
From Labels to Decisions: A Mapping-Aware Annotator Model
Evan Yao

MIT
Jagdish Ramakrishnan

Meta
Xu Chen

Meta

Viet-An Nguyen
Meta

Udi Weinsberg
Meta

ABSTRACT
Online platforms regularly rely on human annotators to make
real-time operational decisions for tasks such as content mod-
eration. While crowdsourcing models have been proposed for
aggregating noisy labels, they do not generalize well when
annotators produce a labels in a large space, e.g., generated
from complex review trees. We study a novel crowdsourcing
setting with D possible operational decisions or outcomes,
but annotators produce labels in a larger space of size L > D
which are mapped to decisions through a known mapping
function. For content moderation, such labels can correspond
to violation reasons (e.g. nudity, violence), while the space of
decisions is binary: remove the content or keep it up. In this
setting, it is more important to make the right decision rather
than estimating the correct underlying label. Existing methods
typically separate out the labels to decisions mapping from the
modeling of annotators, leading to sub-optimal statistical in-
ference efficiency and excessive computation complexity. We
propose a novel confusion matrix model for each annotator
that leverages this mapping. Our model is parameterized in a
hierarchical manner with both population parameters shared
across annotators to model shared confusions and individual
parameters to admit heterogeneity among annotators. With
extensive numerical experiments, we demonstrate that the
proposed model substantially improves accuracy over exist-
ing methods and scales well for moderate and large L. In a
real-world application on content moderation at Meta, the pro-
posed method offers a 13% improvement in AUC over prior
methods, including Meta’s existing model in production.

CCS CONCEPTS
• Information systems → Crowdsourcing; • Computing
methodologies → Latent variable models.

KEYWORDS
Crowdsourcing, confusion matrix, content moderation

ACM Reference Format:
Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi
Weinsberg. 2023. From Labels to Decisions: A Mapping-Aware An-
notator Model. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’23), August 6–10,

This work is licensed under a Creative Commons Attri-
bution International 4.0 License.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599828

Figure 1: Example of this mapping u(·) for content moder-
ation. The large space of L labels produced by the human
reviewer (left) is mapped to one of D = 2 operational deci-
sions to be taken by the platform (right)

2023, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3580305.3599828

1 INTRODUCTION
Despite the widespread use of machine learning for content
moderation in online platforms, determining whether a con-
tent is policy-violating is often a difficult task requiring human
review. At Meta, millions of pieces of content are reviewed by
thousands of human annotators across the globe on a daily
basis [2]. Such reviewers are trained to follow a protocol, with
specific instructions on how to review and classify specific vio-
lation types. These instructions are typically codified in a com-
plex decision tree that reviewers use to determine whether a
piece of content violates Meta’s community standards [19, 20]
so it can be promptly removed. Throughout our work, we will
use the terms annotators and reviewers interchangeably.

Due to various nuances in violations, e.g., determining a
specific type of slur or the context in which it is used, review-
ers typically produce labels in a large space indicating the type
of policy violation or lack thereof. This detailed label is then
mapped to a specific operational decision: remove the content
or keep it up (see Figure 1). In this paper, we consider this com-
mon setup at Meta, where we have a large label space with
few operational decisions. Some examples of such a review
paradigm include: 1) a reviewer marks the operational deci-
sion, e.g., remove, and provides additional detailed context on
reason why the content was violating, e.g., graphic violence.
The large space of labels is the space of possible reasons or
additional context provided by the reviewer, 2) a reviewer
answers a sequence of questions on the content (e.g., does it
contain a slur?) and the answers correspond to violating or
non-violating by a mapping function the reviewer may be
unaware of. Here, the large label space consists of all possible
sequences of answers given by the reviewer.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3580305.3599828
https://doi.org/10.1145/3580305.3599828

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi Weinsberg

More generally, we consider a setting with L possible labels
each of which are mapped into one of D < L operational
decisions by a given mapping function u(·). For each item
which requires an operational decision, we collect multiple
labels from different annotators and must aggregate them into
a final decision. While annotators choose labels from among
L possible labels, the platform is only interested in making
the correct decision and quantifying its uncertainty. To do so,
a common approach from the crowdsourcing literature is to
model each annotator’s labeling behavior with a confusion
matrix (see e.g., [8, 27, 30]) and each content with some latent
state. The most natural approach would be to model each
content with a true label among the L possible labels and
each reviewer with a L × L confusion matrix, where each row
is a categorical distribution over the label space, describing
this annotator’s labeling behavior when reviewing content
with some true label. Such a model allows us to quantify our
uncertainty of each content’s true label conditioned on the
annotator’s labels. We can then quantify our uncertainty over
decisions by applying u(·).

While such L × L confusion matrices work well in cap-
turing any reviewer-specific features across the labels (e.g.,
an annotator who is especially inaccurate at identifying one
particular label or is often biased towards another label), es-
timating L × L parameters for each annotator is not scalable.
A natural approach to reduce the parameter space is to lever-
age the fact that we are only interested estimating the correct
decision. We first apply the mapping function u(·) to reduce
all observed labels down to their corresponding decisions.
Then, we can apply a similar modeling idea as before except
over the D decisions: each content has a true decision from
D possible decisions and each reviewer’s behavior with a
D × D confusion matrix. While such an approach is scalable
(as D is usually small), by collapsing all labels that map to the
same decision, valuable information from the label space itself
may be lost. For example, consider the two labels violence
and nudity from the content moderation example in Figure
1. Even though both map to the decision remove, one may be-
lieve that a label of nudity results in a more confident decision
to remove the content compared to violence because violence
is inherently a more a subjective violation.

Our work develops and validates a novel approach that
achieves the best of both worlds, capturing the nuances of the
L labels for only a moderate increase in parameter space. We
describe our contributions as follows:

(1) Novel Confusion Matrix Model. We propose a novel
crowdsourcing model that learns D × L rectangular confu-
sion matrices, where some parameters are shared amongst
reviewers, while others are personalized. Our approach
incorporates the mapping u(·) in the model to improve
accuracy and scalability when L is large. The aforemen-
tioned L × L and D × D approaches do not leverage the
mapping function u(·) as part of the model, but rather
apply u(·) either before or after the model inference itself.
We are not aware of prior methods that specifically focus

on this setting with a large space of labels mapping to a
few operational decisions.

(2) Insights from Simulations. We show through simulations
when our model is most beneficial compared to three
benchmark approaches including the aforementioned L ×
L and D × D approaches (denoted multi and binary re-
spectively). Our model significantly outperforms bench-
marks when labels mapping to the same decision are het-
erogeneous, training data per annotator is limited, and L
is large.

(3) Application to Content Moderation at Meta. Based on
data from community operations at Meta, we show that
our proposed approach is effective on a large-scale dataset
by utilizing the label-specific information while reducing
model complexity and inference time. Our model achieves
a 13% improvement in AUC after a single review, and over
6% after two reviews.

Aim and Scope. We describe an approach that is effective
for a real-world content moderation application at Meta, im-
proving upon a method previously deployed [24]. In addition,
while our method is motivated by this application, it is gener-
ally applicable to multiple domains, where detailed reviewer
labels are mapped to a smaller space of decisions. For example,
other domains that could benefit from our approach include
image or text classification where descriptive tags are used,
or medical diagnosis where detailed labels on the location of
abnormalities in images can inform the presence of a disease.

Reproducibility. Technical details about our model and
simulations can be found in Appendix A and B. The code can
be found at https://github.com/facebookresearch/clara/
tree/main/mapping-aware-model

2 RELATED WORK
Aggregating labels provided by non-experts to infer the cor-
rect answer has been the focus of much research in the crowd-
sourcing literature [1, 7, 16, 26, 29, 36, 37]. Specifically, our
work is broadly related to the following areas:

Multi-Class Crowdsourced Labeling. For multi-class la-
beling tasks where each reviewer provides a label by picking
one out of L possible options, a common modeling paradigm
is to assume that each reviewer is characterized by an L × L
confusion matrix [8, 14, 18, 28]. To accurately estimate the
confusion matrices when L is large, many extensions have
been proposed. One direction is to share information across
confusion matrices by mixing a single common population-
wide confusion matrix with per-reviewer’s confusion matri-
ces [4, 6, 13]; this is the benchmark model common described
in Section 4.1. Another direction is to model and capture the
correlation among reviewers’ confusion matrices [3, 14, 17, 22].
Although this approach does not reduce the number of param-
eters estimated, it does allow for insights from one reviewer
to generalize to another.

To reduce the parameter space, many modeling approaches
perform clustering to group “similar” reviewers into commu-
nities [12, 21, 27, 30, 33]. In addition, to address the sparsity in
the observed labels, another line of work incorporates items’

https://github.com/facebookresearch/clara/tree/main/mapping-aware-model
https://github.com/facebookresearch/clara/tree/main/mapping-aware-model

From Labels to Decisions: A Mapping-Aware Annotator Model KDD ’23, August 6–10, 2023, Long Beach, CA, USA

features to estimate feature-dependent confusion matrices us-
ing logistic regression [15, 34, 35] or Gaussian processes [23].
In this work, we leverage the additional information from the
label-to-decision mapping to capture the confusion matrices
more effectively and accurately.

Hierarchical Crowdsourced Labeling. In many applica-
tions, especially in annotating images and text for training ma-
chine learning algorithms, reviewers will be asked to produce
a hierarchical label such as animal, dog, golden retriever
in object detection. The main work on aggregating hierarchical
labels from different reviewers comes from Otani et. al. [25]
Motivated by an existing model in probabilistic label aggrega-
tion [32] and item response theory [31], Otani et. al. model a
hierarchical classification task as a sequence of independent
multi-class tasks, each with their own difficulty level, in ad-
dition to a set of reviewers with their own skill level. While
not directly related to aggregating labels, other work in hierar-
chical crowdsourcing has focused on incomplete annotations
[10] (ones that don’t stretch down to the leaf) and constructing
hierarchical structures out of flat multi-class labels [9]. Our
setting in this paper is different from 2-tier hierarchical classi-
fication in that we are interested in estimating the high-level
decisions rather than the low-level ones, which was the goal
of previous work.

3 RECTANGULAR ANNOTATOR MODEL
In this section, we describe the basic setup of our problem
setting and our annotator model rectangular. Throughout
our paper, we focus on applications with binary decisions (i.e.,
D = 2 such as remove or keep), but our model is described
generally for any D ≥ 2.

3.1 Problem Setup
Label Space. Consider a crowdsourcing setting with D pos-
sible decisions or outcomes (e.g. remove or keep) and L pos-
sible labels assigned by human annotators. Let the ordered
set of possible decisions and labels be D and L respectively,
with |D| = D and |L| = L. For notational simplicity, we will
also refer to a label ℓ ∈ L by its index, i.e. ℓ ∈ [L], where
[n] = {1, 2, . . . , n} for any positive integer n. A fixed mapping
u : L → D is provided which maps each label into a corre-
sponding decision. We also define Ld ⊂ L to be the set of la-
bels that map to decision d ∈ D, i.e. Ld = {ℓ ∈ L | u(ℓ) = d}.

Annotators and Observed Labels. There are I items requir-
ing labels, each of which receive labels from a small subset of
A annotators. Items and annotators are indexed by [I] and [A]
respectively. Each of the I items is annotated by Ni annotators,
each of whom produces a label in L. Let {ai,j}i∈[I],j∈Ni

and
{ℓi,j}i∈[I],j∈Ni

denote the set of annotators and labels, respec-
tively. Here, ai,j ∈ [A] is the index of the annotator who made
the jth review for content i ∈ [I], and ℓi,j ∈ L is the label they
produced.

3.2 Generative Model: rectangular
We now describe our data generative model rectangular and
highlight how it leverages the hierarchical structure induced

by u(·). A formal generative process and plate diagram can
be found in Figures 9 and 10 in Appendix A.

3.2.1 Basic Generative Process. The generative process consists
of 3 main components: true decisions (yi ∈ D), confusion
matrices (ψ(a) ∈ MD×L)1, and observed labels ℓi,j ∈ L. Note
that Ni and ai,j’s are fixed from the observed data and we do
not model how they are generated. The first two components
are latent (unobserved) variables while the last is observed.

True Decisions. We model each item with a true decision
yi ∈ D capturing the true or correct decisions if annotators
were perfect. First, we draw θ ∈ ∆D−1 from a Dirichlet dis-
tribution with concentration vector all-ones 2. Each θd repre-
sents the proportion of items in the system with true decision
d ∈ D. For each item i ∈ [I], we draw its true decision yi
independently according to a categorical distribution over
D with probabilities given by θ ∈ ∆D−1. We denote this as

yi
iid∼ Cat(θ).
Annotator Confusion Matrices. Each annotator a ∈ [A]

has an associated rectangular confusion matrix ψ(a) ∈ MD×L

where each row ψ
(a)
d is a L-dimensional probability vector over

L. Intuitively, the confusion matrix fully captures the stochas-
ticity in each annotator’s labeling behavior. Conditioned on a
particular correct decision, the corresponding row of a anno-
tator’s confusion matrix gives a categorical distribution over
observed labels and the annotator’s label is drawn accordingly.
The novelty of our model is captured in the following two
ways regarding confusion matrices:
(1) Rectangular Design. Since we are only interested in mak-

ing correct decisions (and not estimating the correct label),
modeling our latent state with D decisions reduces our
model complexity over modeling the latent state with L la-
bels, resulting in D × L rectangular confusion matrices as
opposed to more traditional square matrices of size D × D
or L × L.

(2) Joint Distribution. We generate {ψ(a)}a∈[A] in a way which
allows information to be shared across annotators in a way
that leverages the hierarchical structure induced by u(·).
We describe this process in detail in Section 3.2.2.

Observed Labels. Fixing the values of {yi}i∈[I] and {ψ(a)}a∈[A],
for each item i ∈ [I], we draw the observed labels {ℓi,j}j∈[Ni]

independently as follows:(
{ℓi,j}j∈[Ni] | yi, ψ(a)

)
∼ Cat

(
ψ
(ai,j)
yi

)
Conditioned on yi and ψ(a), the labels for each item are

drawn independently according to the confusion matrix given
by annotator ai,j ∈ [A] and the row corresponding to yi.

Example 1 (Rectangular Confusion Matrix). Figure 2 shows
a rectangular confusion matrix ψ(ai,j) for annotator ai,j ∈ [A].
The two decisions are D = {A, B} while the four labels are
L = {A1, A2, B3, B4} and the mapping between them is
1Here Mp×q ⊂ Rp×q is the set of all p by q confusion matrices, which are
matrices where every row is a probability distribution.
2∆n−1 denotes the n-dimensional simplex, i.e. probability distributions of length
n.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi Weinsberg

Figure 2: Rectangular confusion matrix ψ(ai,j) with D = 2
latent states {A, B} in squares and L = 4 labels {A1, A2, B3,
B4} in circles. Each row of the matrix defines a categorical
distribution over {A1, A2, B3, B4}

u(A1) = u(A2) = A and u(B3) = u(B4) = B. Given yi ∈
{A, B}, this annotator generates a label based on a categorical
distribution given by each row of Figure 2.

3.2.2 Jointly Drawing Confusion Matrices. A naive way to draw
{ψ(a)}a∈[A] would be to draw each ψ(a) independently from
some prior distribution over MD×L. Such a model formula-
tion leads to O(ADL) parameters, which can be quite large
and hence difficult to estimate in the inference process. More
importantly though, as described in Section 1, reviewers are
trained for the purpose of quality control and possess shared
characteristics. Therefore, we assume instead that the set of
confusion matrices {ψ(a)}a∈[A] is parameterized with a smaller
number of parameters, including one set of individual parame-
ters and one set of shared parameters{

ϕ(a) ∈ MD×D
}

a∈[A]
and

{
ηd,d′ ,ℓ ∈ [0, 1]

}
d,d′∈D2,ℓ∈Ld′

.

We model each annotator’s labeling process step in two steps:
choosing a decision d ∈ D and then producing a label ℓ from
Ld. The confusion matrix ϕ(a), specific to each individual anno-
tator, models how each annotator first chooses d ∈ D. Fixing
this decision ud, the actual label ℓ is drawn from Ld accord-
ing to a categorical distribution with probability vector ηd,u(ℓ)
3 that is shared across all annotators. With this hierarchical
model specification induced by the decision mapping u, the
actual labeling process of an annotator can be decomposed
into two steps: the annotator produces the decision and then
the label within that decision. Mathematically, the probability
that annotator a produces label ℓ when the ground truth is

d is decomposed into the product of ϕ
(a)
d,u(ℓ) for the annotator

to produce a decision u(ℓ), and, ηd,u(ℓ),ℓ for them to produce
label ℓ out of Lu(ℓ). Specifically, we have:

ψ
(a)
d,ℓ = ϕ

(a)
d,u(ℓ) · ηd,u(ℓ),ℓ (1)

Example 2 (Deriving ψ from ϕ and η). ψ(ai,j) from Figure 2 can
be derived from ϕ(a) and η given in Figure 3. The two trees
represent the decision-making process when the latent state
yi is A or B. The first level of the tree (black solid lines) has
probabilities that come from ϕ(a), unique to each annotator,

3We define ηd,d′ ,ℓ = 0 if ℓ ∉ Ld′ .

while the second level (red dashed lines) come from the shared
η’s. The final rectangular confusion matrix is given by the
product of the two probabilities along the tree’s branches
down to the leaves.

3.2.3 Intuition: Label Ambiguity Score. While ϕ(a) captures the
general skill level of each annotator, the shared parameter η
captures the ambiguities of each label. We define formally this
concept of label ambiguity score below and claim in Proposi-
tion 1 that rectangular assumes all annotators share the same
ordering of label ambiguity scores.

Definition 3 (Label Ambiguity Score). For any confusion ma-
trix ψ ∈ MD×L, the ambiguity score of label ℓ ∈ L with respect
to decision d ∈ D \ {u(ℓ)} is defined as:

bψ
ℓ,d :=

ψd,ℓ

ψu(ℓ),ℓ

Intuitively, a label ℓ has a high ambiguity score with respect
to decision d if there is a relatively high chance of seeing label
ℓ when latent state (i.e. yi) is d ≠ u(ℓ) versus u(ℓ). Such a label
ℓ is unreliable for concluding that yi = u(ℓ) as it is likely to be
generated even when yi = d ≠ u(ℓ).

Example 4 (Ambiguity Score). Consider again the example
from Figure 2. The ambiguity score for A1 and A2 are 0.07/0.40 =
0.175 and 0.03/0.40 = 0.075 respectively. This implies that la-
bel A1 is more ambiguous than label A2 as both labels have a
40% chance of being drawn from their correct decision of A,
but label A2 is likely to be drawn from state B.

Our hierarchical model is constructed so that across our
confusion matrices ψ(a) for a ∈ [A], there are commonalities
between label ambiguity scores.

PROPOSITION 1. Consider two annotator a, a′ ∈ [A] with their
confusion matrices ψ(a) and ψ(a′) drawn according to equation (1).
For any two labels ℓ, ℓ ∈ L with u(ℓ) = u(ℓ′) and decision d ∈ D
with d ≠ u(ℓ), we have the following:

bψ(a)

ℓ,d ≤ bψ(a)

ℓ′ ,d ⇔ bψ(a′)

ℓ,d ≤ bψ(a′)

ℓ′ ,d (2)

In other words, our generative process ensures that the
ordering of ambiguity scores across different labels ℓ ∈ L
for a given decision d ∈ D \ {u(ℓ)} is fixed across reviews.
Consider Example 4: label A1 has an ambiguity score that
is 0.175/0.075 = 2.33 times higher than that of label A2. By
Proposition 2, we conclude that label A1 is more ambiguous
than label A2 for all annotators. The proof of Proposition 1 can
be found in Appendix A.1.

3.2.4 Complexity. Our model consists of D × D confusion ma-
trices for each annotator ψ(a) as well as O(D · L) parameters
from η, which is non-zero only for d, d′ ∈ D2 and ℓ ∈ Ld′ .
Therefore, the total number of parameters for our model is
O(AD2 + DL).

3.2.5 Limitations. While our model is simple and intuitive,
there are indeed limitations. First, we acknowledge that by
reducing the latent space from L dimensions to D, this may

From Labels to Decisions: A Mapping-Aware Annotator Model KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 3: Decomposition of rectangular confusion matrix from Figure 2 into ϕ(a) (individual) and η (shared).

not accurately capture the underlying data generation pro-
cess. Second, we also acknowledge Proposition 1 may not
hold in practice as some annotators may find certain labels
relatively ambiguous while other annotators find those labels
quite unambiguous.

4 BENCHMARKS AND EVALUATION
In this section, we define the benchmark modeling approaches
that rectangular will be evaluated against.

4.1 Benchmark Approaches
We compare our generative model rectangular against three
benchmark approaches: binary, multi and common. Similar to
rectangular, each benchmark approach follows the general
structure from Dawid & Skene [8] in modeling each item
i ∈ [I] with some latent state yi and each annotator a ∈ [A]’s
behavior using confusion matrices ψ(a). Given yi and ψ(a),
reviews are independently generated from a categorical distri-
bution given by the yith row of ψ(a).

• multi. We model each review as a L-way multi-class label-
ing problem by modeling the latent state yi ∈ [L] (drawn
independently for each item i ∈ [I]) and ψ(a) ∈ ML×L

(drawn independently for each annotator a ∈ [A]). Note
that multi ignores the mapping function u(·) in the model
itself. Rather, the function u(·) is used when we apply the
model to estimate item i’s uncertainty with respect to D, i.e.
P(u(yi) = d), which can be computed as Σℓ∈Ld

P(yi = ℓ).
While multi is able to capture any type of confusions among
the L labels, estimating a L × L confusion matrix for each
annotator can be challenging when L is large and data
per annotator is limited. The following two benchmark
approaches are two ways of mitigating this issue: binary
reduces the latent space from L to D, while common learns
common mistakes shared between ψ(a)’s.

• binary. First, transform {xi,j ∈ L}i∈[I],j∈[Ni] by applying
u(·), thus making xi,j ∈ D. Model each latent state yi by
one of D possible values and ψ(a) as a D × D confusion
matrix, which are drawn independently from a fixed prior

for each annotator. This model ignores the original label
space L and models each annotator’s behavior as directly
producing decisions in D. While D × D confusion matrices
are often practical to estimate for each annotator, such an
approach loses valuable information from L themselves.

• common. Presented in [6, 13], common is an extension of multi
where we add in a shared population confusion matrix ψc ∈
ML×L that is used to model common confusions shared
among all annotators. For example, ψc could capture the
fact that all annotators are often confused between "spam"
and "scam" labels in content moderation. Each reviewer’s
final confusion matrix ψ(a) ∈ ML×L is computed as

ψ(a) = ωa · ψ̃(a) + (1 − ωa) · ψ(c)

where ψ̃ captures each reviewer’s own characteristics and
the mixing factor ωa ∈ [0, 1] is a learned parameter. The ad-
vantage of this approach is that common confusions among
annotators will not need to be learned separately for each
annotator, reducing the amount of data needed. The disad-
vantage is that the number of model parameters is still large
overall and the addition of ψc makes optimization more
challenging as ψc jointly affects all annotator’s behaviors.
Our model rectangular uses D × D confusion matrices for

each annotator, similar to binary, and shares the parameter
η across all annotators similar to common. However, unlike
those two approaches, our model is able to both capture the
information from L and remain practical to estimate. Figure
4 summarizes the dimensionality of each of the 4 modeling
approaches as well as any shared parameters, while 1 summa-
rizes the advantages and disadvantages.

4.2 Evaluation Metrics
4.2.1 Notation. To evaluate the quality of each model M, we
partition a dataset of I items into a training set and testing
set, with Itrain ⊔ Itest = [I]. We fit each of our four generative
models to the observed training data {ℓi,j, ai,j}i∈[Itrain],j∈[Ni]

using standard posterior inference techniques and obtain a
maximum a posteriori (MAP) estimate of the latent variables,
in particular θ̂, ŷi and ψ̂(a). In all our experiments, posterior

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi Weinsberg

Figure 4: Dimensionality of each reviewer’s confusion matrix and shared parameters.

Model yi Size ψ(a) Dim Parameters Advantages Disadvantages
binary D D × D O(AD2) Small number of parameters Loses information from L
rectangular D D × L O(AD2 + DL) Small number of parameters and

captures information in L
Assumes label ambiguity scores
are consistent across annotators

multi L L × L O(AL2) Simple and utilizes L Large number of parameters
common L L × L O(AL2) Utilizes L while reducing

amount of data needed
Large number of parameters and
difficult to optimize

Table 1: Comparing the Four Models, Ordered by Complexity

inference was performed using Stan [5] with the L-BFGS opti-
mization algorithm.

For each item i ∈ Itest, n ∈ [Ni] and decision d ∈ D, we
use our MAP estimate to compute the following posterior
probability:

pd
i,n :=

P
(

yi = d | {ai,j, ℓi,j}j∈[n]
)

ϕ̂(a) ∈ MD×L

Σℓ∈Ld
P
(

yi = ℓ | {ai,j, ℓi,j}j∈[n]
)

ϕ̂(a) ∈ ML×L

(3)
where pd

i,n is defined as the posterior probability of decision d
being the true decision for item i after observing just the first n
out of the Ni total reviews. Depending on whether M models
yi with D or K dimensions, either obtain pd

i,j immediately from
yi or a sum over all labels in Ld. We consider the Ni reviews
as happening in sequence, with pd

i,n capturing our posterior
after partial information. For notational convenience, let zi
for i ∈ Itest be the decision with the highest posterior after
all Ni reviews, i.e. zi := argmaxd∈D pd

i,Ni
. We can think of zi

as the ultimate decision after observing all Ni reviews. Figure
5 below provides a visualization of both pd

i,n and zi evolving
from two annotations.

4.2.2 Metric Definitions. For any item i ∈ Itest, when reviews
are plentiful (i.e. Ni is large) and annotators are generally
accurate, then any model’s estimate of zi will be close to the
true correct decision. However, a strong model can obtain
a early signal of zi from just the first few reviews. Namely,
we evaluate a model based on how well it can perform the
following:

Figure 5: Sequential labeling process with 2 annotators

• After just the first review, distinguish between items for
which the final decision is most likely to differ from that of
the first review.

• After the second review, given that the first two reviews
conflict, prioritize more reviews for items where the final
decision is more likely to be a decision of interest (e.g. vio-
lating, if we want to quickly remove violating content from
the platform).

We define these two metrics formally.

Definition 5. First Review AUC for decision d ∈ D mea-
sures how well a model is able to determine whether zi = d
given that u(xi,1) = d. It is calculated by:

roc_auc
(
{pd

i,1, 1(zi = d)}i∈[Itest] : u(xi,1)=d

)
where roc_auc({xi, yi}) is the area under the receiver oper-

ating curve (ROC) with scores xi and true binary labels yi.

This metric measure how well our algorithm can decide
whether to trust the first label of ℓi,1. Naively, we could just al-
ways trust the first reviewer’s decision is correct even though

From Labels to Decisions: A Mapping-Aware Annotator Model KDD ’23, August 6–10, 2023, Long Beach, CA, USA

sometimes further review would have overturned that de-
cision. A strong model would assign a smaller pd

i,1 value to
items i where it is the case that zi ≠ u(ℓi,1) (i.e. the first review
is overturned by future reviews). We note that an algorithm
which always trusts the first review will receive a first-review
AUC score of 0.50.

We can define a similar metric after two reviews, but in the
more challenging case where the two reviews conflict.

Definition 6. Two Conflicting Reviews AUC measures how
well a model is able to estimate the final decision after 2 con-
flicting reviews. For a decision d ∈ D, this metric is defined
as:

roc_auc
(
{pd

i,2, 1{zi = d})}i∈[I] : u(xi,1)≠u(xi,2)

)
This AUC metric is perfect if pd

i,2 is close to 1 when zi = d
and close to 0 when zi ≠ d. This would imply that after the
second review, pd

i,2 is good at differentiating whether zi = d or
not. For example, for the decision to remove violating content,
we could allocate our limited labeling resources to items with a
high score, thereby removing violating content more quickly.

5 SIMULATION STUDY
We design a simulation study that highlights the advantages
of rectangular over the three benchmark approaches.

5.1 Data Generative Process
Basics. Our simulation study consists of L ∈ {4, 10, 20} label
classes and D = 2 decisions, where labels 1 through L/2 map
to decision A and labels L/2 + 1 through L map to decision
B. There are a total of I ∈ {1000, 5000, 10000, 15000, 20000}
items and a fixed A = 50 annotators. Each annotator a ∈ [A]

has a confusion matrix ψ(a) ∈ ML×L, which we describe in
detail below. Each item i ∈ [I] has a ground truth label yi ∈ L,
which is generated from a uniform distribution over L classes,
and receives 3 reviews from annotators chosen uniformly at
random from [A]. After choosing annotators ai,1, ai,2, ai,3 and
ground truth yi, we draw the labels ℓi,1, ℓi,2, ℓi,3 independently
with ℓi,j being drawn from the yith row of ψ(ai,j).

Confusion Matrices. We generate confusion matrices ac-
cording to common. Recall that common’s generative process in-
volves generating individual confusion matrices ϕ̃(a) for each
annotator a ∈ [A], as well as a common confusion matrix ψc

that is shared among all annotators. Annotator a produces
their labels according to the matrix ψ(a) = ωa · ψ̃(a) + (1 −
ωa) ·ψc. In our simulation study, we fix ωa = 0.5 and generate
ψ̃(a) and ψc as follow:

• ψ̃(a) is chosen such that annotators 1, 2, . . . , A are ordered
in ascending order of accuracy. For each label ℓ ∈ L, anno-
tator a ∈ [A] gets it correctly with probability 0.7 + a

A · 0.3
on average. Otherwise, they make mistakes uniformly at
random across the other L − 1 labels. The left side of Figure
6 shows an example with A = 3 where annotators 1, 2 and
3 are in increasing order of skill.

• ψc is controlled by a label heterogeneity factor h ∈ [0, 1], which
intuitively captures how much labels vary in terms of label

Figure 6: Simulation setup example with L = 4. ψ̃(a) is
shown on the left, while possible values of ψc is on the
right. In the matrices shown, darker square represent values
closer to 1

ambiguity score (Definition 3). Consider the two shared
matrices on the right half of Figure 6. The bottom matrix is
an example for h = 1.0 in which there is high heterogeneity
in label ambiguity: labels A1 and B3 are ambiguous while
labels A2 and B4 are unambiguous (this is similar to Example
4). On the other hand, the top matrix in the right half of
Figure 6 represents the case where h = 0.0, meaning that all
labels mapping to the same decision behave the same and
thus there is no reason to distinguish between such labels.

5.2 Results
Figure 7 provides the results of our simulation study. Graphs
in the first row plot the first review metric from Definition 5
while the second row corresponds to second review conflict-
ing metric from Definition 64. The x-axis of all graphs is the
number of items in the training set, i.e. I, while all metrics
were calculated on an independently drawn testing set also
of size I. Each column corresponds to a different combination
of h ∈ {0.0, 1.0} and L ∈ {4, 10, 20} indicated at the top of
each column. Each point is the average of 10 trials with means
shown by the lines and 95% confidence intervals shown by
the highlighted area around each line.

Figure 7 (left) Varying h. When h = 0.0, binary performs
the best because reducing the labels to decisions as a pre-
processing step loses no information (recall when h = 0.0 the
labels that map to a particular decision are indistinguishable).
Our method rectangular performs only marginally worse
than binary, but noticeably better than common and multi after
both the first and second reviews. common and multi perform
poorly because they attempt to estimate L × L = 16 param-
eters for each annotator when a simple D × D = 4 matrix
would have been sufficient. When h = 1.0, all methods besides

4Note that since our two decisions are symmetric, we show the average of the
first-review AUC metrics with respect to either decision.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi Weinsberg

10000 20000

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

h = 0.0
 L=4

10000 20000

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

h = 1.0
 L=4

10000 20000

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

10000 20000

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

binary
rectangular
multi
common

Training Size

 First
Review

Second
Review

10000 20000
0.45

0.50

0.55

0.60

0.65

h = 1.0
 L=10

10000 20000
0.45

0.50

0.55

0.60

0.65

h = 1.0
 L=50

10000 20000
0.45

0.50

0.55

0.60

0.65

10000 20000
0.45

0.50

0.55

0.60

0.65

binary
rectangular
multi
common

Training Size

 First
Review

Second
Review

Figure 7: Simulation results when varying the heterogeneity factor h (left) and label space size L (right)

binary perform better by taking advantage of the heterogene-
ity in L labels. We see that rectangular is able to achieve the
better AUC’s compared common with fewer training examples,
despite the underlying data being generated from common.

When labels are indistinguishable (and thus not useful),
rectangular performs only slightly worse than binary, but
when labels are heterogeneous, rectangular significantly out-
performs multi and common for the same amount of training
data. In this sense, rectangular is able to achieve the best of both
worlds: it performs well regardless of whether the labels are useful
for decision-making.

Figure 7 (right) Varying L. : From the second column of
Figure 7 (a), we saw that when L = 4 and h = 1.0, with
enough training examples, all methods that utilize the L la-
bels (i.e. all except binary) achieve the same performance. In
Figure 7 (b), we hold h = 1.0 constant and increase L to 10
and 50. As expected, binary’s performance stays the same
regardless of L since the larger label space does not affect it.
However, as L increases, there a substantial gap appears be-
tween rectangular and common/multi in both the first review
and second review metrics. For L = 50, common and multi
must estimate 50 × 50 entry confusion matrices for each of 50
annotators, leading to at least 125,000 parameters from just
the confusion matrices alone. Running a posterior inference
algorithm with so many parameters to estimate is already
challenging task, let alone dealing doing so with such limited
data. On the other hand, rectangular and binary must only
estimate 50 × 4 = 200 annotator-specific parameters, making
them much more scalable, but only rectangular can also take
advantage of the label-specific information. The low parameter
complexity of rectangular makes it more scalable to large values
of L while still taking advantage of the label space itself.

6 META COMMUNITY OPERATIONS
We demonstrate the value of rectangular on real-world data
from community operations at Meta. On this large-scale dataset,
rectangular achieves a 13% improvement in first review AUC
and a 6% improvement in second review AUC.

6.1 Dataset Description
Our dataset consists of a sample of 300,000 pieces of content
at Meta over a 60 day window, each of which has an aver-
age of 2.3 labels from reviewers contracted by Meta. Among
these 300,000 pieces of content, the set of reviewers has size
A = 10771 for an average of around 72 reviews per reviewer
Each reviewer provides one of L = 14 labels, 13 of which corre-
spond to various violation types such as violence or nudity 5,
while the last indicates a lack of violating content. The D = 2
decisions are whether the content is violating and needs to be
removed from the platform or non-violating and can be kept.

6.2 Results
Results from the Meta content moderation dataset are shown
in Figure 8. On the x-axis, we explore how the performance
of our algorithms vary with the number of training examples
by splitting the 300,000 items into a training set of proportion
x ∈ {0.05, 0.1, 0.25, 0.5} and the remaining 1 − x items into the
testing set. All experiments are averaged over 10 random train-
test splits. Means and 95% confidence intervals are shown by
the line and shaded regions respectively. The first three panels
show the first review and second review AUC metrics, while
the last panel shows the training time on a log scale.

Our method rectangular significantly outperforms the other
three methods in terms of the first review violating and sec-
ond review conflicting AUC metrics, while achieving nearly
5Even though a piece of content could potentially have multiple violation types,
we only ask reviewers for the most prominent violation.

From Labels to Decisions: A Mapping-Aware Annotator Model KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0.1 0.2 0.3 0.4 0.5

0.48

0.50

0.52

0.54

0.56

0.58

0.60

First Review Violating

0.1 0.2 0.3 0.4 0.5

0.52

0.53

0.54

0.55

0.56

0.57

First Review Non-Violating

0.1 0.2 0.3 0.4 0.5

0.50

0.52

0.54

0.56

Second Review Conflicting

0.1 0.2 0.3 0.4 0.5

10 1

100

101

102

M
in

ut
es

Training Time

binary
rectangular
multi
common

Training Size

 AUC
Score

Figure 8: AUC and training time comparison on Meta community operations dataset

the best performance in first review non-violating. In partic-
ular, we highlight that the current model used in production
at Meta, described in [24] is exactly the benchmark model
binary. At a 50% training size, rectangular outperforms the
next best method by around 13% in first reviewer violating
AUC, and by 6% for the second review conflicting AUC. Fur-
thermore, rectangular is able to achieve nearly its peak AUC
score even with a training size of just 5%, while multi and
binary require more data to increase in performance. On the
flip side, the method common has very high variation across
trials and achieves poor mean performance, even decreasing
in AUC with an increase in training size. Even though common
only has a single additional confusion matrix compared to
multi, the fact that this confusion matrix simultaneous affects
all annotator’s behavior increases the difficulty of finding the
MAP estimate.

Review Efficiency Implication. An increase in first review
or second review AUC allows for better prioritization of re-
views. Consider the first-review AUC metric for the violating
decision. To better allocate scarce human reviews, we would
like to prioritize additional reviews for content whose final
decision is most likely to change to non-violating. For such con-
tent, had we trusted the first review only and not performed
multiple reviews, we would have created a false positive. In
one extreme, we could simply trust the first review and not
allocate any additional reviews, resulting in the lowest cost
but also worst quality as all false positives go undetected. On
the other, we could choose to multi-review all content, which
has the highest cost, but avoids 100% of false positives. In
between, we could choose to multi-review only α proportion
of first-review violating content which is most likely to be non-
violating. Table 2 shows this cost-accuracy trade-off for our
four models for α ∈ {0.25, 0.5, 0.75}, as well as the improve-
ment of rectangular over the next best approach.

After the second review, for content where the first two
reviews agree, there is not much uncertainty about the true
decision. However, when the first two reviews conflict, addi-
tional reviews are needed. By having a high second review
conflicting AUC metric, we can better prioritize additional
reviews for content that is most likely to be violating, thus re-
ducing the amount of time such content stays on the platform.

Model Type α = 0.25 α = 0.50 α = 0.75
binary 0.274 0.542 0.798
rectangular 0.374 0.640 0.838
multi 0.271 0.531 0.753
common 0.291 0.536 0.759
Improvement 28% 18% 5.0%

Table 2: Proportion of False Positives Avoided when Multi-
Reviewing α Proportion

Training Time. The last panel of Figure 8 shows training
times for the four models. The training time was determined
by tracking the fitting time for L-BFGS optimization in Stan
over 10 runs, parallelized with Meta’s FBLearner platform
[11] We see that the O(AL2) methods multi and common take
over 100 minutes to train, while binary and rectangular take
orders to magnitude less. While rectangular does take more
time to train than binary, the increase is reasonable at less than
10 minutes and the gap shrinks as the training size increases.
While our experiments were run on moderate training sizes,
in practice models are trained on millions of examples and
so training efficiency is quite important. Overall, rectangular
provides a significant increase in performance for a modest
increase in training time.

7 CONCLUSION
We studied a novel crowdsourcing setting where reviewers
produce labels in a space larger than the set of possible out-
comes or decisions. In such a setting, estimating large con-
fusion matrices based on the label space is not feasible, yet
we still want to leverage the label space to aid our decision-
making. We proposed a model rectangular which achieves
the best of both worlds. Our model works in a 2-tier hierar-
chical fashion, where the top-level decision is personalized
to each reviewer, while the low-level label is generated ac-
cording to a common distribution shared among all reviewers.
Through both simulation studies and real-world content mod-
eration data at Meta, we demonstrate that our approach does
a better job of modeling annotators and dynamically prioritiz-
ing multiple reviews.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi Weinsberg

REFERENCES
[1] Omar Alonso. 2019. The practice of crowdsourcing. Synthesis lectures on

information concepts, retrieval, and services 11, 1 (2019), 1–149.
[2] Vashist Avadhanula, Omar Abdul Baki, Hamsa Bastani, Osbert Bastani,

Caner Gocmen, Daniel Haimovich, Darren Hwang, Dima Karamshuk,
Thomas Leeper, Jiayuan Ma, Gregory Macnamara, Jake Mullett, Christo-
pher Palow, Sung Park, Varun S Rajagopal, Kevin Schaeffer, Parikshit Shah,
Deeksha Sinha, Nicolas Stier-Moses, and Peng Xu. 2022. Bandits for On-
line Calibration: An Application to Content Moderation on Social Media
Platforms.

[3] Peng Cao, Yilun Xu, Yuqing Kong, and Yizhou Wang. 2019. Max-MIG:
an Information Theoretic Approach for Joint Learning from Crowds. In
International Conference on Learning Representations.

[4] Bob Carpenter. 2008. Multilevel Bayesian models of categorical data anno-
tation. Unpublished manuscript 17, 122 (2008), 45–50.

[5] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. 2017. Stan: A probabilistic programming language.
Journal of Statistical Software.

[6] Zhendong Chu, Jing Ma, and Hongning Wang. 2021. Learning from
Crowds by Modeling Common Confusions. Proceedings of the AAAI Confer-
ence on Artificial Intelligence 35, 7 (May 2021), 5832–5840.

[7] Florian Daniel, Pavel Kucherbaev, Cinzia Cappiello, Boualem Benatallah,
and Mohammad Allahbakhsh. 2018. Quality control in crowdsourcing: A
survey of quality attributes, assessment techniques, and assurance actions.
ACM Computing Surveys (CSUR) 51, 1 (2018), 1–40.

[8] Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood
estimation of observer error-rates using the EM algorithm. Journal of the
Royal Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 20–28.

[9] Xiaoni Duan and Keishi Tajima. 2019. Improving Multiclass Classification
in Crowdsourcing by Using Hierarchical Schemes. In The World Wide Web
Conference (San Francisco, CA, USA) (WWW ’19). 2694–2700.

[10] Masafumi Enomoto, Kunihiro Takeoka, Yuyang Dong, Masafumi Oya-
mada, and Takeshi Okadome. 2021. Quality Control for Hierarchical Clas-
sification with Incomplete Annotations. In Advances in Knowledge Discovery
and Data Mining, Kamal Karlapalem, Hong Cheng, Naren Ramakrish-
nan, R. K. Agrawal, P. Krishna Reddy, Jaideep Srivastava, and Tanmoy
Chakraborty (Eds.). Springer International Publishing, Cham, 219–230.

[11] Facebook. 2016. Introducing FBLearner Flow: Facebook’s AI back-
bone. https://code.fb.com/core-data/introducing-fblearner-flow-
facebook-s-ai-backbone/

[12] Xiawei Guo and James T. Kwok. 2016. Aggregating Crowdsourced Ordinal
Labels via Bayesian Clustering. In Machine Learning and Knowledge Discov-
ery in Databases, Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and
Jilles Vreeken (Eds.). Springer International Publishing, Cham, 426–442.

[13] Ece Kamar, Ashish Kapoor, and Eric Horvitz. 2015. Identifying and Ac-
counting for Task-Dependent Bias in Crowdsourcing. Proceedings of the
AAAI Conference on Human Computation and Crowdsourcing 3, 1 (Sep. 2015),
92–101.

[14] Hyun-Chul Kim and Zoubin Ghahramani. 2012. Bayesian classifier combi-
nation. In Artificial Intelligence and Statistics (AISTATS). 619–627.

[15] Jingzheng Li, Hailong Sun, and Jiyi Li. 2022. Beyond confusion matrix:
learning from multiple annotators with awareness of instance features.
Machine Learning (2022), 1–23.

[16] Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su, Bo Zhao, Wei Fan, and
Jiawei Han. 2016. A Survey on Truth Discovery. SIGKDD Explor. Newsl. 17,
2 (Feb. 2016), 1–16.

[17] Yuan Li, Benjamin Rubinstein, and Trevor Cohn. 2019. Exploiting Worker
Correlation for Label Aggregation in Crowdsourcing. In ICML. 3886–3895.

[18] Qiang Liu, Jian Peng, and Alexander Ihler. 2012. Variational Inference
for Crowdsourcing. In Advances in Neural Information Processing Systems.
692–700.

[19] Meta. 2022. Community Standards Enforcement Report. https://
transparency.fb.com/data/community-standards-enforcement

[20] Meta. 2022. How Meta enforces its policies. https://transparency.fb.com/
enforcement/

[21] Pablo G. Moreno, Antonio Artés-Rodríguez, Yee Whye Teh, and Fernando
Perez-Cruz. 2015. Bayesian Nonparametric Crowdsourcing. JMLR (2015),
1607–1627.

[22] An T. Nguyen, Byron C. Wallace, and Matthew Lease. 2016. A Correlated
Worker Model for Grouped, Imbalanced and Multitask Data. In UAI. 537–
546.

[23] Viet-An Nguyen, Peibei Shi, Jagdish Ramakrishnan, Narjes Torabi, Nimar S.
Arora, Udi Weinsberg, and Michael Tingley. 2022. Crowdsourcing with
Contextual Uncertainty. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 3645–3655.

[24] Viet-An Nguyen, Peibei Shi, Jagdish Ramakrishnan, Udi Weinsberg,
Henry C Lin, Steve Metz, Neil Chandra, Jane Jing, and Dimitris Kalimeris.
2020. CLARA: confidence of labels and raters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing. 2542–2552.

[25] Naoki Otani, Yukino Baba, and Hisashi Kashima. 2016. Quality control
of crowdsourced classification using hierarchical class structures. Expert
Systems with Applications 58 (2016), 155–163. https://doi.org/10.1016/j.
eswa.2016.04.009

[26] Silviu Paun, Ron Artstein, and Massimo Poesio. 2022. Statistical Methods
for Annotation Analysis. Synthesis Lectures on Human Language Technologies
15, 1 (2022), 1–217.

[27] Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk Hovy, Udo Kruschwitz,
and Massimo Poesio. 2018. Comparing Bayesian Models of Annotation.
Transactions of the Association for Computational Linguistics 6, 0 (2018), 571–
585. https://transacl.org/index.php/tacl/article/view/1430

[28] Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez,
Charles Florin, Luca Bogoni, and Linda Moy. 2010. Learning From Crowds.
JMLR 11 (Aug. 2010), 1297–1322.

[29] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Ng. 2008.
Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for
Natural Language Tasks. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing (Honolulu, Hawaii). Association
for Computational Linguistics, 254–263.

[30] Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad
Shokouhi. 2014. Community-Based Bayesian Aggregation Models for
Crowdsourcing. In Proceedings of the 23rd International Conference on World
Wide Web (Seoul, Korea) (WWW ’14). Association for Computing Machin-
ery, New York, NY, USA, 155–164. https://doi.org/10.1145/2566486.
2567989

[31] Norman D Verhelst, Cornelis AW Glas, and HH De Vries. 1997. A steps
model to analyze partial credit. In Handbook of modern item response theory.
Springer, 123–138.

[32] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and
Paul Ruvolo. 2009. Whose Vote Should Count More: Optimal In-
tegration of Labels from Labelers of Unknown Expertise. In Ad-
vances in Neural Information Processing Systems, Y. Bengio, D. Schuur-
mans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Vol. 22. Curran
Associates, Inc. https://proceedings.neurips.cc/paper/2009/file/
f899139df5e1059396431415e770c6dd-Paper.pdf

[33] Gongqing Wu, Liangzhu Zhou, Jiazhu Xia, Lei Li, Xianyu Bao, and Xin-
dong Wu. 2022. Crowdsourcing Truth Inference Based on Label Confi-
dence Clustering. ACM Trans. Knowl. Discov. Data (aug 2022). https:
//doi.org/10.1145/3556545 Just Accepted.

[34] Yan Yan, Rómer Rosales, Glenn Fung, Mark Schmidt, Gerardo Hermosillo,
Luca Bogoni, Linda Moy, and Jennifer Dy. 2010. Modeling annotator
expertise: Learning when everybody knows a bit of something. In Artificial
Intelligence and Statistics (AISTATS). 932–939.

[35] Yan Yan, Rómer Rosales, Glenn Fung, Ramanathan Subramanian, and Jen-
nifer Dy. 2014. Learning from Multiple Annotators with Varying Expertise.
Mach. Learn. 95, 3 (June 2014), 291–327.

[36] Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. 2016.
Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowd-
sourcing. JMLR 17, 1 (Jan. 2016), 3537–3580.

[37] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold
Cheng. 2017. Truth Inference in Crowdsourcing: Is the Problem Solved?
VLDB (2017), 541–552.

https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://transparency.fb.com/data/community-standards-enforcement
https://transparency.fb.com/data/community-standards-enforcement
https://transparency.fb.com/enforcement/
https://transparency.fb.com/enforcement/
https://doi.org/10.1016/j.eswa.2016.04.009
https://doi.org/10.1016/j.eswa.2016.04.009
https://transacl.org/index.php/tacl/article/view/1430
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.1145/2566486.2567989
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://doi.org/10.1145/3556545
https://doi.org/10.1145/3556545

From Labels to Decisions: A Mapping-Aware Annotator Model KDD ’23, August 6–10, 2023, Long Beach, CA, USA

True Labels. The generative process for the true labels yi is
given below.

• θ ∼ Dirichlet(1D), where 1D is the D-dimensional all
ones vector.

• γ ∼ Unif(0.5, 1).
• yi ∼ Categorical(θ) over decisions {1, 2, . . . , D}.

Generating Confusion Matrices ψ(a). Recall that each ψ(a)

is comprised of two components: ϕ(a) (individual) and ηd,d′ ,ℓ
(shared). We describe the generative process for each of these
two components.
ϕ(a): For each reviewer a ∈ [A], we draw ϕ(a) by drawing for
each d ∈ D the values

rd ∼ Unif(γ, 1) d ∈ D
pd ∼ Dirichlet(1D) d ∈ D

ϕ
(a)
d = rd · ed + (1 − rd) · pd d ∈ D

where ed is a length D vector with 0 in all indices and a 1 in
the dth index. Intuitively, ϕ(a) is a random confusion matrix
with diagonal entries guaranteed to be at least γ.
Generating ηd,d. We define ηd,d ∈ ∆L−1 as a vector over the
L labels in which we fix ηd,d,ℓ = 0 for ℓ ∉ Ld. The remaining
entries, i.e. the subvector {ηd,d,ℓ}ℓ∈Ld

, is drawn according to a
Dirichlet distribution with the all ones vector.
Generating ηd,d′ for d ≠ d′. Having drawn ηd,d for d ∈ D,
we now draw ηd,d′ ,ℓ when d ≠ d′ by leveraging an auxiliary
variable ρd,d′ , which is a L dimensional vector that is zero for
indices ℓ ∉ Ld′ .

• First, draw ρd,d′ independently in each of its Ld′ non-
zero dimensions.

ρd,d′ ,ℓ ∼ Unif
(

1,
γ

1 − γ

)
ℓ ∈ [Ld′]

• Having already chosen ηd,d and ρd,d′ , we set ηd,d′ for
d ≠ d′ in the following way:

ηd,d′ ,ℓ =
ρd,d′ ,ℓ · ηd′ ,d′ ,ℓ

Σℓ′∈[Ld′]

(
ρd,d′ ,ℓ′ · ηd′ ,d′ ,ℓ′

) ℓ ∈ [Ld′]

For each d ≠ d′, ηd,d′ is the normalized version of the
element-wise product between ρd,d′ and ηd,d, and hence
ηd is a valid probability distribution. See Proposition 2
for a discussion as to why we must choose ηd,d′ in this
fashion.

Rectangular Confusion Matrix. We now construct ψ
(a)
d,ℓ by

multiplying ϕ(a) and η according to equation 1:

ψ
(a)
d,ℓ = ϕ

(a)
d,u(ℓ) · ηd,u(ℓ),ℓ

Generate Labels. Finally, for each item i ∈ [I] and review
j ∈ [Ni] with true state yi ∈ [D] and reviewer ai,j, we draw the

label ℓi,j independently for each j ∈ [Ni] using ψ(ai,j):

ℓi,j | yi, ψ(ai,j) ∼ Cat
(

ψ
(ai,j)
d,ℓ

)
Figure 9: Generative process for rectangular

Figure 10: Plate diagram for rectangular
Notation Description
D ∈ N Size of decision or outcome space
L ∈ N Size of label space
u : [L] → [D] Map from a label to its decision
Ld The set of labels which map to decision

d ∈ [D].
I ∈ N Number of items being reviewed
Ni ∈ N Number of reviews for item i ∈ [I].
A ∈ N Number of unique reviewers
ai,j ∈ [A] jth reviewer for item i
ℓi,j ∈ [L] Label provided in the jth review of

item i (by reviewer ai,j)
yi ∈ [D] True decision for item i ∈ [I]
θ Prevalence over the D decisions (Prob-

ability vector over D items)
γ ∈ (0.5, 1] Minimum for diagonal entries of each

reviewer’s personal the D× D decision
confusion matrix

ψ(a) Individual confusion matrix for labeler
a ∈ [A] over the D categories (D × D
matrix where each row is a probability
vector).

ηd,d′ When the true decision is d and a re-
viewer produces decision d′, ηd,d′ is the
distribution of which label is produced.
(Probability distribution of length L
with support over Ld′).

ρd,d′ ∈
[
1, γ

1−γ

]
Auxiliary variable which controls how
different ηd,d′ and ηd′ ,d′ are.

Table 3: Notation Overview for rectangular

A DETAILED MODEL DESCRIPTION
In this supplementary section, we provide the formal descrip-
tion of our model rectangular. Table 3 gives an overview
of the notation in our model while Figure 9 provides a de-
tailed generative process and plate diagram. We also provides
the proof of Proposition 1 as well as discusses a technicality
around model identifiability.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Evan Yao, Jagdish Ramakrishnan, Xu Chen, Viet-An Nguyen, and Udi Weinsberg

A.1 Proof of Proposition 1
PROOF. By the way that ψ(a) factors in equation (1), we

have that:

bψ(a)

ℓ,d

bψ(a)

ℓ′ ,d

=
ψ
(a)
d,ℓ

ψ
(a)
d,ℓ′

·
ψ
(a)
u(ℓ′),ℓ′

ψ
(a)
u(ℓ),ℓ

=
ϕ
(a)
d,u(ℓ) · ηd,u(ℓ),ℓ · ϕ

(a)
u(ℓ′),u(ℓ′) · ηu(ℓ′),u(ℓ′),ℓ′

ϕ
(a)
d,u(ℓ′) · ηu(ℓ′),u(ℓ′),ℓ′ · ϕ

(a)
u(ℓ),u(ℓ) · ηu(ℓ),u(ℓ),ℓ

which does not depend on a because u(ℓ) = u(ℓ′) and hence
all the terms involving ϕ(a) cancel out. □

A.2 Model Technicality: Identifiability
We now discuss a technical aspect of our data generation pro-
cess. In our formal generative process, we drew our variables
in a way that respects identifiability. The way we have infor-
mally described our model so far, there is nothing stopping
the model from estimating that even though u(A1) = A, that
the label A1 is actually more likely to be seen when the true
decision is B. In other words, our model is currently just as
valid if we switch A and B. When we draw our variables η in
the formal generative process, we must ensure that the model
is uniquely identifiable

PROPOSITION 2 (IDENTIFIABILITY). Our data generating pro-
cess above guarantees that for any reviewer a ∈ [A], an observed
label ℓ ∈ [L] is more likely to be generated when the true decision is
d = u(ℓ) than d′ ≠ u(ℓ).

P(ℓi,j = ℓ | yi = d) ≥ P(ℓi,j = ℓ | yi = d′) (4)

∀(ℓ, d, d′) : d = u(ℓ), d′ ≠ u(ℓ)

PROOF. Based on how labels ℓi,j are generated in our model,

we have that equation (4) is equivalent to: ψ
(a)
d,d · ηd,d,ℓ ≥ ψ

(a)
d′ ,d ·

ηd′ ,d,ℓ Since ψ
(a)
d,d ≥ γ and ψ

(a)
d′ ,d ≤ 1 − γ, it is sufficient to show

that ηd′ ,d,ℓ ≤ ηd,d,ℓ · γ
1−γ . This is true based on the way we

drew ηd′ ,d,ℓ since when d′ ≠ d.

ηd′ ,d,ℓ =
ρd′ ,d,ℓ · ηd,d,ℓ

Σℓ′∈[Ld]

(
ρd′ ,d,ℓ′ · ηd,d,ℓ′

) ≤ ρd′ ,d,ℓ · ηd,d,ℓ ≤
(

γ

1 − γ

)
· ηd,d,ℓ

Here, we heavily rely on the fact that ρd′ ,d,ℓ is drawn to be
between 1 and γ

1−γ . □

B SIMULATION DATA GENERATION
Our simulation study has A = 50 (number of reviewers), L ∈
{4, 10, 20} (number of label classes) and D = 2 with the first
L/2 labels mapping to one decision and the remaining L/2
mapping to the other. There are I ∈ {1000, 2500, 5000, 10000, 20000}
items each with 3 reviews. Let γ = 0.70 be a lower bound on
the diagonal entries of all confusion matrices we present. A
heterogeneity factor h ∈ [0, 1] is used to control how different
the ambiguities of the L/2 labels are.

Each reviewer a ∈ [A] has a confusion matrix ψ(a) ∈ RL×L,
which is the average of the population confusion matrix ψc

and their own individual confusion matrix ψ̃(a), i.e. ψa =

0.5 · ψ̃(a) + 0.5 · ψc. We describe each of these two components:
• Population Confusion Matrix ψc: The population confu-

sion matrix is made up of two components:

ψc = γ · IL + (1 − γ) · M

where IL is the L× L identity matrix, and M is matrix where
each row is the same error probability distribution pM. With
probability γ regardless of the what the true label is, the
observed label is correct. With probability 1 − γ, we will
randomly draw an entry from the error distribution pM. The
error distribution pM is calculated using the heterogeneity
factor and is calculated as a convex combination of pS (S for
same) and pD (D for different).

pS =
1
L
· [1, 1, . . . , 1︸ ︷︷ ︸

L
2

, 1, 1, . . . , 1]︸ ︷︷ ︸
L
2

pD =
1

2 · ΣL/2
i=1 i2

[12, 22 . . . , (L/2)2︸ ︷︷ ︸
L
2

, 12, 22 . . . , (L/2)2]︸ ︷︷ ︸
L
2

pM = h · pS + (1 − h) · pD

Recall that the first L/2 labels correspond to one decision
and the remaining L/2 labels correspond to another. When
h = 0, pM = pS meaning that we make mistakes uniformly
at random, which implies that all labels are equally am-
biguous (no label is more likely to appear as a mistake). On
the other hand, when h = 1, then the distribution is very
lop-sided, with labels 1 and L/2 + 1 being very unlikely to
occur from a mistake, whereas labels L/2 − 1 and L − 1 are
very likely to be generated when the underlying label does
not map to the correct decision.

• Individual Confusion Matrix ψ̃(a): Reviewer a ∈ [A] has an
individual confusion matrix ψ(a) with the following entries:

γa = 0.7 +
a
A

· 0.3 a ∈ [A]

ψ̃
(a)
ℓ,ℓ ∼ Unif(γa − 0.1, min(1, γa + 0.1)) ℓ ∈ [L]

ψ̃
(a)
ℓ,ℓ′ = 1 −

ψ̃
(A)
ℓ,ℓ

L − 1
ℓ ≠ ℓ′

In other words, ψ̃(a) is a diagonal matrix with the same
value γ + a

A · (1 − γ) on and uniform entries off the diag-
onal. Each reviewer a ∈ [A] has different entries on the
diagonal with larger reviewer indices receiving higher diag-
onal entries on average.

Given each reviewer’s final confusion matrix ψ(a) = 0.5 ·
ψ̃(a) + 0.5 · ψc, for each of the I items, we draw its true label
yi ∈ [L] uniformly at random, and then draw 3 reviewers for
this item, ai,1, ai,2, ai,3, uniformly at random with replacement.
The observed reviews are then chosen according to the yith
row of the confusion matrices of these 3 reviewers:

ℓi,j | yi, ψ(ai,j) ∼ Cat
(

ψ
(ai,j)
yi

)
j ∈ [3]

	Abstract
	1 Introduction
	2 Related Work
	3 Rectangular Annotator Model
	3.1 Problem Setup
	3.2 Generative Model: rectangular

	4 Benchmarks and Evaluation
	4.1 Benchmark Approaches
	4.2 Evaluation Metrics

	5 Simulation Study
	5.1 Data Generative Process
	5.2 Results

	6 Meta Community Operations
	6.1 Dataset Description
	6.2 Results

	7 Conclusion
	References
	A Detailed Model Description
	A.1 Proof of Proposition 1
	A.2 Model Technicality: Identifiability

	B Simulation Data Generation

