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Take-away Messages
Averaging predicted values obtained from multiple test
chains consistently improves performances in predicting
held-out words (unsupervised topic models) and
real-valued metadata of test documents (supervised topic
models) across multiple datasets.

Introduction
I Markov chain Monte Carlo (MCMC) approximates

the posterior distribution of latent variable models by
generating many samples and averaging over them.

I In practice, however, it is often more convenient to cut
corners, using only a single sample or following a
suboptimal averaging strategy.

I We systematically study different strategies for
averaging MCMC samples and show empirically
that averaging properly leads to significant
improvements in prediction.

I Two parameters define sample collection control
sample collection:
I Burn-in (B): Samples are kept only after a burn-in period B to remove

samples that are not converged.
I Sampler-lag (L): All but every L samples are discarded to avoid

auto-correlation.

Which Samples Should We Average?
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Final prediction: averaging over individual

predicted values obtained using different samples S

f̂ = Ep[f ] ≈
1

|S|
∑
s∈S

f(s)

Different ways to collect samples

1. Single Final (SF) uses the last sample of the
last test chain

2. Single Average (SA) uses multiple samples of
the last test chain

3. Multiple Final (MF) uses the last samples of
multiple test chains

4. Multiple Average (MA) uses multiple test
chains, each has multiple samples

Consistent Prediction Results with LDA Across Datasets
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Prediction task

I Task: Predicting words in held-out
documents

I Evaluation: Perplexity—computed
using the estimating θ method
(Wallach et al., 2009)

LDA

I Each document d is a multinomial over
topics θd

I Each topic k is a multinomial over
words φk

I Train: Estimate topics {φ̂k(i)} at
each training iteration i.

I Test: Estimate the topic proportion
θ̂d,k(i, j) for each test document d

I Prediction: Likelihood of each test
token wd,n

f(i, j) =
K∑
k=1

θ̂d,k(i, j) · φ̂k,wd,n(i)

Consistent Prediction Results with Supervised LDA Across Datasets
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(b) Movie reviews
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Prediction task
I Task: Predicting real-valued metadata of unseen document given the text

I Evaluation: Mean squared error (MSE) and predictive R-squared

I Train: Estimate topics {φ̂k(i)} and regression parameters {η̂k(i)} at each
training iteration i

I Test: For each test document, sample the topic assignments for all its tokens

I Prediction: Response variable for each test document

f(i, j) = η̂(i)T z̄ted (i, j)

SLDA

I Going beyond LDA, SLDA jointly captures the relationship between latent
topics and document’s real-valued metadata

I Given a set of documents, each is associated with a continuous response
variable yd, SLDA models

yd ∼ N (ηT z̄d, ρ)

where z̄d,k = 1
Nd

∑Nd

n=1 I [zd,n = k]
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