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Automationis
essential for large-
scale systems

- 99.5%

of fake accounts
actioned
automatically

0.5%




However, there
are many areas
where human
decisions are
heeded.
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What makes people noisy decision
makers?



More Bias
Individual bias o
Less Bias o

| ess Variance More Variance

]



Ambiguity of the guidelines
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Subjectivity in the decision
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Simple mistakes
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Let’s consider a few examples where
noisy decisions have negative outcomes



PREVALANCE

The percentage of
policy-violating
content out of all
content seen by
Facebook users.



ENFORCEMENT

Taking down content
or entities that violate
the community
standards.
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TRAINING MODELS

Using human-
generated labels as
“ground truth” for
training ML models.



So how should we deal with noisy
decision making?




Hire
experts

R

Ask
several people

Al

Leverage
Machine Learning
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But how do we aggregate multiple
labels into a single decision?

..and can we quantify the

certamty of the decision?
)



CLARA: Confidence of Labels and Raters
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Applications

1. Prevalence
Measurement

2. Reviewer Performance
Measurement

3. Labeling Efficiency




Prevalence Measurement

Measure the percentage of policy-violating content out of all content
seen by Facebook users



Prevalence Measurement
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Prevalence Measurement
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Prevalence Measurement
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Prevalence (%)

Prevalence Estimates (Violation Type A)
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Prevalence Estimates (Violation Type B)

{ Reviewer training}
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Reviewer Performance Measurement

Measure the performance of reviewers in labeling violating content



Measuring Reviewer Performance
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Measuring Reviewer Performance
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Reviewer Precision/Recall Estimates
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Labeling Efficiency

Improve labeling efficiency by only sending content for additional review
If the confidence is low
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Cost/Accuracy Tradeoff Curve
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System Overview
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Conclusion And the source code

Facebook Research

 CLARA, asystem developed and

. @ Menlo Park, California < https://opensource.fb.com  Verified
deployed at Facebook to estimate

the uncertainty of human labels

https://github.com/facebook/clara

e Extensive simulations and
comparison with state-of-the-art

e Results onreal Facebook
deployment


https://github.com/facebook/clara

