: This involves computing the distance
between (v;nv) and (e;ne). If the triangle is backfacing, this will yield a



large value assisting in backface simpli�cation. If the triangle is near the
center of the screen and facing the viewer, Equation 1 yields a small value
of the distance assisting in implementing foveation, i.e. high detail in the
direction the eye is looking at. Foveation can be used to mimic the high
visual acuity at the center of the human retina [1].

{ Lighting-based Adaptive Simpli�cation: If the triangle under consideration is
front facing we use the minimum of the distance between (v;nv) and (l;nl)
and the distance between (v;nv) and (e;ne) to compute the requisite level
of detail for illumination.

6 Results and Discussion

We have implemented our approach on a SGI Onyx2 with In�nite Reality graph-
ics and tested it on several models. The times for preprocessing appear in Table 1.
We would like to point out that our code has not yet been particularly optimized.
The results of our approach for the above models appear in the Figures 1{ 6.

Dataset Vertices Triangles Preprocessing Time

View-Dependent Tree Octree

Bunny 35947 69451 10.3 s 1.4 s

Pipes 107754 206352 58.1 s 87.5 s

AMR 173042 339444 1 m 55 s 5 m 10 s

Torp 464720 736516 12 m 46 s 19 m 12 s

Table 1. Preprocessing times for various models

Figure 1 shows the results of lighting-dependent genus simpli�cation. Figure 4
shows the results of view-frustum-guided simpli�cations. The yellow rectangle
in the center of each image shows the outline of the screen-space projection of
the view frustum. As can be seen the detail outside the view frustum has been
considerably simpli�ed in Figure 4(b). Figure 5 shows the original and two pro-
gressively lower levels of detail of the Auxilliary Machine Room dataset from
a notional submarine dataset. We would like to point out that on an average
traversal of the view dependence tree takes up only 8 � 10% of the time to
draw each frame; rest of the time is being taken up in drawing the triangles
that have been determined. Figure 6 shows view-dependent simpli�cations for
a procedurally generated model of pipes. Most of the simpli�cation in this case
is because of genus-reducing simpli�cations. This might be an appropriate place
to compare our work with that of Luebke and Erikson's [13] as two instances of
view-dependent topology simpli�cation work. In Luebke and Erikson's [13] ap-
proach �ne control over the simpli�cation of the topology is not easy to achieve.
For example, a hole that exists on the border of three or more cells may become
larger as result of the collapse of the vertices of the adjacent cells. Since our
primitive operation of a vertex-pair collapse is simpler than that of collapsing



(a) Original model: 86.5K triangles (b) Simpli�ed model: 21K triangles

Fig. 4. View-frustum-guided genus simpli�cation

all vertices in an octree cell, we believe that our method will be able to provide
a �ner level of control for more realistic rendering. However, identi�cation of
candidate vertex pairs takes more time than simply constructing an octree over
input vertices.

(a) Original 340K tris (b) 140K tris (c) 49K tris

Fig. 5. Three LODs from the view dependence tree for Auxilliary Machine Room

We have observed several advantages in making the split and collapse con-
straints implicit and storing the values to be checked locally:

1. Local Accesses: Explicit constraints the way they are stored in previous work
[10, 19] result in several non-local accesses resulting in unnecessary paging
for large datasets or on computers with less memory. Implicit constraints
overcome these drawbacks and suggest possibilities for developing external
memory algorithms for view-dependent visualization of datasets that do not
even �t into the main memory of the visualization workstation.

2. Change-Sensitive Processing: Explicit constraints need to visit every neigh-
bor of an active vertex to determine whether or not it can split/collapse.
This might result in visiting of a node several times, once from each of its
neighbors, often unnecessarily. With implicit constraints, the way we have
de�ned them, the algorithm needs to visit a node of the view dependence
tree only when its associated active vertex actually splits or collapses. Thus
the processing time is now proportional to the actual number of changes as
opposed to potential changes.



3. Memory Savings: Implicit constraints require only two integers to be stored
per node of the view dependence tree as opposed to a pointer to every vertex
in the neighborhood. This results in a modest savings of about 30% in the
storing of the tree.

7 Conclusions and Future Work

We have presented the concept of view-dependence trees to perform genus-
reducing simpli�cations for large polygonal datasets. These trees are more com-
pact, faster to navigate, and easier to build than prior work. Further, we have also
introduced a distance metric that can be used for prioritizing genus-reducing sim-
pli�cations with respect to geometry-reducing simpli�cations in a view-dependent
manner. This metric is particularly useful in that it is able to unify the distance
function being used in genus-preserving versus genus-reducing simpli�cations
with the other criteria in de�ning view-dependent simpli�cations.

We see scope for future work in designing external memory algorithms for
visualization of datasets whose sizes exceed that of the main memory, by taking
advantage of the localized and compact structure of view dependence trees.
Also, there is scope for better de�ning the normal and coordinate values of a
new vertex as a result of vertex pair collapse by using methods similar to those
of Garland and Heckbert [6]; we currently use the average normal and average
coordinate values of the two vertices.

(a) Original model: 25.7K triangles (b) Simpli�ed model: 7.2K triangles

Fig. 6. View-dependent simpli�cation of the procedural pipe model

Acknowledgements

This work has been supported in part by the NSF grants: CCR-9502239, DMI-
9800690, ACR-9812572 and a DURIP instrumentation award N00014970362.
Jihad El-Sana has been supported in part by the Fulbright/Arab-Israeli Schol-
arship and the Catacosinos Fellowship for Excellence in Computer Science. The
�gures 1, 4, and 5 show mechanical parts from the dataset of a notional subma-
rine provided to us by the Electric Boat Division of General Dynamics.



References

1. E.-C. Chang and C. Yap. A wavelet approach to foveating images. In Proceedings of

the 13th International Annual Symposium on Computational Geometry (SCG-97),

pages 397{399, New York, June4{6 1997. ACM Press.

2. P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simpli�cation

algorithms. Computers & Graphics, 22(1):37{54, February 1998. ISSN 0097-8493.

3. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P. Brooks,

Jr., and W. V. Wright. Simpli�cation envelopes. In Proceedings of SIGGRAPH

'96, pages 119 { 128. ACM SIGGRAPH, ACM Press, 1996.

4. L. De Floriani, P. Magillo, and E. Puppo. E�cient implementation of multi-

triangulation. In Proceedings Visualization '98, pages 43{50, 1998.

5. J. El-Sana and A. Varshney. Topology simpli�cation for polygonal virtual envi-

ronments. IEEE Transactions on Visualization and Computer Graphics, 4, No.

2:133{144, 1998.

6. M. Garland and P. Heckbert. Surface simpli�cation using quadric error metrics.

In Proceedings of SIGGRAPH '97 (Los Angeles, CA), pages 209 { 216. ACM SIG-

GRAPH, ACM Press, August 1997.

7. A. Gueziec, F. Lazarus, G. Taubin, and W. Horn. Surface partitions for progressive

transmission and display, and dynamic simpli�cation of polygonal surfaces. In

Proceedings VRML 98, Monterey, California, February 16{19, pages 25{32, 1998.

8. T. He, L. Hong, A. Varshney, and S. Wang. Controlled topology simpli�cation.

IEEE Transactions on Visualization and Computer Graphics, 2(2):171{184, 1996.

9. H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH '96 (New Orleans,

LA, August 4{9, 1996), pages 99 { 108. ACM SIGGRAPH, ACM Press, 1996.

10. H. Hoppe. View-dependent re�nement of progressive meshes. In Proceedings of

SIGGRAPH '97, pages 189 { 197. ACM SIGGRAPH, ACM Press, 1997.

11. R. Klein, A. Schilling, and W. Stra�er. Illumination dependent re�nement of mul-

tiresolution meshes. In Computer Graphics International, June 1998.

12. P. Lindstrom and G. Turk. Fast and memory e�cient polygonal simpli�cation. In

Proceedings Visualization '98, pages 279{286, 1998.

13. D. Luebke and C. Erikson. View-dependent simpli�cation of arbitrary polygonal

environments. In Proceedings of SIGGRAPH '97 (Los Angeles, CA), pages 198 {

208. ACM SIGGRAPH, ACM Press, August 1997.

14. D. Marshall, A. Campbell, and D. Fussell. Model simpli�cation using directional

clustering. In Visual Proceedings, page 174. ACM/SIGGRAPH Press, 1997.

15. J. Popovi�c and H. Hoppe. Progressive simplicial complexes. In Proceedings of

SIGGRAPH '97, pages 217 { 224. ACM SIGGRAPH, ACM Press, August 1997.

16. J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering. In

Modeling in Computer Graphics, pages 455{465. Springer-Verlag, June{July 1993.

17. A. Schilling and R. Klein. Texture-dependent re�nement for multiresolution mod-

els. In Computer Graphics International, June 1998.

18. W. Schroeder. A topology modifying progressive decimation algorithm. In IEEE

Visualization '97 Proceedings, pages 205 { 212. ACM/SIGGRAPH Press, 1997.

19. J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based ren-

dering for polygonal models. IEEE Transactions on Visualization and Computer

Graphics, pages 171 { 183, June 1997.


