
Second International Conference on Curves and Surfaces

Chamonix-Mont-Blanc, France, June 10-16, 1993

Evaluating Surface Intersections

in Lower Dimensions

Dinesh Manocha, Amitabh Varshney, and Hans Weber

Abstract. We highlight a new algorithm for evaluating the sur-
face intersection curve using a matrix formulation. The projection
of the intersection curve is represented as the singular set of a bi-
variate matrix polynomial. The resulting algorithm for evaluating
the intersection curve is based on matrix computations like eigen-
decomposition and singular value decomposition. Furthermore, at
each stage of the algorithm we make use of inverse power iterations
to march back to the curve. We also describe the performance of the
resulting robust and accurate approach.

x1. Introduction

Evaluating the intersection of parametric and algebraic surfaces is a recurring
operation in geometric and solid modeling. Its applications include boundary
evaluations, simulation of manufacturing processes, contouring of scattered
data, and �nite element mesh generations. Surface intersections have been
extensively studied in the literature, and the main approaches may be clas-
si�ed as analytic, lattice, marching, or subdivision methods. The analytic
approach is considered slow in practice due to the algebraic complexity of the

intersection curve, and approaches based on subdivision, lattice, and march-
ing methods may not be robust. Furthermore, their accuracy varies with the
surface degree, the local surface geometry at the intersection curve, and the
angles at which the surfaces intersect. As a result, it is believed that any sur-

face intersection algorithm has to balance three conicting goals of accuracy,
robustness, and e�ciency [7,13].

Earlier approaches to surface intersection used the subdivision properties

of NURBS surfaces based on a \divide and conquer" paradigm [13]. However,
this approach may be slow and is not guaranteed to be robust in terms of

�nding all components of the intersection curve. In the last decade \march-

ing methods" have received a lot of attention for the evaluation of intersection
curves [1,2,3,9,13]. Tracing techniques involve the computation of a starting

2 Dinesh Manocha, Amitabh Varshney, and Hans Weber

point on each component and locating all the singular points. Given the start-

ing points, these algorithms use marching methods to trace the intersection
curve and in the process use robust methods to determine all the branches

at singular points. In particular, the tracing algorithms use the algebraic for-

mulation of the intersection problem (e.g. three algebraic equations in four

unknowns for NURBS surfaces) and �nd successive points on the curve with
�rst order approximations and re�nement using Newton-Raphson's method.

However, it is not clear what a good step size should be at each stage. A small

step size makes the overall approach slow, and a large step size may result in

convergence problems. It is possible to compute a higher order local approx-

imation at each point on the curve [1], however this involves a great deal of
symbolic computation and may not be e�cient for high degree intersection

curves. Therefore, implementing a robust tracer based on Newton-Raphson's

method can be fairly non-trivial and in many cases may not work at all [5].

Other approaches consist of approximating the intersection curve using lattice
methods or geometric Hermite approximation [15].

It is possible to represent the intersection curve as an algebraic set in the
higher dimensional space spanned by the parameters of two surfaces. Given
such a formulation, techniques based on elimination theory can be used to
project the intersection curve to a plane curve [10,11,14]. However, the de-
gree of the resulting curve is fairly high (e.g. 108 for the intersection of two
bicubic patches) and computation and evaluation based on such a representa-
tion can involve e�ciency and accuracy problems [8]. However, it is possible
to represent the plane curve as a matrix determinant and use matrix com-
putations for evaluation. In this paper, we present a robust algorithm for
tracing curves based on a matrix representation. In particular, we represent
the intersection curve as the singular set of a bivariate matrix polynomial and
use algorithms based on eigendecomposition and singular value decomposition
to trace the resulting curve. This involves the use of inverse power iterations
for eigenvalue computation and step sizes based on the local geometry of the
curve. The main advantage of this approach is in its robustness. Tracing in

lower dimension reduces the geometric complexity of the curve. Moreover the
convergence of power iterations is well understood, and this representation
is used in computing the appropriate step sizes. Furthermore, the matrix

representation is used for computing the singular points on the intersection

curve.

The rest of the paper is organized in the following manner. In x2 we
present some background material on surface intersection and review the ma-
trix determinant representation of intersection curves. In x3, we characterize
the intersection curve in terms of singular sets of matrix polynomials and

characterize the accuracy of various matrix operations performed on these

polynomials. x4 describes our tracing algorithm, including choice of step size
and the use of power iterations to march along the curve. We also describe

how the structure of the matrix formulation can be exploited when perform-
ing the inverse power iterations. Finally, in x5 we discuss our implementation

and its application to surface intersection and the computation of superbolas

Evaluating Surface Intersections in Lower Dimensions 3

for toolpath generation.

x2. Background

The intersection of parametric surfaces results in a high degree algebraic curve.

The algebraic complexity makes it di�cult to compute an exact representa-

tion as an algebraic set, and, therefore, most of the current techniques aim
at an approximate representation as a piecewise linear curve (obtained by

subdivision or tracing methods). However, this representation is not robust.

The topology of the intersection curve can be very complicated. The

intersection curve may have more than one component and may have singular
points, thereby adding to the geometric complexity of the problem. Simple

cases like intersection of two cylinders can give rise to a singularity. In this

case the intersection curve is an algebraic space curve of degree four. For

tensor product bicubic B�ezier patches the intersection curve is a space curve
of degree 324 in the (x; y; z) space and degree 108 in the (u; v) domain, and it
is simple to come up with cases where the intersection curve has more than
one component.

It is well known in algebraic geometry that if one of the surfaces is repre-
sented parametrically and the other one implicitly, an implicit representation
of the intersection curve can be obtained by substituting the parametric for-
mulation into the implicit representation. Since a B�ezier surface is a rational
parametric surface, and we wish to compute the intersection of two such
surfaces, we need to implicitize the parametric representation of one of the
surfaces. It has been shown that if a parameterization has no base points,
the resultant of the parametric equations corresponds exactly to the implicit
representation. Using Dixon's formulation[4], the resultant corresponds to the
determinant of a matrix.

Thus, given two B�ezier surfacesF(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t))
and G(u; v) = (X(u; v); Y (u; v); Z(u; v);W (u; v)), we can implicitize F(s; t)
into an algebraic surface of the form f(x; y; z; w) = 0, where

f(x; y; z; w) = det

0
BB@

f11(x; y; z; w) : : : f1n(x; y; z; w)
f21(x; y; z; w) : : : f2n(x; y; z; w)

...
. . .

...
fn1(x; y; z; w) : : : fnn(x; y; z; w)

1
CCA :

The algebraic plane curve, birational to the intersection curve, is obtained

by substituting the parameterization G(u; v) into f(x; y; z; w). As a result,
the intersection curve is represented as zero set of the determinant of a matrix

M(u; v). The corresponding matrix M(u; v) is

f(X (u; v); Y (u; v); Z(u; v);W (u; v)) =

0
BB@

g11(u; v) : : : g1n(u; v)
g21(u; v) : : : g2n(u; v)

...
. . .

...

gn1(u; v) : : : gnn(u; v))

1
CCA ;

4 Dinesh Manocha, Amitabh Varshney, and Hans Weber

where

gij(u; v) = fij(X(u; v); Y (u; v); Z(u; v);W (u; v)).

Let D(u; v) be the polynomial corresponding to det(M(u; v)). Therefore,
the algebraic plane curve corresponds to D(u; v) = 0.

x3. Properties of the Matrix Representation

Let the degree of a tensor product B�ezier patch F(s; t) be mf in t and nf in

s. Similarly, let the degree of a tensor product B�ezier patch G(u; v) be mg

in u and ng in v. The order of the matrix arising from the implicitization
of F(s; t) by using Dixon's Resultant will be 2mfnf . After substituting the

parameterization of G(u; v) into the implicit representation of F(s; t), we get

a bivariate matrix polynomial M(u; v). Given v = vi, we can write M(u; vi)

as a univariate matrix polynomial of degree mg in u:

M(u; vi) =Mau
a +Ma�1u

a�1(1� u) + : : :+M0(1� u)a

where a = mg, and each of the matrices Mj have order b = 2mfnf . After
dividing this formulation by (1 � u)a and re-parameterizing by w = u

1�u
, we

get a matrix polynomial of the form

M 0(w) =Maw
a +Ma�1w

a�1 + : : : +M0.

When Ma is a non-singular and well conditioned matrix, the roots of
the matrix polynomial M 0(w) are given by the eigenvalues of the companion
matrix [11]:

C(w) =

0
BBBB@

0b Ib 0b : : : 0b

0b 0b Ib : : : 0b
...

...
...

. . .
...

0b 0b 0b : : : Ib

�M0 �M1 �M2 : : : �Ma�1

1
CCCCA
;

where 0b and Ib are null and identity matrices respectively, each of order
b = 2mfnf , and M i = M�1

a
Mi; 0 � i < a. When Ma is singular or close to

being singular, the roots of the matrix polynomial M 0(w) are given by the

eigenvalues of the generalized eigensystem [11].
We utilize algorithms which rely on computing eigenvalues and eigenvec-

tors of matrices because eigenvalue and eigenvector computations are back-
wards stable and thus provide improved accuracy. To �nd all of the roots

of the matrix polynomial we can perform a full eigendecomposition on the
companion matrix, C(w), using the QR algorithm [6]. More importantly, if
we are interested in only one of the roots of the matrix polynomial M 0(w),
and if we are given a value �0 close to that root, we can perform inverse power

iterations to quickly and robustly converge to the actual root � [6]. [11] also
points out that the corresponding eigenvector is of the form

[V; �V; �2V; : : : ; �mg�1V];

where

Evaluating Surface Intersections in Lower Dimensions 5

V = [1; s; s2; : : : ; smf�1; t; st; : : : ; smf�1t2nf�1].

Finally, using a method described in [11], we can compute the partial

derivatives of M(u; v) at a given point (ui; vi). This computation proceeds

by a modi�ed Gaussian elimination method, and the accuracy of the par-
tial derivative calculation is approximately the same as that of the standard

Gaussian elimination process.

For further details on the properties of this matrix representation, the

interested reader can refer to [11] as a starting point.

x4. Tracing Algorithm

Our aim has been to develop a tracing algorithm that satis�es to a reasonable

extent the conicting goals of accuracy, e�ciency, and robustness. To this end,

we have designed an algorithm based on a robust formulation which relies on

accurate matrix operations and takes advantage of the special structure of the
problem and the matrices involved for e�ciency.

The algorithm proceeds as follows:

(1) Given two tensor product B�ezier surfaces F and G, we �rst generate the
matrix representationM(u; v) as described in x2.

(2) Given a starting point (ui; vi) on the intersection curve, we �nd the tan-
gent (�ui; �vi), in the uv space, to the curve at (ui; vi).

(3) Given a step size �(ui; vi), and assuming �vi = max(�ui; �vi)
1, we move

to (ui; vi+1), where vi+1 = vi + �(ui; vi)�vi.

(4) To compute ui+1, we form the companion matrix C(w) (where w = u

1�u
,

as in x3) of the matrix polynomial M(u; vi+1), and then perform inverse
power iterations on C(w) to �nd the nearest eigenvalue �i to ui. As
discussed in x2, D(�i; vi+1) = 0. Thus, ui+1 = �i and we return to (2),
with (ui+1; vi+1) as our starting point.

To �nd the tangent (�ui; �vi) at (ui; vi), we compute �ui = Du(ui; vi) and
�vi = Dv(ui; vi) as mentioned in x3. The step size �(ui; vi) can be adaptively
based upon the higher order derivatives of the intersection curve in the uv-

space. Higher order derivatives such as Duu, Dvv, etc., can be computed in
an analogous fashion to the computation of Du and Dv. Such derivatives can
be used to formulate higher order approximants for use as (�ui; �vi). The
decision on the number of higher order derivatives to be computed is a trade-

o� between robustness and e�ciency.
Inverse power iterations normally require that we perform a full LU de-

composition of the matrix involved, which in this case is the companion ma-
trix of order ab, where a = mg and b = 2mfnf . LU decomposition for such

a matrix would normally require O(a3b3) operations. However, by taking ad-
vantage of the sparse structure of the matrix, we can reduce this to O(ab3)

operations. If F and G are tensor product bicubic patches, this provides a
speedup by a factor of about 9.

1 The case where �ui = max(�ui; �vi) proceeds similarly.

6 Dinesh Manocha, Amitabh Varshney, and Hans Weber

When computing the intersection of two parametric surfaces like F and

G, we are often only interested in the region where 0 � u; v; s; t � 1. Since
we are tracing in the uv-space, it is obvious when we have left the region

of interest for the patch G(u; v). To �nd out when whether we still lie in

the region 0 � s; t � 1, we can use the special structure of the eigenvector

corresponding to the eigenvalue �i (as noted in x3) to derive (si+1; ti+1).

The tracing algorithm also provides a simple method by which we can

compute the starting points for the open components of the intersection curve.

If the patch boundaries are 0 � u; v; s; t � 1, then we can �nd the starting

points along the boundary v = 0 simply by forming the companion matrix
corresponding to M(u; 0) and performing a full eigendecomposition. The real

eigenvalues in the interval [0; 1] correspond to starting points for tracing the

open components of the intersection curve which intersect v = 0. This can be

repeated for u; s; t = 0 and u; v; s; t = 1. The closed loops can be found by
tracing paths in the complex space [12].

x5. Implementation and Results

We have implemented the tracing algorithm described in x4 in C on a variety
of platforms using double precision calls to the Fortran libraries LAPACK and
BLAS. A simple window interface has been set up in which we can observe the
tracing progressing in the uv, st, and xyz spaces at the same time. We take
two tensor product B�ezier patches, calculate Dixon's resultant to implicitize
one, and then substitute the other into the resultant to generate M(u; v).
We currently only trace the open components for which we obtain starting
points by the process described at the end of x4. Our code uses a �xed step
size � and the �rst order partials of D(u; v) to form the local approximant.
We also take full advantage of the sparse structure of the companion matrix
when performing the inverse power iterations. To get a rough feeling for the
performance of the algorithm, we ran it on an SGI Onyx1 and came up with
the following average timing �gures2 for tracing the intersection curve of two
bicubic tensor product B�ezier patches:

Implicitization of one surface: 0.089 secs
Full eigendecomposition to �nd starting points on one edge: 0.149 secs
Tracing one point of a path using inverse power iterations: 0.072 secs

The tracing algorithm is really just a method for tracing a one dimen-
sional algebraic set which is represented in our matrix formulation, so for a

sample test of the robustness we set up the matrix so it would trace the de-
gree 20 superbola described in a toolpath generation example in [5]. Field
and Field found that conventional tracing and marching techniques failed to

1 Our Onyx was con�gured with the default of two processors, but we
did not parallelize the algorithm. Also, during our test runs the load of the

networked machine (excluding our process) was close to zero.
2 Timing �gures were obtained using the `gettimeofday' call.

Evaluating Surface Intersections in Lower Dimensions 7

properly follow the curve, but when using the matrix formulation our tracing

algorithm encountered no problems in generating the superbola.

While implementing this tracing algorithm, we came upon a number of

ideas which could be used to improve and augment the tracer.

First, there is an obvious coarse grain parallel structure to the algorithm,
and this could easily be exploited on a MIMD or SIMD architecture. Given n

starting points, we could distribute one starting point and copies of M(u; v),

F (s; t), and G(u; v) to each of a set of n processors, and they could trace out

a set of components in parallel.

One of the major reasons for tracing in the lower dimensional space is

that we have reduced the geometric complexity of the problem. Performing

any kind of tracing method in higher dimensional spaces is conceptually much

more di�cult than performing a similar algorithm in the plane. Furthermore,

there has been a fair amount of work done on the resolution of singularities
in a plane curve [7], and we can reason much more easily about singularities
on a plane than about singularities in higher dimensional spaces. Based on
the matrix formulation, we can detect singularities on paths as we trace out
the curve and use branching computations to resolve them.

Other Applications and Future Work: The algorithm presented above
is applicable to all geometric applications related to the computation of one
dimensional algebraic sets. These include silhouette computations, o�sets and
blends, Voronoi curves, etc. This algorithm, combined with robust techniques
for �nding loops and all branches around a singular point, is part of a system
being developed for performing CSG operations on spline surfaces.

References

1. Bajaj, C. L., C. M. Ho�mann, J. E. H. Hopcroft, and R. E. Lynch, Tracing
surface intersections, Computer Aided Geometric Design 5 (1988), 285{
307.

2. Barnhill, R., G. Farin, M. Jordan, and B. Piper, Surface/surface inter-
section, Computer Aided Geometric Design 4 (1987), 3{16.

3. Barnhill, R. E., and S. N. Kersey, A marching method for parametric

surface/surface intersection, Computer Aided Geometric Design 7 (1990),
257{280.

4. Dixon, A. L., The eliminant of three quantics in two independent vari-
ables, Proceedings of the London Mathematical Society 6 (1908), 49{69,
209{236.

5. Field, D. A., and R. Field, A new family of curves for industrial applica-

tions, Technical Report GMR-7571, General Motors Research Laborato-
ries, 1992.

6. Golub, G. H., and C. F. Van Loan, Matrix Computations, John Hopkins

Press, Baltimore, 1989.

7. Ho�man, C. M., Geometric and Solid Modeling, Morgan Kaufmann, San
Mateo, California, 1989.

8 Dinesh Manocha, Amitabh Varshney, and Hans Weber

8. Ho�man, C. M., A dimensionality paradigm for surface interrogations,

Computer Aided Geometric Design 7 (1990), 517{532.
9. Kriezis, G. A., P. V. Prakash, and N. M. Patrikalakis, Method for inter-

secting algebraic surfaces with rational polynomial patches, Computer-

Aided Design 22(10) (1990), 645{654.

10. Manocha, D., Algebraic and numeric techniques for modeling and robot-
ics, dissertation, Computer Science Division, Department of Electrical

Engineering and Computer Science, University of California, Berkeley,

1992.

11. Manocha, D., and J. F. Canny, A new approach for surface intersection,

International Journal of Computational Geometry and Applications 1(4)
(1991), 491{516.

12. Manocha, D. and S. Krishnan, Robust and E�cient Surface Intersections,

Unpublished Manuscript.

13. Pratt, M. J., Surface/surface intersection problems, in The Mathematics

of Surfaces II, J.A. Gregory (ed.), Claredon Press, Oxford, 1986, pages
117{142.

14. Sederberg, T. W., Implicit and parametric curves and surfaces, disserta-
tion, Purdue University, 1983.

15. Sederberg, T. W., and T. Nishita, Geometric hermite approximation of
surface patch intersection curves, Computer Aided Geometric Design 8

(1991), 97{114.

Acknowledgments. Dinesh Manocha is supported in part by a Junior Fac-
ulty Award and ARPA Contract #DAEA 18-90-C-0044. Amitabh Varshney
is supported under the NIH NCRR Grant #5-P41-RR02170. Hans Weber is
supported under ARPA Contract #DAEA 18-90-C-0044.

Dinesh Manocha
CB #3175, Sitterson Hall
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

USA
manocha@cs.unc.edu

