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Mesh Saliency and Human Eye Fixations
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Mesh saliency has been proposed as a computational model of perceptual importance for meshes, and it has been used in graphics

for abstraction, simplification, segmentation, illumination, rendering, and illustration. Even though this technique is inspired

by models of low-level human vision, it has not yet been validated with respect to human performance. Here, we present a user

study that compares the previous mesh saliency approaches with human eye movements. To quantify the correlation between

mesh saliency and fixation locations for 3D rendered images, we introduce the normalized chance-adjusted saliency by improving

the previous chance-adjusted saliency measure. Our results show that the current computational model of mesh saliency can

model human eye movements significantly better than a purely random model or a curvature-based model.
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1. INTRODUCTION
With the increase in size, number, and complexity of 3D graphics datasets, it will become increasingly

important to integrate principles of saliency with geometric processing of meshes. Lee et al. [2005] have

proposed a model of mesh saliency as a measure of regional importance. Their method for computing

mesh saliency uses a center-surround mechanism that is inspired by the human visual system. Similar

mechanisms have been widely used in models of 2D image saliency [Itti et al. 1998; Koch and Ullman

1985]. Previous research in vision has assumed that visual search simply relies on 2D aspects of an

image. However, Enns and Rensink [1990] have shown that 3D information can play an important role

in making salient objects pop-out in a cluttered image. As far as we know, there has been no work

comparing models of 3D saliency to eye movements, although many experiments have measured eye
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movements as participants examine 3D objects [Howlett and O’Sullivan 2005; Kim and Varshney 2006;

Cole et al. 2006; Lu et al. 2006].

In this article, we present a user study that compares the previous mesh saliency approaches with

human eye fixations. Having a validated model of mesh saliency will be extremely useful in several

contexts. For example, it could be helpful for identifying the role of 3D information in visual search

task as Enns and Rensink [1990] have explored in their work. Our user study and data analysis can

be also helpful for designing a better visual saliency model, which is closer to human eye movements.

The main contributions of this article are the following.

(1) We compare models of 3D mesh saliency to eye movements through an eye-tracking–based user

study.

(2) We introduce the normalized chance-adjusted saliency to quantify the correlation between mesh

saliency and fixations for 3D rendered images. This is more appropriate for 3D rendered images

than the previous chance-adjusted saliency measure.

(3) We show that the current computational model of mesh saliency models human eye movements

significantly better than what can be expected by chance or due to curvature alone.

The rest of the article is organized as follows. A review of related work is provided in Section 2. We

present our experimental design in Section 3. In Section 4, we introduce the normalized chance-adjusted

saliency and present the results. Section 5 discusses limitations of our approach and future work, and

Section 6 concludes this article.

2. RELATED WORK
When people examine an image, their eyes tend to fixate on certain points, then jump quickly, with

saccades, to new points. Although viewers may attend to portions of an image on which they do not

fixate, a good deal of evidence suggests that viewers tend to move their eyes to parts of an image that

have attracted their attention (see Palmer [1999], Chapter 11, for a brief review). For this reason, many

models of visual attention and saliency have been evaluated by their ability to predict eye movements.

It is not realistic to expect any model to perfectly predict eye movements because of the variability

between human participants and even for the same participant at different times. However, recent

research demonstrates that there is a significant correlation between existing models and human eye

fixations. For example, Privitera and Stark [2000] compare points of fixation by participants to clusters

formed by the most salient regions predicted by a large number of simple models of 2D image saliency.

They compare this with the degree to which fixations agree between participants. Of the three classes of

images they have looked at, they have found that for one class of images (paintings), algorithms based

on simple operators including symmetry, center-surround, and discrete wavelet transform cohere very

well with human data and approach the coherence among fixations across participants. Parkhurst

et al. [2002] measure the saliency at points of fixation and show that the model of 2D image saliency

of Itti et al. [1998] is more predictive of fixation points than a random model. Previous research also

makes the useful methodological points that bottom-up models can better predict the first fixations,

which are less influenced by top-down knowledge [Parkhurst et al. 2002], and that the exact order of

fixations is highly variable and difficult to predict [Privitera and Stark 2000].

There have been many experiments measuring eye movements as participants examine 3D ob-

jects [Howlett and O’Sullivan 2005; Kim and Varshney 2006; Cole et al. 2006; Lu et al. 2006]. For

instance, Cole et al. [2006] emphasize a region of interest by rendering it in a different style from other

regions. They validate the effects of their rendering styles by an eye-tracking experiment. Howlett and

O’Sullivan [2005] capture saliency values of 3D models by recording where participants look in 3D

rendered images. They use this saliency information to simplify 3D models.
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The computational model of mesh saliency [2005] uses a center-surround mechanism that is inspired

by the human visual system. There have been other approaches to identifying salient regions on a mesh.

Watanabe and Belyaev [2001] have identified salient regions on meshes by estimating curvature values

and guided the simplification process to preserve them better. Gal and Cohen-Or [2006] have constructed

salient geometric features by clustering a set of local descriptors that have a high curvature and a high

variance of curvature values for partial shape matching of meshes. Shilane and Funkhouser [2007] have

presented a method to select distinctive regions of a 3D model that are consistent with the same type of

objects and are different from other types of objects. They compute how distinctive the regions are with

respect to multiple classes of objects in a database, and use this information for local shape matching,

simplification, and icon generation. Feixas et al. [2008] have defined an information channel between the

viewpoints and an object. They use this channel to compute the viewpoint mutual information, which

is further used for viewpoint selection and mesh saliency computation. While the notion of saliency

in Lee et al. [2005] and Feixas et al. [2008] is based on perceptual and visual importance, the notion

of saliency in Gal and Cohen-Or [2006] and Shilane and Funkhouser [2007] is specific to the tasks of

shape matching, shape similarity, and shape uniqueness.

In Kim et al. [2008], we describe a user study examining the correlation between human eye fixation

and a mesh saliency model by varying 3D models, view angles, and orientation (right-side-up vs. upside-

down views). This study has shown that there may be certain view-dependent effects, such as view

angles and orientation, on human eye movements. Although studying view-dependence of mesh saliency

is an important area, a view-independent model of mesh saliency is desirable for several applications.

For instance, offline mesh simplification, mesh segmentation, view selection, lighting design, as well

as allocation of computational resources in the rendering pipeline all benefit from a view-independent

model of mesh saliency. For such applications, it is crucial to establish the correlation between human

eye movements and view-independent models of mesh saliency. In this article, we compare a model

of mesh saliency with a purely random model and a curvature-based model. There are a number of

excellent approaches that generalize differential-geometry–based definition of curvatures to discrete

meshes [Goldfeather and Interrante 2004; Meyer et al. 2003; Taubin 1995; Yang et al. 2006]; we use

Taubin’s method [Taubin 1995] for computing mean curvature in this article.

3. EXPERIMENTAL DESIGN
To gather objective evidence of the correlation between saliency models and human eye fixations, we

have carried out an eye-tracking–based user study and have quantified the similarity between the

models and human eye fixations.

3.1 Hypothesis
Our hypothesis is that the computational model of mesh saliency has better correlation with human

eye fixations than a random model and a curvature-based model for the first few seconds after stimulus

onset.

3.2 Physical Setup
We used the ISCAN ETL-500 monocular eye-tracker, which can record eye movements continuously

at 60Hz. The study was carried out on a 17-inch LCD display with a resolution of 1280×1024, placed

at a distance of 24 inches, subtending a visual angle of approximately 31.4 degrees horizontally. The

participants had a chin rest to minimize head movements and to maintain calibration. Our experimental

setup is shown in Figure 1.
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Fig. 1. Our experimental setup for the user study with the ISCAN ETL-500 eye-tracker.

3.3 Eye-Tracker Calibration and Participant Selection
The standard calibration of ETL-500 eye-tracker was performed with four corner points and one center

point. However, this was not sufficiently accurate for our purposes due to nonlinearities in the eye-

tracker–calibrated screen space. Therefore, we used the second calibration step, which involves a more

densely-sampled calibration phase similar to [Parkhurst et al. 2002], with 13 additional points. For

this, we asked the participants to successively look at and click on 13 points presented on the screen.

This gave us an accurate correspondence between the eye-tracker space and the monitor space for that

participant. After this, we tested the accuracy of the calibration by asking the participants to look at

16 randomly selected points on the screen. Of the 25 participants participating for pay, 18 were able to

successfully calibrate to within an accuracy of 30 pixels (about .75 degree) for each of the 16 points. We

proceeded with our study using these 18 participants with normal or corrected-to-normal vision. Our

participants were not familiar with the goals of this study. The participants were told to freely view the

images with no assigned goal.

3.4 Stimuli
We have illustrated five natural scanned models used for our study in Figure 3. Each user saw these

five images, and we randomized the order of images to counterbalance overall effects.

The user study had seven trials (images). The data captured for the first two images was discarded,

as they were intended to give the participants a sense of the duration of viewing. Each trial started

with the participants seeing a blank screen with a cross at the center of the screen. The participant

was asked to look at the cross before clicking the mouse to bring up the next image. This ensured that

each trial started with the participant’s eyes fixated at the center of the image. Each image was shown

for 5 seconds.

4. DATA ANALYSIS

4.1 Fixation Points
We divide the raw data points from the eye-tracker into two groups—fixation points, which correspond

to a user looking at a single location and saccade points, which correspond to fast eye movements from

one fixation point to the next. We followed an approach similar to the one suggested by Stampe [1993]

to identify fixations and saccades. Figure 2 shows a two-step process to extract fixation points from the

raw data points. We considered data points that had a velocity greater than 15◦/sec as saccade points

and removed them. We then averaged consecutive eye locations that were within 15 pixels and classified

them as a single fixation point. Some researchers have advocated discarding short (exploratory) fixations
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Fig. 2. Image (a) shows all the raw data points from the eye-tracking device. Image (b) shows the points remaining after removing

saccade points. Image (c) shows final fixation points after removing brief fixations and combining consecutive points if they are

spatially close.

Fig. 3. The Dinosaur, Isis, Male, Armadillo, and Igea models used in our study.

in measuring the attention of the viewer [Henderson and Hollingworth 1998] to discriminate between

distraction and attention. We ignored brief fixations below the threshold of 133ms. This corresponds to

eight consecutive points in the ISCAN ETL-500 eye-tracking device.

4.2 Normalized Chance-Adjusted Saliency
4.2.1 Chance-Adjusted Saliency. Parkhurst et al. [2002] introduced the notion of chance-adjusted

saliency to quantify the correlation between stimulus saliency and fixation locations for an image.

They compute the chance-adjusted saliency as follows. Consider a collection of images Ii, 1 ≤ i ≤ N . A

participant is asked to look at each image in turn. This generates a set of fixation points fi j , 1 ≤ j ≤ Fi
for each image Ii, where Fi is the number of fixation points. Let us consider the k-th fixation points

fik across all the images Ii. Let sik be the saliency value at the k-th fixation point fik in the image Ii.

They compute the mean fixation saliency for the k-th fixation points as s̄ f
k = 1

N

∑N
i=1sik. To compute the

mean random saliency, they first generate Fi random points ri j over each image Ii, where 1 ≤ i ≤ N
and 1 ≤ j ≤ Fi. Then, the mean random saliency s̄r

k is computed as the average saliency over the k-th

random point rik across all the images Ii, 1 ≤ i ≤ N . Finally, they define the chance-adjusted saliency

(sc
k) for the k-th fixation points as the difference between the mean fixation saliency (s̄ f

k ) and the mean

random saliency (s̄r
k): sc

k = s̄ f
k − s̄r

k .
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Fig. 4. The left image shows the random points in chance-adjusted saliency computation. These points are scattered all over the

image. The right image shows the points that we consider in normalized chance-adjusted saliency computation. We only include

the foreground pixels that are covered by projected triangles of the mesh. For each fixation point represented as a cross, we also

take into account the eye-tracker accuracy of 20 pixels, which is represented as a circle.

4.2.2 Normalized Chance-Adjusted Saliency. We observed three shortcomings in using the previ-

ously defined chance-adjusted saliency to quantify the correlation between human eye fixations and

the model of mesh saliency.

(1) The chance-adjusted saliency was developed for images in which there is a well-defined saliency

at every pixel. We are trying to measure the correlation between a mesh saliency approach and

the fixation points on the mesh but not the fixations on the entire rendered image. Therefore, we

should only consider the foreground pixels that are covered by projected triangles of the mesh. This

ensures fairer comparisons between a random model and the saliency model for 3D rendered images

because excluding the background pixels would prevent lowering the average saliency values in a

random model. Figure 4 shows the points considered in chance-adjusted saliency and normalized

chance-adjusted saliency.

(2) The chance-adjusted saliency does not consider eye-tracker accuracy. Since the fixation point ac-

quired from the eye-tracker can differ from the actual pixel that a user looked at, we have to consider

the eye-tracker accuracy as shown in Figure 4(b) when we assign the mesh saliency value to the

fixation point.

(3) The chance-adjusted saliency is defined over a collection of images. This restricts the analysis of

the effect of different models. We need a method that normalizes saliency on a per-image basis.

To address these problems, we define normalized chance-adjusted saliency in this section. First, we

consider the eye-tracker accuracy ε, which depends on both the accuracy of the eye-tracking device and

the calibration steps. We have used ε = 20 pixels, subtending a visual angle of approximately 0.5 degree

horizontally. Note that a fixation point and a pixel share the same coordinate system. Let us consider

the pixel pij on which a fixation point fi j falls. Instead of taking the saliency value on a fixation point

fi j , we compute the error-adjusted saliency sε
i j as the maximum of the saliency values within a radius of

ε = 20 pixels around pij in the image Ii, 1 ≤ i ≤ N : sε
i j = maxk∈N ε

j
sik, where N ε

j = {k|dist(pij , k) ≤ ε}.
For each rendered image Ii, we compute the mean (s̄ε

i ) of the saliency sε
i j over all the pixels j that

are covered by the rendered mesh. We now define our normalized chance-adjusted saliency for the

fixation point fik, as sn
ik = sε

ik/s̄ε
i . Here we use the ratio instead of the difference to enable it to be used

across different models and different view points; otherwise, we will need to normalize the 3D saliency

values for each rendered image for fair comparisons with different models and different views of a
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Fig. 5. The saliency models and human eye fixations. The first and second rows show the mean curvature and mesh saliency,

respectively, on the models shown in Figure 3. Here warm colors indicate high saliency regions while cool colors indicate low

saliency regions. The third row shows the human eye fixations from our eye-tracking–based user study with hot spot maps.

model. We note that we could have computed the mean of the error-adjusted saliency differently for

each participant, as in chance-adjusted saliency: Generate random points on the pixels covered by the

rendered mesh and compute the average saliency values on these random points. However, this causes

high variance in the means among different participants, resulting in a high variance in normalized

chance-adjusted saliency values even for the same image. To avoid this high variance, we have decided

to use s̄ε
i in computing normalized chance-adjusted saliency for all fixation points on the image Ii.

4.3 Results
Figure 5 shows the fixation points and computed mean curvature and mesh saliency for each model.

Fixation points are illustrated with hot spot maps, where warm colors show highly fixated regions. We

observe that most fixations are close to warm-colored salient regions computed by the model of mesh

saliency.
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Fig. 6. Average chance-adjusted saliency values and 95% confidence interval using curvature and mesh saliency across all

participants for each model. For all the cases, the values are higher than 0, which is the value that can be expected by chance.

They exhibit high variances in computed chance-adjusted saliency values for all cases.

We first report the results of chance-adjusted saliency values and identify some shortcomings along

the lines of what we have discussed in Section 4.2. We then present the results using our new normalized

chance-adjusted saliency values. Figure 6 shows the average of the chance-adjusted saliency values

across all participants. As in Manna et al. [1998] and Oliva et al. [2003], the study is restricted to the first

seven fixations. In general, we observe that the curvature-based model and mesh saliency model have

a higher correlation with human eye fixations than a random model as the chance-adjusted saliency

values are higher than 0, the value that can be expected purely by chance. As noted in Section 4.2, one

of the problems in chance-adjusted saliency is that it can be overvalued if random points on background

pixels are included in the process of computing the mean random saliency. This overvaluation causes

high variances in computed chance-adjusted saliency for all k-th fixation points (1 ≤ k ≤ 7) in Figure 6.

We have performed a two-way ANOVA on the chance-adjusted saliency values with two variables: k-th

fixation points (1 ≤ k ≤ 7) and different saliency models. For k-th fixation points, there is no significant

difference (F (6, 238) = 1.066, p = 0.3831, η2
p = 0.026). However, for saliency models (curvature model

and mesh saliency model), we observed significant differences (F (1, 238) = 34.70, p < 0.001, η2
p =

0.127). There was no interaction between two variables (F (6, 238) = 0.494, p = 0.813, η2
p = 0.012).

We further analyze the results of our normalized chance-adjusted saliency values. Figure 7 shows the

average normalized chance-adjusted saliency values computed by the curvature model and the mesh

saliency model across all participants. In general, we have observed that both computational models

of saliency have higher correlation with human eye fixations than a random model as the normalized

chance-adjusted saliency values are higher than 1, the value that can be expected purely by chance. A

normalized chance-adjusted saliency score for a computational model of mesh saliency indicates how

much better that model is compared to what we can expect purely by chance. For instance, a normalized

chance-adjusted saliency score of 2 means that the model of saliency is twice as good as what one can

expect purely by chance.

We observe lower variances in normalized chance-adjusted saliency than chance-adjusted saliency

cases. To observe the effects of saliency models and 3D models, we carried out a two-way ANOVA on
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Fig. 7. Average normalized chance-adjusted saliency values and 95% confidence interval using curvature and mesh saliency

across all participants for each model. For all the cases, the values are higher than 1, which is the value that can be expected

by chance. A normalized chance-adjusted saliency score for a computational model of mesh saliency indicates how much better

that model is compared to what we can expect purely by chance. For instance, a normalized chance-adjusted saliency score of 2

means that the model of saliency is twice as good as what one can expect purely by chance.

Table I. The Pairwise t-tests (two-tailed)

between Curvature-Based and Mesh

Saliency Models

Model t-Value p-Value

Armadillo −2.643 0.017

Dinosaur −4.122 < 0.001

Igea −4.546 < 0.001

Isis −3.786 0.001

Male −7.489 < 0.001

the normalized chance-adjusted saliency values with two variables: different saliency models and dif-

ferent 3D models. We have found that there is a main effect of saliency models (F (1, 170) = 37.75, p <

0.001, η2
p = 0.182). This indicates that the mesh saliency model exhibits higher correlation with hu-

man eye fixations than the curvature-based model. A significant main effect was also obtained for 3D

models (F (4, 170) = 19.86, p < 0.001, η2
p = 0.319). The result indicates that there are certain mod-

els that correlate better with human eye fixations than others. The possible cause is the difference in

numbers of highly salient regions inherent in models. For instance, the Armadillo model has a large

number of highly salient regions distributed on the model while the Male model has a small number

of highly salient regions, as one can observe in Figure 5. We have also found there is a strong inter-

action between two variables (F (4, 170) = 5.093, p = 0.01, η2
p = 0.107), meaning that the effects of

saliency models depend on 3D models under consideration. Next, we perform a pairwise t-test on the

normalized chance-adjusted saliency values between two saliency models (curvature-based and mesh

saliency). Table I shows the result for each of the models. We found a significant difference between

two saliency models in the normalized chance-adjusted saliency values for each of the 3D models. Even
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Fig. 8. The computed mesh saliency at scales of 2ε, 3ε, 4ε, 5ε, and 6ε. Here, ε is 0.3% of the length of the diagonal of the bounding

box of the model.

with the Bonferroni correction, we found a borderline statistical significance for the Armadillo model

and statistically significant results for all other models.

The results validate that the mesh saliency model has significantly higher correlation with human

eye fixations than a random model and a curvature-based model.

5. DISCUSSION AND FUTURE WORK
We have used a few devices to reduce the effect of semantics in this article. (i) We did not give any

tasks to the users when viewing images. (ii) We limited the time of a stimulus to the first 5 seconds.

Others [Parkhurst et al. 2002; Santella and DeCarlo 2004] have also used similar durations. However,

5 seconds could be considered too long since semantic interpretation starts increasing right after the

stimulus onset. We plan to further study the effect of semantics as we vary duration. Another thing

we can do to reduce the effect of semantics is to experiment with objects that do not carry semantic

information for most users (such as molecular models) or close-up views of scanned models.

Mesh saliency is sensitive to scale. Identifying the appropriate scales and their relative importance

is another valuable area for future research. The previous mesh saliency approaches use five different

scales (2ε, 3ε, 4ε, 5ε, and 6ε), where ε is 0.3% of the length of the diagonal of the bounding box of

the model. Figure 8 shows the computed mesh saliency at these scales for the Dinosaur model. To

understand the effect of scales on the normalized chance-adjusted saliency, we computed the average

normalized chance-adjusted saliency values at five scales and at the nonlinear normalized sum across

all participants for each model, as shown in Figure 9. We carried out two-way ANOVAs on the normalized

chance-adjusted saliency values with two variables: different saliency models (mesh saliency model at

a scale σ and curvature-based model) and different 3D models by varying σ from 2ε to 6ε. Table II

shows that there were always significant differences found between mesh saliency model at each scale

σ and curvature-based model when we varied σ from 2ε to 6ε. This may be because the center-surround

operator plays an important role in modeling human eye fixations in the computational model of mesh

saliency that the curvature-based model is lacking. It will be interesting to further study the effect of

scales on the correlation between mesh saliency model and human eye movements in the future.

We currently compute mesh saliency in a view-independent way. However, there is some evidence

in our study [Kim et al. 2008] that the correlation between eye fixations and mesh saliency is view

dependent. We will further study the implications of view-dependent variables, such as illumination

and viewing angles in the future. In this context, it will be interesting to compare and contrast the

mesh saliency model to 2D image saliency models.

A natural question that arises when evaluating mesh saliency and human eye fixations is how well

mesh saliency performs as compared to the image saliency approaches. To address this, we decided

to examine the correlations of the mesh saliency and image saliency approaches with the human eye

movements. We compute image saliency using Itti et al’s method [1998]. Figure 10(b) shows the image

saliency for the Armadillo model.
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Fig. 9. Average normalized chance-adjusted saliency values and 95% confidence interval at five different scales and at the

nonlinear normalized sum across all participants for each model.

Table II. The ANOVA Tests

Scales F -Value p-Value

2ε − 4ε 12.306 < 0.001

3ε − 6ε 21.247 < 0.001

4ε − 8ε 34.448 < 0.001

5ε − 10ε 42.686 < 0.001

6ε − 12ε 42.680 < 0.001

Fig. 10. Image (a) shows the computed mesh saliency by Lee et al.’s method, while Image (b) shows the computed image saliency

by Itti et al.’s method. Image (c) only shows the image saliency values on the foreground pixels covered by the rendered Armadillo.

Following the discussion in Section 4.2, we consider image saliency values and fixation points only

on foreground pixels, as shown in Figure 10(c). Figure 11 shows the results of the normalized chance-

adjusted saliency values for mesh saliency and image saliency when we only consider the saliency values

and the fixation points on foreground pixels. The results of normalized chance-adjusted saliency appear

in Figure 11. Itti et al.’s model of image saliency was designed for human viewing of natural scenes.

We wondered whether it would work well for viewing of isolated models. Our study indicates that in

fact it is not. The reason is that Itti et al.’s approach assigns a high saliency value to the pixels at the

mesh boundary due to a significant contrast with the background, but human observers do not attend
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Fig. 11. Average normalized chance-adjusted saliency values and 95% confidence interval using mesh saliency and image

saliency across all participants for each model. Due to the boundary effects and unfair removal of background pixels as shown

in Figure 10, the model of image saliency makes poor performance. This suggests that a new measure should be introduced in

the future for fair comparison between mesh saliency and image saliency.

to this particular case of contrast. It will be useful to design a more comprehensive study considering

the broad aspects of image saliency and mesh saliency to gain a better understanding of how the human

visual system directs attention based on 2D and 3D attributes of the scene.

6. CONCLUSIONS
In this article, we have taken the first steps towards validating an existing model of mesh saliency

through an eye-tracking–based user study. We have introduced the notion of normalized chance-adjusted

saliency, which is a robust measure of success of a mesh saliency model. We have observed significant

correlations between the model of mesh saliency and human eye fixations. We believe that our carefully

designed user study can be useful for designing a better visual saliency model, which is closer to human

eye movements. This will also enable us to build further saliency-based systems for tasks, such as visual

enhancement.
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