
IMAGE DEBLURRING - COMPUTATION OF
CONFIDENCE INTERVALS

VIKTORIA TAROUDAKI
tarvic@math.umd.edu

AMSC Program, University of Maryland, College Park

Advisor: Prof.Dianne P. O’Leary
oleary@cs.umd.edu

Professor, Computer Science Department
and Institute for Advanced Computer Studies

University of Maryland

Spring Semester 2011

Abstract

Cameras often record blurred images of the original object. Restoration of the
image is not a trivial procedure, and it can be very expensive for large images.
In this project we are trying to efficiently compute confidence intervals for the
digital values that represent the image and visualize them so that the viewer can
distinguish truth from uncertainty.

1

mailto:tarvic@math.umd.edu
mailto:oleary@cs.umd.edu

1 Introduction

An image is divided into pixels that have values denoting the color of that pixel. A
grayscale image, which we will use for simplicity, has one value for each pixel, an
integer in the interval [0, 255]. 0 is the black color, and 255 is the white color.

Blurring occurs when a pixel value is affected by its neighbors. In this project, we
will assume that this is caused by a linear transformation arising from the camera.

We will use the following notation:

Symbol Size Explanation

K m× n Matrix defined through the Point Spread function (PSF) in the
case of a linear problem

X Original Clear Image
x n× 1 Vector containing the values corresponding to the pixels of

the image X
B The blurred image we measure
b m× 1 Vector which contains the values of the pixels of the

blurred image B
e m× 1 Noise Vector

With the above notation, the model of the blurred image is described by the equation
b = Kx+ e, and we know that 0 ≤ xj ≤ 255, i = 1, . . . , n.

In general, the goal is, given the vector b and the matrixK and also given a distribution
for the noise such that the mean value is 0 and the variance is a nonsingular matrix
S2, to compute confidence intervals (i.e. intervals in which the true pixel values of
the object fall with a certain statistical confidence) for the quantities ϕ∗

k = wTk x for
k = 1, 2, . . . , p , where wk are given vectors. If wk is a column from the identity matrix,
then we obtain a confidence interval for a single pixel.

The confidence intervals we will use are the simultaneous confidence intervals: we
determine lk and uk, k = 1, 2, . . . p, so that

Pr{lk ≤ ϕ∗
k ≤ uk, k = 1, 2, . . . , p} ≥ α

where Pr denotes probability and α ∈ (0, 1) is a confidence level.

The following theorem is a slight generalization of one by O’Leary and Rust [4].

Theorem 1 Suppose that the noise is normally distributed. Then, given α in (0, 1),
there is a 100α% probability that the true value of wTk x is contained in the interval [lk, uk]
where

2

lk = min{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ xj ≤ 255, j = 1, · · · , n}

and
uk = max{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ xj ≤ 255, j = 1, · · · , n},

rank(K) = q ,
∫ γ2
0
χ2
q(ρ)dρ = α, r0 = min0≤xj≤255 ‖Kx− b‖2S ,µ2 = r0 + γ2 and χ2

q is the
probability density function for the chi-squared distribution with q degrees of freedom.

2 Approach

2.1 Point-Spread Function and Blurring Matrix K

In general, the matrixK can be experimentally measured using point spread functions
for each pixel of the original image. An easy way to do this is by constructing an
artificial image which contains only one white pixel (of value 255) as the target pixel,
say the (i, j) pixel of the image X (or the (j − 1) ·m + i element of the vector x) and
black anywhere else (value 0).

We consider this as a clear image and we blur it the same way as we would blur
the original image (or the vector corresponding to the original). Then, we measure the
resulting blurred image B, the point spread function. The corresponding vector b is
the (j − 1) ·m+ i column of the matrix K.

If we know that the blur is spatially invariant, then measuring only one column of the
blurring matrix K is enough to determine the whole matrix, as the rest of the columns
of K are simply going to be some displacement of that one column.

For the purposes of this project, the blurring matrixK was constructed using spatially
invariant blur and Gaussian Point Spread Functions. Usually these Point Spread
Functions are of much smaller size than the original image. Let p be the size of the
PSF. Then, for k, l = 1 . . . p, define

PSF (k, l) = exp
(
− 1

2

(k − c1)2

s21
− 1

2

(l − c2)2

s22

)
where c1 and c2 are the coordinates of the center of the Point Spread Function which
for a Point Spread Function which corresponds to the pixel (i, j) are equal to i and j
respectively. In our experiments we set p = 3 and p = 5 and s1 = s2 = 3. We also set
m = n, making K square.

3

2.2 Blurring an Image and Constructing Noise

After the blurring matrix K has been computed, we blur the image by Kx. But in
order to simulate the real case of blurred images, we need to add random noise.
For this, we construct a random vector, e, with elements with mean 0 and standard
deviation a specified number sdv. The variance matrix in this case is the identity
matrix multiplied by the number sdv2, so it apparently symmetric and invertible. The
noisy blurred image thus corresponds to the sum b = Kx+ e. To simulate truth even
better, the noise differs in every run.

2.3 Computing µ2

By Theorem 1, we need to compute µ2 in order to define the ends of the confidence
intervals. The rank of the blurring matrix K (q = rank(K)) should equal m. This can
be easily verified using the Singular Value Decomposition (SVD) of K. We can find γ2

from
∫ γ2
0
χ2
q(ρ)dρ = α, with α being the desired probability that defines the confidence

intervals. In the examples that follow, we use α = 0.95 which is a common confidence
level. In addition, we can compute the minimum of a norm: r0 = min0≤xj≤255‖Kx−b‖2S
and finally get µ2 = r0 + γ2.

The γ2 is computed in MatLab using the command chi2inv(1-a,q). For the minimization
of the norm, we use the lsqlin command of MatLab which performs linear least squares
estimations with the constraints or the quadprog which uses quadratic programming
with the same constraints. To do this, the first thing we need to do is to tranform the
S-norm to the 2-norm that MatLab can handle. Thus,

‖Kx−b‖2S = (Kx−b)TS−2(Kx−b) = (S−1(Kx−b)T)(S−1(Kx−b)) = ‖S−1Kx−S−1b‖22

These matrices and vectors manipulated by lsqlin. For quadprog, we need to modify
the matrices and vectors to get the appropriate H and f that it takes as input.

2.4 Lower and Upper Bounds of Confidence Intervals

For the simultaneous confidence intervals, the ends of the confidence intervals, or else
the bounds are given by the following equations:

lk = min{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ xj ≤ 255, j = 1, · · · , n}

uk = max{wTk x : ‖Kx− b‖S ≤ µ, 0 ≤ xj ≤ 255, j = 1, · · · , n}.

4

O’Leary and Rust ([4]) have proven the following theorem:

Theorem 2 The values lk and uk are defined by the two extreme roots of L(ϕ)−µ2 = 0
where L(ϕ) = minx{‖Kx− b‖2S : 0 ≤ xj ≤ 255, j = 1, · · · , n, wTk x = ϕ}

The proof makes use of the convexity of the function. Also, the computation of the
parameter µ assures us that the function L(ϕ)− µ2 can be negative. These two facts
together and the continuity of the function gives us that there are two roots.

The function L(ϕ) can be evaluated in MatLab by the lsqlin or the quadprog functions
and transforming the data each time as described in the previous section. The main
idea here was to compute a function L(ϕ) that finds the minimum of the norm for all
x with the constraints of the image, i.e., 0 ≤ xi ≤ 255 for all i. The output of this, the
minimum norm, is used in computing L(ϕ) − µ2 and we find the zeros. This would
give us values for ϕ where ϕ = wTx. If, as in this project, w are the columns of the
identity matrix, then for each one of these vectors w, we get the value of one pixel as
ϕ. The lower and upper bounds of the confidence intervals will then give us the lower
and the upper limits of the value of each one of the pixels with the probability that
defines the confidence intervals and which we used to compute the µ.

2.5 Sub-images and Sub-matrices

The blurring matrix K is defined by the point spread function. It is square, block
diagonal and symmetric and has a size which is the square of the size of the original
image. This matrix can be very large depending on the size of the image. For example
an image of size 128×128 will have a blurring matrix of size 16384×16384. This matrix
is used in the iterations and so the number of operations in the algorithm is extremely
high

To reduce the expense, we partition the blurring matrix into sub-matrices and partition
the whole problem into p smaller problems which can be solved individually. These
sub-problems are much easier to solve in the sense that they require fewer operations
and as a result, less time. These sub-problems are independent from each other and
so they can be solved simultaneously using parallel computing (for more details, see
the implementation section).

Mathematically, let’s consider again the problem: b = Kx where K is the n × n PSF
matrix, x is the vector corresponding to the original image and b the vector corre-
sponding to the blurred image. If we want to make a sub-problem of size r× c (r rows
and c columns of the sub-image defining the sub-problem), we proceed as follows.
Using a matrix E with n rows and rc columns, with columns that are unit vectors

5

corresponding to the pixels in the sub-image, and a matrix Ē that corresponds to the

other n− rc unit vectors of a matrix such that I = [EĒ]
([ET

ĒT

])
we have that:

ET b = ETKx = (ETK[EĒ])
([ET

ĒT

]
x
)

= ET [K̂sK̂t]
[xs
xt

]
= [KsKt]

[xs
xt

]
= Ksxs+Ktxt

where xs is the vector corresponding to the sub-image. Bringing the second term of
the right hand side to the left we have that bst = bs−Ktxt = Ksxs. The xt that we need
to use is a first approximation of the values of the pixels of the image, x̂, that we can
compute by minimizing the S-norm: ‖b−Kx‖2S under the constraint that 0 ≤ x ≤ 255.
Mathematically, Ktxt includes all the pixels of the image that are not contained in the
sub-image. Practically though, because the matrix K is sparse, having zeros in a lot
of places, only the neighboring pixels have an impact in the result. From now on,
these neighboring pixels will be called the boundary of the sub-image. The role of the
boundary will also be discussed later under the validation section.

The sub-problem we need to solve is bst = Ksxs.

E is a matrix of unit vectors that we choose, but in this project we will use the matrix
which is part of the identity matrix corresponding to the sub-problem, i.e., if we have

xs =
(x1
x2

)
, then we will take E to be the first two columns of the identity matrix with

size n× n so that the matrix Ks is going to be 2× 2.

The methods presented in the introduction can now be applied to these smaller prob-
lems. We compute the confidence intervals for each one of these so that we have
confidence intervals for the whole image.

To display the computed confidence intervals, we can choose a random value in each
of the confidence intervals. We make many different samples. Then we can display
these deblurred images in frames that change quickly and produce an effect which is
called twinkle (Nagy and O’Leary [?]). If the confidence intervals are short, then the
twinkle effect will show a somehow robust image. If the intervals are long, then we get
information.

3 Implementation

The implementation of the algorithms was done in MatLab.

We divide the problem into smaller problems which can be solved more easily. If

6

the blur is spatially invariant, these sub-problems involve the same matrix. These
sub-problems can be solved using parallel computing. Parallel computing is useful to
handle bigger images in about the same time that MatLab needs for a smaller image.

The idea that was followed in this project for subimages was to check if the image
was sufficiently small and, if so, deal with it as a whole. If it was classified as a big
image, then it was divided into subimages that do not overlap. That means than no
two subimages have common pixels. This procedure has some restrictions though.
First the original image should be small or of size 2pow1 × 2pow2. Whether an image is
small or not is defined by a parameter that the user inserts. More precisely it means
that the image is smaller or equal to the size of the subimage we want to use. The
subimage should also be square of size 2pow × 2pow. Each subimage could be treated
individually using as boundary values the values computed by the initial minimization
problem, x̂ as stated in the previous section on Subimages. At the end of the code,
all the results are combined together to give results of the same type and size of the
original image.

One may think that according to the above, that for the parallelization, we send each
subimage into a different worker. That could be a good idea if we had a lot of subimages
relative to the number of workers. But imagine an image that has one large subimage.
Then this subimage would be worked by one of the workers and the others wouldn’t
help at all. Thus, the time would be similar to using the non-parallel code. This
problem was overcome by parallelizing the minimizations inside each subimage. Thus
the maximum number of workers would be used and the running time would be
minimized. Doing that, we can even parallelize the code when the image is small and
we do not separate it into smaller ones.

The implementation and the runs of the codes were performed on a computer with
only two cores, so our excpected speed up is just a factor of two.

4 Databases

The images that have been used for the purpose of the project are grayscale images
of various sizes. The maximum size of the images that can be used by the code are
determined by the memory that MatLab can handle in each computer. In our case,
images up to 64× 64 could be used.

Constructing specific images, cropping images or resizing already existing ones, cre-
ated an image database.

7

5 Validation

In order to validate the code, we need to run the program using data which should
give us a known or expected result as an output. By data, we mean blurred images for
which we know the clear image. In detail, we take some images which are considered as
the clear, original images. The confidence intervals that we compute should contain
the values of the pixels of the original image with the probability that we used to
compute the intervals. We blur the clear images to obtain the input for our code.
Noise is also added to the blurred images to simulate reality and in order to have the
symmetric and positive definite matrix S that the theory requires. We then compute
the confidence intervals using our code and we count how many samples fall within
the intervals.

Validation was done for the appropriate relation of image size and subimage size but
using for example a 64×64 image with 16×16 or 32×32 size of subimage was forbidden
by the running time. (Details on the running time can be found in the Testing section.)

We run the code N times and we count how many times all of the confidence intervals
include the true values of the pixels. Let this number beM . IfM/N ≥ a or equivalently
if M ≥ 100aN%, then the code of computing the simultaneous confidence intervals is
validated.

In order to construct the blurring matrix we used zero boundary conditions. That
means that we assume that the neighborhood around the clear image is all black.
When we deal with sub-images, a boundary region around each subimage has an
effect on the subimage, and this is why we use a first approximation of the values
of the pixels by the solution of a minimization problem. The uncertainty that this
introduces may ruin the method. For this reason, we should be careful and use
subimages relatively big with respect to the size of the boundary. This issue appeared
during the validation process: with small subimages, the results were not validated
whereas for larger subimages, the confidence intervals were correctly computed under
the specific probability.

The formula to compute the number of pixels in the boundary (BP) given the size of
the subimage (n× n) and the size of the PSF (p× p) is the following

BP = 4

(
n+

p− 1

2

)
p− 1

2
= 2(p− 1)

(
n+

p− 1

2

)

8

6 Testing

The goal of this project was to implement a code for finding the confidence intervals
for the values of the pixels of an image. But simply writing a correct, validated code is
not enough. A good code should give the right results in a relatively short time without
much cost in memory, in the frame of the problem. Several tests have been run and
comparisons have been made.

Running time and storage, different Point Spread Functions and different types of
error, i.e., different standard deviation matrices, were the first things that were tested.
The reason for this was that the running time may depend on the size of the image,
its format and the way that the values of the pixels are stored. The same things affect
the memory. Also, for various types of blurring (Point Spread Function) the running
time for the same image may be different due to the different blurring matrix and the
minimization techniques.

All of the above were studied and compared using images constructed exclusively for
this purpose. Figures 1-3 present some output examples and the comparison between
the methods.

Figure 1: full 64× 64 image

9

Figure 2: full 32× 32 image

Figure 3: full 32× 32 image

Finally, the running time of the codes was examined. This is done in two ways. First,
we increase the size of the image to see how the time changes and second, for a

10

particular image size, we change the number of the subimages used. The codes that
are compared are the serial code that uses the image as a whole, the parallel code that
uses the image as a whole, the serial code that separates the image into subimages,
and the parallel code that separates the image into subimages.

Figure 4: Running Time - Size of Image

The first plot (Figure 4) is time as a function of the size of the image. We include
two sub-images of size 4 × 4 whenever that is validated, and 8 × 8. The time was the
average of several runs that were made with the same parameters.

It is clear that with every method shown here, the time increases as the size of the
image increases. This increase does not seem to be linear. The slowest methods seem
to be those who deal with the image as a whole whereas the fastest are those with
small subimages. In each pair of methods, the parallel one is faster as expected.

7 Summary

In this project 4 different codes strongly related to each other were developed. These
codes compute simultaneous confidence intervals following the theory in [4] and [3].
Two of them are parallel versions of the corresponding serial codes computing the
intervals from a whole image or an image separated into subimages. These codes were
validated and comparison with respect to time was performed.

References

[1] Tony F. Chan and Jianhong (Jackie) Shen, "Image Processing and Analysis",SIAM,
Philadelphia, 2005

11

[2] Per Christian Hansen, James G. Nagy and Dianne P. O’Leary, "Deblurring Images
Matrices, Spectra, and Filtering", SIAM, Philadelphia, 2006

[3] James G. Nagy and Dianne P. O’Leary, "Image Restoration through Subimages and
Confidence Images", Electronic Transactions on Numerical Analysis, 13, 2002, p.
22-37

[4] Dianne P. O’Leary and Bert W. Rust, "Confidence Intervals for inequality con-
strained least squares problems, with applications to ill-posed problems", SIAM
Journal on Scientific and Statistical Computing, 7, 1986, p. 473-489

[5] Bert W. Rust and Dianne P. O’Leary, "Confidence intervals for discrete approxima-
tions to ill-posed problems", The Journal of Computational and Graphical Statis-
tics, 3, 1994, p. 67-96

12

	Introduction
	Approach
	Point-Spread Function and Blurring Matrix K
	Blurring an Image and Constructing Noise
	Computing 2
	Lower and Upper Bounds of Confidence Intervals
	Sub-images and Sub-matrices

	Implementation
	Databases
	Validation
	Testing
	Summary

