

Sometimes Average is Best: The Importance of Averaging for Prediction using MCMC Inference in Topic Modeling

Viet-An Nguyen¹, Jordan Boyd-Graber², and Philip Resnik^{1,3,4}

¹Computer Science, ³Linguistics, ⁴UMIACS, University of Maryland, College Park, MD ²Computer Science, University of Colorado, Boulder, CO

Take-away Messages

Averaging predicted values obtained from multiple test chains consistently improves performances in predicting held-out words (unsupervised topic models) and real-valued metadata of test documents (supervised topic models) across multiple datasets.

Introduction

- Markov chain Monte Carlo (MCMC) approximates the posterior distribution of latent variable models by generating many samples and averaging over them.
- In practice, however, it is often more convenient to **cut corners**, using only a single sample or following a suboptimal averaging strategy.
- We systematically study different strategies for averaging MCMC samples and show empirically that averaging properly leads to significant improvements in prediction.
- ► Two parameters define sample collection control sample collection:
- ▶ Burn-in (B): Samples are kept only after a burn-in period B to remove samples that are not converged.
- ightharpoonup Sampler-lag (L): All but every L samples are discarded to avoid auto-correlation.

Final prediction: averaging over individual predicted values obtained using different samples \mathcal{S}

$$\hat{f} = E_p[f] pprox rac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} f(s)$$

Different ways to collect samples

- 1. Single Final (SF) uses the last sample of the last test chain
- 2. Single Average (SA) uses multiple samples of the last test chain
- 3. Multiple Final (MF) uses the last samples of multiple test chains
- 4. Multiple Average (MA) uses multiple test chains, each has multiple samples

Consistent Prediction Results with LDA Across Datasets

Prediction task

- ► **Task**: Predicting words in held-out documents
- Evaluation: Perplexity—computed using the estimating θ method (Wallach et al., 2009)

LDA

- lacktriangle Each document d is a multinomial over topics $heta_d$
- lacktriangle Each topic k is a multinomial over words ϕ_k
- ▶ **Train**: Estimate topics $\{\hat{\phi}_k(i)\}$ at each training iteration i.
- ▶ **Test**: Estimate the topic proportion $\hat{ heta}_{d,k}(i,j)$ for each test document d
- **Prediction**: Likelihood of each test token $w_{d,n}$

$$f(i,j) = \sum_{k=1}^K \hat{ heta}_{d,k}(i,j) \cdot \hat{\phi}_{k,w_{d,n}}(i)$$

Consistent Prediction Results with Supervised LDA Across Datasets

Prediction task

- ► Task: Predicting real-valued metadata of unseen document given the text
- ► Evaluation: Mean squared error (MSE) and predictive R-squared
- ▶ **Train**: Estimate topics $\{\hat{\phi}_k(i)\}$ and regression parameters $\{\hat{\eta}_k(i)\}$ at each training iteration i
- ▶ **Test**: For each test document, sample the topic assignments for all its tokens
- ▶ **Prediction**: Response variable for each test document

$$f(i,j) = \hat{\eta}(i)^T ar{z}_d^{ ext{ iny TE}}(i,j)$$

SLDA

- ► Going beyond LDA, SLDA jointly captures the relationship between latent topics and document's real-valued metadata
- ullet Given a set of documents, each is associated with a continuous response variable y_d , SLDA models

$$y_d \sim \mathcal{N}(\eta^T ar{z}_d,
ho)$$

where
$$ar{z}_{d,k} = rac{1}{N_d} \sum_{n=1}^{N_d} \mathbb{I}\left[z_{d,n} = k
ight]$$