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Abstract

We present a novel rendering primitive that combines the modeling brevity of points with the rasterization efficiency
of polygons. The surface is represented by a sampled collection ofDifferential Points(DP), each with embedded curvature
information that captures the local differential geometry in the vicinity of that point. This is a more general point represen-
tation that, for the cost of a few additional bytes, packs much more information per point than the traditional point-based
models. This information is used to efficiently render the surface as a collection of local geometries. To use the hardware
acceleration, the DPs are quantized into256 different types and each sampled point is approximated by the closest quantized
DP and is rendered as a normal-mapped rectangle. The advantages to this representation are: (1) the surface can be rep-
resented more sparsely compared to other point primitives, (2) it achieves a robust hardware accelerated per-pixel shading
– even with no connectivity information, and (3) it offers a novel point-based simplification technique that factors in the
complexity of the local geometry. The number of primitives being equal, DPs produce a much better quality of rendering
than a pure splat-based approach. Visual appearances being similar, DPs are about two times faster and require about75%
less disk space in comparison to splatting primitives.
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I. I NTRODUCTION

POINT -based rendering schemes [1], [2], [3], [4], [5], [6] have evolved as a viable alternative to

triangle-based representations. They promise benefits over polygon-based rendering in many ar-

eas: (1) modeling and rendering complex environments, (2) a seamless hierarchical structure to balance

frame-rates with visual quality, and (3) efficient streaming over the network for remote rendering [7].

Current point primitives store only limited information about their immediate locality, such as nor-

mal, sphere of influence [5], and disk of influence on the tangent plane [4]. These primitives are then

rasterized with flat shading and in some cases followed up with a screen-space filtering [1], [4]. Since

the primitives are flat shaded, such representations require very high sampling to obtain a good render-

ing quality. In other words, the rendering algorithm dictates the sampling frequency in the modeling

stage. This is clearly undesirable as it may prescribe very high sampling even in areas of low spa-

tial frequency, causing two significant drawbacks: (1) slower rendering due to increase in rendering

computation and related CPU-memory bus activity, and (2) large disk and memory utilization.

In this work we propose an approach of storing local differential geometric information with every

point. This information gives a good approximation of the surface distribution in the vicinity of each

sampled point which is then used for rendering the point and its approximated vicinity. The total

surface area that a point is allowed to approximate is bounded by the characteristics of the surface

at that point. If the point is in a flat or a low curvature region of the surface then the differential

information at that point can well approximate a large area of the surface around it. Alternately, if the
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Fig. 1. A Rendering of the Human Head model using Differential Points

point is located on a high-frequency area of the surface then we limit the approximation to a smaller

vicinity. This scheme offers the potential of controlling the local sampling density based on its surface

curvature characteristics. We present a simplification algorithm that takes the initial super-sampled

point-based representation and returns a sparse subset whose local sampling density reflects the local

surface variation. Our rendering algorithm uses per-pixel shading when a DP is rendered with its

neighborhood approximation.

Our approach has many benefits to offer:

1. Rendering: The surface can be rendered with fewer (point) primitives by pushing more computation

into each primitive. This reduces the CPU-memory bus bandwidth and the overall amount of compu-

tation resulting in a significant speed-up. As the processor-memory speed gap increases we expect this

method to get even more attractive.

2. Storage: The reduction in the number of primitives more than compensates for the extra bytes of

information stored with each point primitive. This leads to an overall reduction in the storage require-

ments. This reduction also benefits faster streaming of information over the network.

3. Generality: The information stored with our point primitives is sufficient to derive (directly or

indirectly) the requisite information for prior point primitives. Our work is primarily focused on the

efficiency of per-point rendering computation. It can potentially be used in conjunction with larger

point-based organization structures - hierarchical (bounding balls hierarchy [5], Layered Depth Cube
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(LDC) tree [4], Layered Depth Image (LDI) tree [8]) or otherwise (LDC [3], LDI [6]).

4. Simplification: Recently proposed point representations have a width (or a region of influence)

associated with each point which can differ from one point to another. This can lead to a significant

overlap in the surface representation by the points. Our point primitive is amenable to a simplification

scheme that significantly reduces the redundancy in surface representation.

In the following sections, we first mention some related works and then outline the terminology from

the differential geometry literature that will be used to describe our approach. This is followed by a

discussion of our sampling and simplification schemes that will output sparse point representations. We

then describe our rendering algorithm and compare it with some splatting schemes. We conclude the

paper with a discussion of this approach and its possible extensions.

II. PREVIOUS WORK

A. Differential Geometry and Curvature Estimation

Our approach of rendering points with their local geometry requires the knowledge of the surface

variation at any given point. Classical differential geometry gives us a mathematical model for under-

standing the surface variation at a point. There is a collection of excellent literature on this subject and

in this paper we follow the terminology of M. P. do Carmo [9].

Curvature computation on parametric surfaces has a robust mathematical model. Various techniques

have been designed to estimate curvature from discrete sampled representations [10], [11]. Taubin [12]

estimates curvature at a mesh vertex by using the eigenvalues of an approximation matrix constructed

using the incident edges. Desbrun et al. [13] define discrete operators (normal, curvature, etc.) of differ-

ential geometry using Voronoi cells and finite-element/finite-volume methods. Their discrete operators

respect the intrinsic properties of the continuous versions and can be used at the vertices of a triangle

mesh.

B. Acquisition and Processing

Point samples of real-world environments are acquired using several acquisition techniques [14],

[15], [16], [17], [18] with the choice depending on the environment being sampled. This information is

processed by surface reconstruction algorithms [19], [20] and subsequently denoised [21]. The sampled
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points can also be processed directly using spectral processing techniques [22]. Alternately, the coarse

triangle mesh can be fitted with parametric surfaces [23], [24] for denoising and to to aid other higher-

level applications.

Point samples from synthetic environments are popularly acquired by shooting sampling rays from

base image plane(s) [1], [6]. In this work we support point sampling from two kinds of surface repre-

sentations: NURBS and polygonal mesh. If the input is a NURBS surface then we uniformly sample

in the parametric domain of the surface. If the input is a polygonal mesh then we use its vertices as the

sample points.

C. Simplification and Organization

The initial set of point samples may have significant redundancy in representing the surface due to

super-sampling. The problem of pruning this set has not been given enough attention so far, but various

hierarchical organization schemes have been used that develop lower frequency versions of the original

set of point samples [4], [5], [8]. We use a simplification process to prune an initial set of points to

obtain a sparse point representation. Turk [25] uses a point placement approach with the point density

being controlled by the local curvature properties of the surface. Witkin and Heckbert [26] use physical

properties of a particle system to place points on an implicit surface.

Simplification methods have been studied extensively for triangle meshes. They can be broadly clas-

sified into local and global approaches. Local approaches work by pruning vertices, edges, or triangles

using various metrics. Global approaches work by replacing subsets of the mesh with simplified ver-

sions or by using morphological operators of erosion and dilation. Cignoni et al. [27] and Cohen et

al. [28] document various simplification techniques. More recently, Lindstrom [29] uses error quadrics

in a vertex clustering scheme to simplify complex datasets that are too large to fit into main memory.

Image-assisted organization of points [1], [3], [6] are efficient at three-dimensional transformations

as they use the implicitness of relationship among pixels to achieve fast incremental computations.

They are also attractive because of their efficiency at representing complex real-world environments.

The multiresolution organizations [4], [5], [8] are designed with the rendering efficiency in mind. They

use the hierarchical structure to achieve block culling, to control depth traversals to meet the image-

quality or frame-rate constraints, and for efficient streaming of large datasets across the network [7].
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D. Rendering

Darsa et al. [30], Mark et al. [31] and Pulli et al. [32] use a triangle mesh overlaid on the image sam-

pling plane for rendering. It can be followed by a screen space compositing process. However, such

systems can be expensive in computation and storage if high resolutions are desired. Levoy and Whit-

ted [2] introduced points as a rendering primitive. It has been used by Shade et al. [6] and Grossman

and Dally [1] for synthetic environments. However, raw point primitives suffer from aliasing problems

and holes. Lischinski and Rappoport [3] raytrace a point dataset. Oliveira et al. [33] use image space

transformations to render point samples. Rusinkiewicz and Levoy [5] use splatting of rectangle prim-

itives for rendering. Chen and Nguyen [34] build a bounding ball hierarchy on top of a triangle mesh

to render small triangles as points. Alexa et al. [35] derive a polynomial surface at each point which

is then rendered by generating additional display points in a view-dependent fashion. Pfister et al. [4]

follow up the splatting with a screen-space filtering process to cover up holes and to deal with aliasing

problems. Zwicker et al. [36] derive a screen-space formulation of the EWA filter to render high-detail

textured point samples with a support for transparency. Mueller et al. [37] achieve per-pixel shading

for rectilinear grids using gradient splats.

The main focus of this paper is a novel rendering primitive that uses surface curvature properties to

efficiently render an approximation of its local geometry. The main advantage of this approach is its

sparse representation of the surface which leads to a significant reduction in the computational cost and

CPU-memory bus traffic.

III. D IFFERENTIAL GEOMETRY FORSURFACE REPRESENTATION

Classical differential geometry is a study of the local properties of curves and surfaces [9]. It uses

differential calculus of first and higher orders for this study. In this work we use theregular surface

model which captures surface attributes such as continuity, smoothness, and degree of local surface

variation. To quantify the surface variation around a point we use the directional curvature metric. This

is a second-order description of how fast the surface varies along any tangential direction at a point on

the surface. In this section we present a brief working introduction to regular surfaces with an outline

of the terminology and the equations that will be used to explain our work in subsequent sections.

A regular surface is a differentiable surface which is non self-intersecting and which has a unique
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tangent plane at each point on the surface. It is defined as aset, S, of points in<3 such that every

element,p, of this set has aneighborhoodV ⊂ <3 and a parameterizing mapx : U → V ∩ S (where

U is an open subset of<2) satisfying the following conditions [9]:

1. x is differentiable

2. x is a homeomorphism

3. Each mapx : U → S is a regular patch

Fig. 2. Neighborhood of a Differential Point

Consider the unit normal,Np, at any pointp on the surface. As one moves outside ofp along the

surface, the normal may change. This variation can be expressed as a function of the characteristics of

p and the tangential direction of motion,t̂, by a linear map,dNp : <3 → <3, called the differential

of the normal atp. dNp(̂t) gives the first-order normal variation at the pointp along the direction̂t

and this vector is tangential to the surface atp. The Jacobian matrix ofdNp has two eigenvectors,

ûp and v̂p, together called theprincipal directions. Thedirection of maximum curvature, ûp, is the

tangential direction along which the normal shows maximal variation atp. The eigenvalue associated

with ûp,−λup, is a measure of the normal variation alongûp. The termλup is the curvature atp along

the directionûp and is called themaximum normal curvature. Similarly v̂p is called thedirection of
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minimum curvatureand has an associated eigenvalue,−λvp. These attributes are related as follows:

|λup| ≥ |λvp|

〈ûp, v̂p〉 = 0

ûp × v̂p = Np

dNp(ûp) = −λupûp

dNp(v̂p) = −λvpv̂p

where〈·, ·〉 is the vector dot product and× is the vector cross product operator. These relationships are

illustrated in Figure 2. The normal variation (gradient) along any unit tangent,t̂ (= uûp + vv̂p), atp

can be computed as:

dNp(t̂) = dNp(uûp + vv̂p)

= udNp(ûp) + vdNp(v̂p)

= −(λupuûp + λvpvv̂p) (1)

Similarly, it can be shown that the normal curvature alongt̂, λ(t̂), is given by [9]:

λp(t̂) = λupu
2 + λvpv

2 (2)

The normal variation and the normal curvature terms give us second-order information about the be-

haviour of the regular surface around the pointp.

A salient feature of the regular surface model is that it can give a local description at a point without

indexing any global properties. This gives complete independence to a point which defines its own

local geometry without any reliance, explicit or implicit, on the immediate sampled neighborhood or

on any other global property. We use this feature to render the surface as a set of locally defined

geometries of varying surface area. This feature is also exploited for a variety of other applications

in computer graphics. Interrante [38] uses it for visualizing iso-surfaces. Garland and Heckbert [39],

among several others, use it for mesh simplification. Guskov et al. [21] use curvature information for

surface denoising.

Most of today’s virtual environments can be characterized as a collection of smooth surfaces meet-

ing at points, curves, or areas of varying orders of discontinuity. This is in contrast to a regular surface
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which, by definition, is differentiable and thus has continuous partial derivatives of all orders. How-

ever, as explained in the next section, we need the surface to be only second-order continuous to extract

properties that will be used for rendering. Discontinuities of third or higher order, in most instances,

are not easily discernible and thus we do not make any effort towards reproducing them visually here.

However discontinuities of the zeroth, first, and second order are visually noticeable. While a regu-

lar surface model cannot represent these points explicitly, we use an implicit procedure to represent

them. If such discontinuities are a collection of points or curves, then we sample at the second-order

continuous neighborhood of these points and the discontinuities will be maintained implicitly by the

intersection of the influence of these sampled points. If however, such points of discontinuity cover an

area on the surface, or no such neighborhood exists, then they can be represented by point-primitives

that do not use second-order information [1], [4], [5], [6], or by a polygonal model.

IV. SAMPLING AND PROCESSING

Our fundamental rendering primitive is a point with differential geometry information. Virtual en-

vironments, however, are modeled using other representations such as NURBS or a triangle mesh. We

derive our rendering information by sampling points on these models and extracting differential geom-

etry information per sampled point. To ensure that the information stored in each point collectively

represents the whole surface area, we over-sample initially, and follow it up with a simplification pro-

cess guided by a user-specified error bound. This reduces the overlap of the area of influence of the

sampled points while still ensuring that the surface area is fully represented. This is a pre-process and

the output is saved in a render-ready format that is an input to our rendering algorithm outlined in

Section V.

A. Differential Points

We call our rendering primitive as adifferential point(DP). A DP,p, is constructed from a sample

point and has the following parameters:xp (the position of the point),λup and λvp (the principal

curvatures), and̂up andv̂p (the principal directions). From these, we derive the unit normal,n̂p, and the

tangent plane,τp, of p. This information represents a coordinate frame and second-order information

at each DP. We extrapolate this information to define a surface,Sp, that will be used to approximate
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Fig. 3. Tangent plane parameterization of a Differential Point: The tangent planeτp is parameterized by the(u, v) coordi-
nates.Sp uses the same parameterization which relates it toτp under the projectionPp. uε,p is defined by the constraint
‖Xp(u, 0)− xp(u, 0)‖ ≤ ε

‖λup‖ .

the neighborhood ofxp. The surfaceSp is defined implicitly as follows: given any tangentt̂, the

intersection ofSp with the normal plane ofp that is co-planar witĥt is a semi-circle with a radius of

1
|λp(t̂)| with the center of the circle being located atxp + n̂p

λp(t̂)
and oriented such that it is cut in half by

xp (if λp(t̂) is 0, then the intersection is a line alongt̂). These terms are illustrated in Figure 3.

To aid our simplification and rendering algorithms we define a coordinate system onτp andSp.

The tangent planeτp is parameterized by(u, v) coordinates in the vector space of(ûp, v̂p). A point

on τp is denoted byxp(u, v) and t̂(u, v) denotes the tangent atp in the direction ofxp(u, v). We

parameterizeSp with the same(u, v) coordinates asτp, with Xp(u, v) denoting a point onSp. The

pointsXp(u, v) andxp(u, v) are related by a homeomorphic mapping,Pp, with xp(u, v) being the

orthographic projection ofXp(u, v) on τp along n̂p. The arc length betweenXp(0, 0) andXp(u, v)

is denoted bys(u, v) and is measured along the semi-circle ofSp in the directiont̂(u, v). The (un-

normalized) normal vector atXp(u, v) is denoted byNp(u, v). Note thatxp = Xp(0, 0) = xp(0, 0)

andn̂p = Np(0, 0). We use lower-case characters or symbols for terms related toτp and we use upper-

case characters or symbols for terms related toSp. A notable exception to this rule is the arc-length

s(u, v).

The surfaceSp is used to describe the spatial distribution aroundxp. We derive the normal distribu-

tion, Np(u, v), aroundxp usingSp and the curvature properties of the surface. To deriveNp(u, v) we
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express it in terms of its orthogonal components as follows:

Np(u, v) =
∑

ê=ûp,v̂p,n̂p

〈Np(u, v), ê〉 ê (3)

Consider the semi-circle ofSp in the direction̂t(u, v). As one moves out ofxp along this curve the

normal change per unit arc-length of the curve is given by the normal gradientdNp(t̂(u, v)). So, for

a arc-length ofs(u, v), the normal can be obtained by using a Taylor’s expansion on each individual

component of equation (3) as follows:

Np(u, v) =
∑

ê=ûp,v̂p,n̂p

(〈Np(0, 0), ê〉+ s(u, v) 〈dNp(t̂(u, v)), ê〉+ Remainder Term) ê

≈ Np(0, 0) + s(u, v) dNp(t̂(u, v)) (4)

The surfaceSp and the normalsNp(u, v), give an approximation of the spatial and the normal dis-

tribution aroundxp. (Note thatNp(u, v) is not neccessarily the normal distribution ofSp, but is just an

approximation of the normals aroundxp.) Since it is only an approximation, there is a cost associated

with this: the higher the arc-length, the higher the error in approximation and thus a bigger compromise

in the visual quality after rendering. However an advantage to extrapolating to a larger neighborhood

is that a smaller set of sampled DPs suffices to cover the whole surface, thus improving the rendering

speed. We let the user resolve this tradeoff according to her needs by specifying two error tolerances

that will clamp the extent of the extrapolation:

1. Maximum principal error(ε): This error metric is used to set point sizes according to their curvatures.

It specifies a curvature scaled maximum orthographic deviation ofSp along the principal directions.

We lay down this constraint as:|λup(Xp(u, 0) − xp(u, 0))| ≤ ε and|λvp(Xp(0, v) − xp(0, v))| ≤ ε.

SinceSp is defined by semi-circles, we have that‖Xp(u, 0) − xp(u, 0)‖ ≤ 1
‖λup‖ . It follows that

ε ≤ 1. In other words, the extrapolation is bounded by the constraints|u| ≤ uε,p =
√

2ε−ε2

|λup | and

|v| ≤ vε,p =
√

2ε−ε2

|λvp | as shown in Figure 3. This defines a rectanglerp on τp and boundsSp accordingly

since it uses the same parameterization. Theε constraint ensures that points of high curvature are ex-

trapolated to a smaller area and that the “flatter” points are extrapolated to a larger area.
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2. Maximum principal width(δ): If λup is closer to0, thenuε,p can be very large. To deal with such

cases we impose a maximum width constraintδ. Souε,p is computed asmin(δ,
√

2ε−ε2

|λup | ). Similarly,vε,p

is min(δ,
√

2ε−ε2

|λvp | ).

We call the surfaceSp (bounded by theε and δ constraints), the normal distributionNp(u, v)

(bounded by theε andδ constraints) together with the rectanglerp as a differential point because all of

these are constructed from just the second-order information at a sampled point. While it is desirable

to renderp usingSp, such a rendering primitive is not supported by current graphics hardware. Instead

p is rendered usingrp. This is explained in more detail in Section V.

B. Sampling

Given a 3D model, it is first sampled by points. Using the inherent properties of the surface repre-

sentation, we extract differential geometry information at each of these sampled points. If the surface is

a parametric one, such as NURBS, it is sampled uniformly in the parametric domain and standard tech-

niques outlined in the differential geometry literature [9] are used to extract the relevant information

at each sampled point. The principal directions cannot be uniquely determined at the umbilical points

were the surface is either flat or is spherical (λup = λvp). At such points the direction of maximum

curvature,ûp, is assigned to be the best of the projection of thex, y, and thez-axis onto the tangent

plane. The direction of minimum curvaturêvp can be computed from̂up andn̂p.

If the surface is a triangle mesh, then a NURBS surface can be fit to the triangle mesh [23], [24]

and points can be sampled using this representation. We use a more direct approach by using the

vertices of the mesh as the sampled points and extracting differential information for each point using

the techniques developed by Taubin [12]. The DPs thus obtained from the triangle mesh have the same

properties as the ones obtained by sampling a NURBS surface. However, in some areas of the surface,

the samples may be spaced far-apart even though the surface curvature of that region is high. If the

points of such areas were to be assigned sizes using the criterion described in section IV-A then there

might be gaps in the surface coverage. This is because theε andδ values might prescribe small sizes to

the surfacesSp thus leaving holes in the surface coverage because the points may not be close enough

for the assigned sizes to overlap. To deal with this issue we also factor in the distance of the neighbors
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(a) Without Simplification (b) With Simplification (c) Rendering with Simplification

Fig. 4. Effectiveness of Simplification: (a) Wireframe rectangles corresponding to the initial (super-sampled) collection
of differential points from the surface of the teapot. (b) Wireframe rectangles of the differential points that are not pruned
by the simplification algorithm. Simplification is done within a patch and not between patches. The strips of rectangles
represent the differential points on the patch boundaries. (c) A rendering of the simplified differential point representation.

from a sample point (mesh vertex) in determining the point size as follows. For each pointp, the mid-

point of every incident edge is projected along the average of its adjacent triangle normals onto the

tangent planeτp of the point. Then a rectangle is sized to contain these points such that it is: (1) axis

aligned with respect to the(ûp, v̂p) directions, (2) symmetric with respect to the origin (pointxp), and

(3) its size is the smallest possible. The rectanglerp is set to the smallest rectangle that encloses the

rectangle computed this way and the rectangle determined using the steps outlined in section IV-A.

C. Simplification

Initially the surface is super-sampled so that the rectangle of each differential point overlaps suffi-

ciently with its neighbors without leaving any holes in the surface coverage. While this gives a complete

surface representation, it also contains redundant samples. So we follow up the point sampling with a

simplification process that prunes redundant DPs.

Simplification works by pruning those DPs whose geometric information is represented by the cumu-

lative information of their neighbors within the error marginsε andδ. For this purpose, we first define

a projection set,O(p), for each pointp. It denotes the set of all points of the original surface in the

vicinity of xp that fall within the surface area covered by the orthographic projection of the rectanglerp

onto the original surface along the directionn̂p. do Carmo [9] shows that for a vicinity around the point

positionxp, this projection (mapping) is a homeomorphism. We define anoverlap relation between

differential points as follows: A differential pointp is said tooverlapanother differential pointq iff

O(p) ∩ O(q) 6= φ. It follows from the definition thatoverlapis a symmetric relation.

Simplification involves comparing a point with its “neighbors” - denoted by the setN(p). N(p) is
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initialized to include all the immediately surrounding DPs that overlapp. If the DPs are sampled from

a parametric surface, thenN(p) is chosen from the 8, or the 24 nearest samples from the sampling grid

of the parametric domain (DPs in the boundary can have less than 8 immediately surrounding DPs).

Since overlap is a symmetric relation, we have thatq ∈ N(p) iff p ∈ N(q). If the differential points

are sampled from a triangle mesh, thenN(p) is chosen from the vertices with whom it shares edges.

Later, when the simplification algorithm is in progress, in the event of anyqi ∈ N(p) being pruned,

N(p) is updated as follows:

N(p) ⇐ N(p)− {qi} ∪ {qj|qj ∈ N(qi) andqj 6= p andO(qj) ∩ O(p) 6= φ} (5)

This operation updatesN(p) by deletingqi from it and adding to it all the neighbors ofqi that overlap

with p. Lastly, we define a term that will act as the prunability criteria of a DP. A differential pointp is

said to beenclosediff O(p) ⊆ ⋃
q∈N(p) O(q). In other words,p is said to be enclosed iff each point in

its projection setO(p) is also in the projection set of atleast one of its neighbors. During simplification

we check to make sure that only enclosed DPs are pruned.

Our simplification algorithm assumes a greedy heuristic of pruning the mostredundantpoint first.

A DP’s redundancy is a measure of how similar it is with respect to its neighbors. It is quantified by a

metric, called theredundancy factor, R(p), which quantifies the ability ofp to approximate the normal

of its neighbors and vice versa. The higher the value ofR(p), more is the redundancy ofp. R(p) is

computed as follows:

R(p) =
∑

q∈N(p)

( |〈Nq,Np(uq,p, vq,p)〉|+ |〈Np,Nq(up,q, vp,q)〉|
2 |N(p)|

)
(6)

where(uq,p, vq,p) is the coordinates of the point onτp obtained by the orthographic projection ofxq

onto τp andNp(uq,p, vq,p) is the normal estimated at these coordinates using equation (4). The dot

product|〈Nq,Np(uq,p, vq,p)〉| in equation (6) is a measure of how close the actual normal atq is to the

normal estimated atxq using the curvature information atp. If R(p) is closer to 1 thenp is redundant

because all the geometric information ofp is already represented by its neighbors.

After R(p) has been computed,p is inserted into a binary heap withR(p) as the key. After all the

DPs are represented in the heap, an iterative process is started which pops the top of the heap and checks

if pruning that DP will leave any holes in the surface representation. If not, then the point is pruned
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and the neighborhood and the redundancy factor of all its ex-neighbors are updated using equations (5)

and (6) respectively. Otherwise the point is marked for output. A pseudo-code of simplification is as

follows:

Simplification( )
1 ∀ DPp
2 EstablishN(p)
3 ComputeR(p)
4 Insertp in theHeapwith R(p) as the key

(Highest key is at the top of theHeap)
5 While Heapis not empty
6 p = popHeap
7 if Enclosed(p)
8 ∀ q ∈ N(p)
9 deletep from N(q)
10 undo influence ofp onR(q)
11 balanceHeap
12 ∀ distinctq1,q2 ∈ N(p)
13 if (Overlaps(q1,q2))
14 addq2 to N(q1)
15 updateR(q1) and balanceHeap
16 addq1 to N(q2)
17 updateR(q2) and balanceHeap
18 deletep
19 else
20 add a pointer ofp to theOutputList

(p is not pruned)
21 returnOutputList

Fig. 5. The line segments AE, CG, BF, HD, BH, HF, FD, DB comprise the initial set of test line segments for the routine
Enclosed(p)

For p to be pruned it has to qualify the correctness check: thatp is an enclosed point, or in other

words that the pruning ofp does not leave a hole in the surface representation. This check is done by

the routine Enclosed(p) of the simplification pseudo-code. Testing for the enclosure of the surfacesSp
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can be very expensive. Instead, we approximate the original surface byτp, and test for the enclosure of

p within this framework. This test is done by an approximation method that samples line segments on

rp (as shown in Figure 5) and tests if they are fully covered by the rectangles of the DPs∈ N(p). A

pseudo-code of this test is as follows:

Enclosed(p)
1 TestLines= Sampled line segments onrp

2 ∀q ∈ N(p)
3 ∀l ∈ TestLines
4 deletel from TestLines
5 projectl alongnp ontoτq

6 clip it againstrq

7 project back the leftover segments alongnp ontoτp

8 add them toTestLines
9 if (TestLinesis empty)
10 return(true)
11 return(false)

Since the coverage of line segments does not guarantee coverage of the entire area ofrp, we see

infrequent sliver gaps left between rectangles. We make the coverage test more conservative by scaling

down the rectangles for simplification (the original rectangle sizes are used for rendering). For all our

test models, a scale down factor of15% produced a hole-free and effective simplification.

The simplification algorithm also involves a test for the overlap ofq1 andq2. An approximate test for

this is done by the routine Overlaps(q1,q2) of the simplification pseudo-code which tests ifrq1 overlaps

rq2 whenτq2 is assumed to be the original surface and vice versa. An approximation algorithm for this

test is as follows:
Overlaps(q1, q2)
1 return (OverlapTest(q1, q2) || OverlapTest(q2, q1))

OverlapTest(q1, q2)
1 If the orthographic projection ofxq1 ontoτq2 falls within the

bounds ofrq2 then return true
2 If the orthographic projection of any of the end points ofrq1

ontoτq2 falls within the bounds ofrq2 then return true
3 If the orthographic projection of any of the edges ofrq1 onto

τq2 intersectsrq2 then return true
4 If all the above tests fail then return false

All the approximation algorithms work well in our case owing to the similarity of neighboring rect-

angles in position, width, and orientation. Figure 4(b) shows the rectangles leftover after simplification
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(a) (b) (c) (d)

Fig. 6. Rendering quality with and without simplification. Head Model (ε = 0.012, δ = 2.0) (a) Without simplification, (b)
With simplification. Venus Model (ε = 10−6, δ = 0.05) (c) Without simplification, (d) With simplification.

in an area where curvature-related features change very fast. A desirable feature of this simplification

process is that the error metrics that it uses also control the quality of the final rendered images. This al-

lows the user to first decide on the image quality and then get as much simplification as possible without

any loss in perceptual quality. Figure 6 shows sample models rendered with and without simplification.

V. RENDERING

While the differential information in a DP can be extrapolated to define a continuous spatial neigh-

borhoodSp, current graphics hardware do not support such a rendering primitive. We note that the main

functionality of the spatial distribution is that it derives the normal distribution around the differential

point. However, it is not necessary for the rendering algorithm to use an accurate spatial distribution

given therelativelysmall neighborhoods of extrapolation. Sorp is used as an approximation toSp when

rasterizingp. Since the shading artifacts are more readily discernible to the human eye the screen-space

normal distribution aroundp has to mimic the normal variation aroundp on the original surface. This

is done by projecting the normal distributionNp(u, v) ontorp and rasterizingrp with a normal-map of

this distribution.

A. Normal Distribution

Consider the projection ofNp(u, v) ontoτp using the projectionPp discussed in Section IV-A. The

resulting (un-normalized) normal distribution,np(u, v), on the tangent plane can be expressed using

equation (4) as:

np(u, v) ≈ Np(0, 0) + s(u, v) dNp(t̂(u, v)) (7)
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The tangent̂t(u, v) and the arc-lengths(u, v) terms can be expanded as follows:

t̂(u, v) =
(u ûp + v v̂p)√

u2 + v2
(8)

s(u, v) =
arcsin(λp(t̂(u, v))

√
u2 + v2)

λp(t̂(u, v))
(9)

Using substitutions from equations (1), (2), (8), and (9) in equation (7) we get:

np(u, v) ≈ Np(0, 0)−
[

(λup u ûp + λvp v v̂p)

(λupu
2 + λvpv

2)/
√

u2 + v2
arcsin

(
λupu

2 + λvpv
2

√
u2 + v2

)]

It can be expressed in the local coordinate system(êx, êy, êz) of (ûp, v̂p, n̂p) as:

np(u, v) ≈ êz −
[

(λup u êx + λvp v êy)

(λupu
2 + λvpv

2)/
√

u2 + v2
arcsin

(
λupu

2 + λvpv
2

√
u2 + v2

)]
(10)

whereêx = (1, 0, 0), êy = (0, 1, 0), andêz = (0, 0, 1) are the canonical basis in<3. Note that when

specified in the local coordinate frame, the normal distribution is independent ofûp, v̂p, andNp(0,0).

So, the rendering algorithm uses a local coordinate system for the shading so that the normal distribution

can be computed for one combination ofλu andλv and the same distribution is re-used to render all

DPs with that combination of principal curvatures.

To shade a DP on a per-pixel basis we would want the normal distribution to be available at the

screen space. The only hardware support to specify such a normal distribution is normal-mapping.

It would be very expensive to compute such a normal map at run-time for each combination ofλu

andλv. So a normal map can be pre-computed in the local coordinate frame for various quantized

values of the principal curvaturesλu andλv, and at run timerp can be normal-mapped by the closest

resembling normal map. However, a drawback to such a scheme of quantization is that sinceλu and

λv are unbounded quantities it is impossible to compute all possible normal-maps. To get around this

problem, we introduce a new term,ρp =
λvp

λup
, and note that−1 ≤ ρp ≤ 1 because|λup| ≥ |λvp|. The

local normal distribution from equation(10) can be rewritten usingρp as:

np(u, v) ≈ êz − (u êx + ρp v êy)
arcsin(λupψp(u, v))

ψp(u, v)
(11)

whereψp(u, v) = (u2 + ρpv2)/
√

u2 + v2. Now consider a normal distribution for a differential point

m whoseλum = 1:

nm(u, v) ≈ êz − (u êx + ρm v êy)
arcsin(ψm(u, v))

ψm(u, v)
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The only external parameter tonm(u, v) is ρm. Sinceρm is bounded, we pre-compute a set,M, of

normal distributions for discrete values ofρ and store them as normal-maps. Later, at render-time,

rm is normal-mapped by the normal map whoseρ value is closest toρm. To normal-map a general

differential pointp using the same set of normal-maps,M, we use the following lemma:

Lemma 1:When expressed in their respective local coordinate frames,np(u, v) ≈ nm(λupu, λupv)

wherem is any DP withλum = 1 andρm = ρp.

Proof: First, we make an observation thatλupψp(u, v) = ψp(λupu, λupv). Using this observation,

the tangent plane normal distribution atp (equation (11)) can be re-written as:

np(u, v) ≈ êz −
[
((λupu)êx + ρp(λupv)êy)

arcsin(ψp(λupu, λupv))

ψp(λupu, λupv)

]

= êz −
[
((λupu)êx + ρm(λupv)êy)

arcsin(ψm(λupu, λupv))

ψm(λupu, λupv)

]

≈ nm(λupu, λupv) 2

UsingLemma 1, a generalrp is normal-mapped with an appropriate normal mapnm(·, ·) with a scaling

factor ofλup.

B. Shading

For specular shading, apart from the local normal distribution, we also need a local half vector

distribution. For this we use the cube vector mapping [40] functionality offered in the nVIDIA GeForce

series of GPUs which allows one to specify un-normalized vectors at each vertex of a polygon and

obtain linearly interpolated and normalized versions of these on a per-pixel basis. We use the cube

vector map to specify a un-normalized half vector at each vertex ofrp which delivers a normalized

half vector at each pixel thatrp occupies. Per-pixel specular shading is achieved by using the per-pixel

normal (from the normal map) and half vector (from the cube vector map) for illumination computations

in the register combiners. A similar technique is used for diffuse shading.

Let ĥp denote the (normalized) half (halfway) vector at the point positionxp and letHp(u, v) denote

the (un-normalized) half vector at a pointXp(u, v) on the surfaceSp with Hp(0, 0) = ĥp. Lethp(u, v)

be the (un-normalized) half vector distribution on the tangent planeτp obtained as a result of applying

the projectionPp on Hp(u, v). Similarly, let l̂p denote the (normalized) light vector atxp and let

lp(u, v) andLp(u, v) denote the (un-normalized) light vector distribution onτp andSp respectively with
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Lp(0, 0) = l̂p. Also, letŵp denote the (normalized) view vector atxp and letwp(u, v) andWp(u, v)

denote the (un-normalized) view vector distribution onτp andSp respectively withWp(0, 0) = ŵp.

Applying a method similar to the one used for the derivation of equation (7),hp(u, v) can be written

as:

hp(u, v) ≈ Hp(0, 0) + s(u, v) dHp(t̂(u, v))

≈ Hp(0, 0) +
√

u2 + v2 dHp(t̂(u, v)) (12)

where
√

u2 + v2 is substituted as an approximation fors(u, v). The half vector gradient can be ex-

panded as:

dHp(t̂(u, v)) =
∂

∂u
Hp(u, v)

∣∣∣∣
u=0
v=0

u√
u2 + v2

+
∂

∂v
Hp(u, v)

∣∣∣∣
u=0
v=0

v√
u2 + v2

and using this result, equation (12) can be re-written as:

hp(u, v) ≈ Hp(0, 0) + u
∂

∂u
Hp(u, v)

∣∣∣∣
u=0
v=0

+ v
∂

∂v
Hp(u, v)

∣∣∣∣
u=0
v=0

(13)

Let a be the position of the light andb be the position of the eye. The partial differential term of

equation (13) can then be re-written as follows:

∂

∂u
Hp(u, v)

∣∣∣∣
u=0
v=0

=
∂

∂u

(
Lp(u, v)

‖Lp(u, v)‖ +
Wp(u, v)

‖Wp(u, v)‖
)∣∣∣∣

u=0
v=0

=
∂

∂u

( (a−Xp(u, v))

‖a−Xp(u, v))‖
)∣∣∣∣

u=0
v=0

+
∂

∂u

( (b−Xp(u, v))

‖b−Xp(u, v))‖
)∣∣∣∣

u=0
v=0

=
(( Lp(u,v)

‖Lp(u,v)‖ · ∂Xp(u,v)

∂u
) Lp(u,v)

‖Lp(u,v)‖ − ∂Xp(u,v)

∂u
)
∣∣

u=0
v=0

‖a− xp‖

+
(( Wp(u,v)

‖Wp(u,v)‖ · ∂Xp(u,v)

∂u
) Wp(u,v)

‖Wp(u,v)‖ − ∂Xp(u,v)

∂u
)
∣∣

u=0
v=0

‖b− xp‖

=
((̂lp · ûp)̂lp − ûp)

‖a− xp‖ +
((ŵp · ûp)ŵp − ûp)

‖b− xp‖

When expressed in the local coordinate frame, we get:

∂

∂u
Hp(u, v)

∣∣∣∣
u=0
v=0

=
((̂lp · êx)̂lp − êx)

‖a− xp‖ +
((ŵp · êx)ŵp − êx)

‖b− xp‖ (14)

the other partial differential term of equation (13) can be computed similarly to get a tangent plane

half-vector distribution. The subtraction and the dot products in equation (14) are simple operations



120 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

(a) Diffuse Illumination (b) Specular Illumination (c) Diffuse and Specular Illumination

(a) Diffuse Illumination (b) Specular Illumination (c) Diffuse and Specular Illumination

Fig. 7. Illumination and per-pixel Shading

and can be done fast. However, the square root and the division operations are expensive. Both of these

operations are combined by the fast inverse square root approximation [41] and in practice, we have

found that this approximation causes no compromise in visual quality.

The light vector distribution onτp can be derived similarly. It is given by:

lp(u, v) ≈ l̂p − uêx − vêy

So far, we have discussed the tangent plane normal, half vector, and the light vector distribution

aroundp. They are used for shadingp. The overall rendering algorithm is given in Figure 8.

Shadingp essentially involves two kinds of computation: (1) computing the relevant vectors (coordi-

nates) for texture mapping (CPU-end computation) and (2) per-pixel computation (GPU-end computa-

tion). The rectanglerp is mapped by two textures: the normal map and the half vector (or light vector)

map. Normal-mapping involves choosing the best approximation to the normal distribution from the set

of pre-computed normal mapsM and computing the normal-map coordinates(u, v) for the vertices of

rp. Half-vector mapping involves computing the un-normalized half vectors at the vertices ofrp using
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Display( )
(Let M be the set of normal-maps computed for quantized
values ofρ. It is computed and loaded into texture memory
at the program start time)

1 Clear the depth buffer and the color buffers
2 Configure the register combiners for diffuse shading
3 ∀ DPp
4 Mp = normal-map∈ M whoseρ is closest toρp

5 MapMp ontorp

6 Compute the light vector,lp(·, ·), at the vertices ofrp

7 Use the light vectors to map a cube vector map ontorp

8 Renderrp

9 Clear the color buffer after loading it into the accumulation
buffer

10 Clear the depth buffer
11 Configure the register combiners for specular shading
12 ∀ DPp
13 Mp = normal-map∈ M whoseρ is closest toρp

14 Map Mp onto rp (The details from the last pass can be
cached if desired)

15 Compute the half vector,hp(·, ·), at the vertices ofrp

16 Use the half vectors to map a cube vector map ontorp

17 Renderrp

18 Add the accumulation buffer to the color buffer
19 Swap the front and the back color buffers

Fig. 8. The Rendering Algorithm

equation (13) and using them as the texture coordinates of the cube vector map that is mapped ontorp.

The cube vector mapping hardware delivers a per-pixel (normalized) half vector obtained as result of a

liner interpolation between the half vectors specified at the vertices ofrp. Per-pixel shading is achieved

at the hardware register combiners level using the (per-pixel) normal and half vectors [40]. If both dif-

fuse and specular shading are desired then shading is done in two passes with the accumulation buffer

being used to buffer the results of the first pass. We use a two pass scheme because nVIDIA GeForce2

allows only two textures at the register combiners. If three textures are accessible at the combiners (as

in GeForce3) then both the diffuse and specular illumination can be done in one pass. In presence of

multiple light sources, we do a separate rendering pass for each light source, with the accumulation

buffer being used to buffer intermediate results.
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(a) (b)

Fig. 9. Rendering quality with and without encoding. (a) The bunny rendered without encoding, (b) The bunny rendered
with encoding.

VI. I MPLEMENTATION AND RESULTS

All the test cases were run on PC with a 866MHz Pentium 3 processor with 512MB RDRAM having

a nVIDIA GeForce2 GTS GPU supported by 32MB of DDR RAM. All the test windows were 800×600

in size. We used 256 normal maps (|M| = 256) corresponding to uniformly sampled values ofρ and

we built a linear mip-map on each of these with the highest resolution being 32×32. The resolution of

the cube vector map was 512×512×6.

We demonstrate our work on five models: the Utah teapot, a human head model, a camera prototype

(all NURBS models), the Stanford bunny and the Cyberware venus model (triangle mesh models). In

case of a NURBS surface the component patches are sampled uniformly in the parametric domain and

simplified independent of each other.ε is the main parameter of the sampling process. A smallerε

requires a higher sampling frequency. The main role ofδ is in areas where curvature changes fast.

In such surfaces,δ ensures that the rectangles from the low curvature region do not block the nearby

rectangles in the higher curvature regions.δ also ensures that the rectangles do not overrun the boundary

significantly. We used a simple binary heap for heap operations of the simplification process. The main

functional bottleneck in the pre-processing stage is the test for enclosure in the simplification process.

Since every DP popped from the heap is tested for enclosure, the number of enclosure tests is equal to

the number of sampled DPs. Irrespective of the amount of super-sampling of a model, simplification

yielded similar results on all attempts that shared the same error metrics (ε andδ). The effectiveness of

simplification is summarized in Table I. While simplification does not cause any loss of visual quality,

it can lead to an order-of-magnitude speed-up in rendering and can save substantial storage space.

Each DP uses 62 bytes of storage without any encoding and about 13 bytes of storage with encoding.

Following is the data stored per DP without any encoding: 6 bytes for the diffuse and specular colors,
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TABLE I

SUMMARY OF RESULTS: THE TEAPOT, CAMERA, AND THE HEAD ARE DERIVED FROMNURBS AND THE STANFORD

BUNNY AND THE CYBERWARE VENUS ARE DERIVED FROM A TRIANGLE MESH

Without Simplification Teapot Camera Head Bunny Venus
Number of Points 156,800 216,712 376,400 34,834 134,359
Storage Space w/o encoding (in MB) 9.19 12.69 22.06 1.77 6.82
Storage Space w/ encoding (in MB) 1.99 2.75 4.77 0.51 1.99
Pre-processing Time (in seconds) 22.5 15.25 22.2 1.2 3.25
Frames per second (Diffuse) 2.13 1.59 0.89 9.09 2.44
Frames per second (Specular) 2.04 1.52 0.88 9.05 2.38
With Simplification Teapot Camera Head Bunny Venus
Number of Points 25,713 46,077 64,042 34,350 92,608
Storage Space w/o encoding (in MB) 1.51 2.70 3.75 1.75 4.64
Storage Space w/ encoding (in MB) 0.32 0.59 0.82 0.50 1.34
Pre-processing Time (in seconds) 146.5 178.17 485.5 7.15 76.92
Frames per second (Diffuse) 12.51 6.89 5.26 9.11 3.57
Frames per second (Specular) 11.76 6.67 5.13 9.09 3.45

12 floats (48 bytes) for the point location, principal directions and the normal, and 2 floats (8 bytes)

for the two curvature values. A simple scheme of encoding is used to represent a DP with just 13

bytes: 3 shorts (6 bytes) for the positionxp, 2 bytes for each of the principal directionsûp andv̂p, 2

bytes for the maximum principal curvatureλup and 1 byte for the valueρp. The normal̂np need not

be stored explicitly as it can be computed as a cross product of the principal directions. If the DPs

were sampled from a triangle mesh then, as explained in section IV-B, some of them would have a size

bigger than what is prescribed by the curvatures. This additional information is encoded in one or two

bytes depending on the nature of the point. If the size of the rectanglerp can be computed solely from

the curvature values (as in section IV-A) then a zero byte is written to the file after the first 13 bytes of

the DP have been written. Otherwise the width and the height ofrp are encoded in 1 byte each (the

bytes being non-zero). They are written to the file after the first 13 bytes of the DP have been written.

We do not save the color for each DP but group together DPs with the same color and write the color

information once for this group. Figure (9) shows the bunny rendered with and without encoding.

The results reported in Table I are with dynamic illumination (the light and half vectors are computed

for each DP in each frame). Both the specular and diffuse shading are done at the hardware level.

However, nVIDIA GeForce2 does not support a hardware implementation for the accumulation buffer.

Instead, the accumulation buffer in implemented in software by the OpenGL drivers. So the case of both
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diffuse and specular illumination can be slow. Hardware support for the accumulation buffer is available

on other GPUs such as Voodoo5 6000 AGP from 3Dfx. However, this should not be a problem with

the nVIDIA GeForce3 GPU, as they can allow access to 4 textures at the register combiners making it

possible to compute both diffuse and specular shading in one straight pass.

On an average, about330, 000 DPs can be rendered per second with diffuse illumination. Both the

diffuse and specular illumination passes take around the same time. The main bottleneck in rendering is

the bus bandwidth and the pixel-fill rate. This can be seen by noting that specular and diffuse illumina-

tion give around the same frame rates even though the cost of computing the half vectors is higher than

the cost of computing the light vectors and that the specular illumination pass has more computation

per-pixel than the diffuse illumination pass.

The main focus of this paper is the efficiency of DPs as rendering primitives. Previous works on point

sample rendering have orthogonal benefits such as faster transformation [6] and multiresolution [4], [5],

[8]. Potentially, DPs can be used in conjunction with these schemes. To demonstrate the benefits of

DPs we designed experiments to compare performance against the splatting approach to rendering. A

naive OpenGL point rendering was not considered because it is prone to holes and aliasing problems.

We compare the rendering performance of an unsimplified differential point representation of a teapot

to the splatting of unsimplified and unstructured versions of sampled points. For the splatting test cases,

we take the original point samples from which DPs were constructed and associate each of them with a

bounding ball whose radius is determined by comparing its distance from its sampled neighbors. This

makes sure that there are no holes in surface coverage by the splatting primitives. We consider three

kinds of test rendering primitives for splatting:

1. Square Primitive: They are squares parallel to the view plane with a width equal to the radius of

the bounding sphere [5]. They are rendered with Z-buffering enabled but without any blending.

2. Rectangle Primitive: Consider a disc on the tangent plane of the point, with a radius equal to the

radius of the bounding ball. Also consider a plane parallel to the view plane and located at the position

of the point. An orthogonal projection of the disc on this plane results in an ellipse. The rectangle

primitive is obtained by fitting a rectangle around the ellipse with the sides of the rectangle being

parallel to the principal axes of the ellipse [4]. The rectangle primitives are rendered with Z-buffering

but without any blending.
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TABLE II

COMPARISON WITH SPLATTING PRIMITIVES : (Test 1) SAME NUMBER OF RENDERING PRIMITIVES , (Test 2)

APPROXIMATELY SIMILAR RENDERING QUALITY, (Test 3) SIMILAR FRAME RATES. DP = DIFFERENTIAL POINTS, SP

= SQUARE PRIMITIVE , RP = RECTANGLE PRIMITIVE , AND EP = ELLIPTICAL PRIMITIVE .

Rendering PrimitiveStatistical Highlights
DP SP RP EP

Number of Points 156,800 156,800 156,800 156,800
Test 1 Storage Space (in MB) 9.19 4.90 4.90 4.90

Frames per second (Diffuse) 2.13 11.76 10.52 2.35
Number of Points 156,800 1,411,200 1,155,200 320,000

Test 2 Storage Space (in MB) 9.19 44.10 36.10 10.01
Frames per second (Diffuse) 2.13 1.61 1.49 1.16
Number of Points 156,800 1,036,800 819,200 180,000

Test 3 Storage Space (in MB) 9.19 32.4 25.6 5.6
Frames per second (Diffuse) 2.13 2.05 2.06 2.02

3. Elliptical Primitive : We initialize 256 texture maps representing ellipses (with a unit radius along

the semi-major axis) varying from a sphere to a nearly “flat” ellipse. The texture maps are not Gaussian,

they just have an alpha value of0 in the interior of the ellipse and1 elsewhere. At run time, the

rectangle primitive is texture mapped with a scaled version of the closest approximation of its ellipsoid.

The texture-mapped rectangles are then rendered with a small depth offset and blending [5]. This is

implemented in hardware using the register combiners.

DPs were compared with the splatting primitives for three test cases: (1) same number of rendering

primitives, (2) approximately similar visual quality of rendering, and (3) same frame rates. Table II

summarizes the results of the first test case. DPs were found to deliver a much better rendering quality

for the same number of primitives as seen in Figure 10. DPs especially fared well in high curvature

areas which are not well modeled and rendered by the splat primitives. Moreover, DPs had nearly

the same frame rates as the ellipsoidal primitive. But DPs were slower than the square and rectangle

primitives and required more disk space.

Table II also summarizes the results of the second test case. Sample renderings for this test are shown

in Figure 10. For this case the number of square, rectangle, and elliptical primitives were increased by

increasing the sampling frequency of the uniformly sampled model used for DPs. In this test case, DPs

clearly out-performed the splatting primitives both in frame rates and in the storage space requirements.

The third test case shows that for the same frame rates DPs produced better rendering quality using
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(a) Differential Points (b) Square Primitive (c) Rectangle Primitive (d) Elliptical Primitive
(2.13 fps) (11.76 fps) (10.52 fps) (2.35 fps)

Test 1: Comparison of rendering quality for the same number of rendering primitives (157K pts.)

(a) Differential Points (b) Square Primitive (c) Rectangle Primitive (d) Elliptical Primitive
(157K pts., 2.13fps) (1411K pts., 1.61 fps) (1155K pts., 1.49 fps) (320K pts., 1.16 fps)

Test 2: Comparison of primitives for similar rendering quality

(a) Differential Points (b) Square Primitive (c) Rectangle Primitive (d) Elliptical Primitive
(157K pts.) (1037K pts.) (819K pts.) (180K pts.)

Test 3: Comparison of rendering quality for a rendering speed of 2.1 fps

Fig. 10. Selected areas of rendering of the teapot model for the three test cases

fewer rendering primitives.

VII. C ONCLUSIONS ANDFUTURE WORK

The results and the test comparisons clearly demonstrate the efficiency of DPs as rendering primi-

tives. The ease of simplification gives DPs an added advantage to get a significant speed up. The high

quality of rendering is attributed to the inherent ability of DPs to well approximate the local surface

normal distribution. The rendering efficiency of DPs is attributed to the sparse surface representation

that reduces bus bandwidth and its amenability to per-pixel shading.

One shortcoming of DPs is that the complexity of the borders limit the maximum width of the interior

DPs through theδ constraint. This leads to increased sampling in the interior even though these DPs

have enough room to expand within the bounds laid down by theε constraint. A width-determination

approach that uses third-order differential information (such as the variation of the surface curvature)
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should be able to deal with this more efficiently.

A multiresolution scheme of DPs can be explored that will efficiently render lower frequency versions

of the original surface. Under this scheme, a rendering algorithm that blends the DPs is a promising

prospect. Another line of future work is with regards to simplification. Currently, we using a simple

heuristic with some approximation algorithms which do not guarantee a hole-free representation. There

is a lot of scope for improvement here. Compression of point samples is also a promising prospect.
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