
Lab	 2:	 Windows	 Working	 Set	

The instructions for Lab 2 are described below. There is no file hand out accompanying this
lab. The base WRK source and the virtual machines provide everything you need. You have
two weeks to complete this lab (due midnight October 20, 2010). Do not procrastinate. This is
a difficult lab. Instructions for submitting your assignment via the submit system will be
posted by the TA’s in the forum.

Lab 2

Page 1

1 Lab	 Overview	

The working set is an important concept in memory management. The Windows® operating
system often divides a working set into a process working set and a system working set,
respectively, to trace the physical memory usage of each process and system. Operations on
the working set in the Windows kernel are divided into the working set trimming algorithm of
the working set manager (system level) and the page replacement algorithm (process level).
The working set trimming algorithm scans the memory usage of the system periodically and
trims the working set (that is, reduces the number of allocated pages) of some processes. For
example, it can select a process with a low priority, and apply the least recently used (LRU)
algorithm to select the page to delete. The page replacement algorithm is used per process. If
the process requests an additional page after the process requisition page total exceeds a
certain peak value, the working set size no longer increases and the existing pages are
replaced using a page replacement policy.

This project analyzes the working set page replacement of Windows. There are two tasks:

1. Analyze the peak value of the process working set and the page replacement algorithm.

2. Modify the replacement algorithm and analyze the effects.

2 Data	 Structures	 Related	 to	 the	 Working	 Set	

EPROCESS is the data structure that describes the process. Other data structures related to the
working set can be found from EPROCESS. The central data structures related to the working
set are MMSUPPORT, MMWSL, MMWSLE, MMWSLENTRY, MMPTE, and
PMMWSLE_HASH. The relationship between these structures is shown in Figure 1.

Lab 2

Page 2

Figure 1. Working set data structures

Understanding the relationship between the working set structures is a great help in kernel
debugging, algorithm modification, and kernel system call addition. This relationship may be
described briefly as follows:

• The Age field of MMWSLENTRY serves as a basis for the trim operation.

• The Accessed bit of the hardware-supported page table entry (PTE) is used as a reference
variable for aging. (PTE is not shown in Figure 1.)

• The HashTable field of MMWSL is a linear structure. It does not have a one-to-one
correspondence with the array of working set list entries (represented by the Wsle pointer)
and is just one of the subsets of the array. This can be seen, for example, in the code of
the MiRemoveWsle() function.

• Three fields of MMSUPPORT are used in the aging algorithm:

• NextAgingSlot: Index of the next aging page.

• NextEstimationSlot: Index of the next estimation page.

• EstimatedAvailable: The number of invalid pages of the working set of this process
as estimated during the execution of the aging algorithm.

Lab 2

Page 3

• The NextSlot field of MMSUPPORT is used in the page replacement algorithm.

2.1 	 	 MMPFN	 and	 Related	 Structures	
This section describes the data structures of the page frame database involved when
performing the removal operations MiFreeWsle() and MiFreeWsleList() on the working set
page.

typedef	 struct	 _MMPFN	 {	

	 	 	 	 union	 {	

	 	 	 	 	 	 	 	 PFN_NUMBER	 Flink;	 	 	 	 	 	 	 	 	 	 	 //Point	 to	 the	 predecessor	 page	 frame	

in	 the	 backup/modified	 link	 list	

	 	 	 	 	 	 	 	 WSLE_NUMBER	 WsIndex;	 	 	 	 	 	 //Indicate	 the	 working	 set	 index	 in	 the	

working	 set	 page	

	 	 	 	 	 	 	 	 PKEVENT	 Event;	 	 	 	 	 	 	 	 	 	 	 	 	 	 //The	 event	 address	 where	 the	 I/O	

operation	 is	 being	 performed	

	 	 	 	 	 	 	 	 NTSTATUS	 ReadStatus;	

	 	 	 	 	 	 	 	 SINGLE_LIST_ENTRY	 NextStackPfn;	

	 	 	 	 }	 u1;	

	 	 	 	 PMMPTE	 PteAddress;	 	 	 	 	 	 	 	 	 	 	 	 	 	 //Point	 to	 the	 corresponding	 page	

table	 address	

	 	 	 	 union	 {	

	 	 	 	 	 	 	 	 PFN_NUMBER	 Blink;	 	 	 	 	 	 	 	 	 //Point	 to	 the	 successor	 page	 frame	

	 	 	 	 	 	 	 	 ULONG_PTR	 ShareCount;	 	

	 	 	 	 }	 u2;	

	 	 	 	 union	 {	

	 	 	 	 	 	 	 	 struct	 {	

	 	 	 	 	 	 	 	 	 	 	 	 USHORT	 ReferenceCount;	

	 	 	 	 	 	 	 	 	 	 	 	 MMPFNENTRY	 e1;	

	 	 	 	 	 	 	 	 };	

	 	 	 	 	 	 	 	 struct	 {	

	 	 	 	 	 	 	 	 	 	 	 	 USHORT	 ReferenceCount;	 	 //Access	 count	

	 	 	 	 	 	 	 	 	 	 	 	 USHORT	 ShortFlags;	 	 	 	 	 	 //ID	 field,	 mainly	 indicating	 the	

state	 of	 this	 page	 table,	 namely	 modified,	 prototype,	 reading,	 and	 writing	

	 	 	 	 	 	 	 	 }	 e2;	

	 	 	 	 }	 u3;	

	 	 	 	 union	 {	 	

	 	 	 	 	 	 	 	 MMPTE	 OriginalPte;	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 LONG	 AweReferenceCount;	

Lab 2

Page 4

	 	 	 	 };	 	

	 	 	 	 union	 {	 	

	 	 	 	 	 	 	 	 ULONG_PTR	 EntireFrame;	

	 	 	 	 	 	 	 	 struct	 {	

	 	 	 	 	 	 	 	 	 	 	 	 ULONG_PTR	 PteFrame:	 25;	 	 //Index	 of	 the	 page	 frame	 in	 the	 page	

frame	 number	 database;	 	

	 	 	 	 	 	 	 	 	 	 	 	 ULONG_PTR	 InPageError	 :	 1;	

	 	 	 	 	 	 	 	 	 	 	 	 ULONG_PTR	 VerifierAllocation	 :	 1;	

	 	 	 	 	 	 	 	 	 	 	 	 ULONG_PTR	 AweAllocation	 :	 1;	

	 	 	 	 	 	 	 	 	 	 	 	 ULONG_PTR	 Priority	 :	 MI_PFN_PRIORITY_BITS;	

	 	 	 	 	 	 	 	 	 	 	 	 ULONG_PTR	 MustBeCached	 :	 1;	

	 	 	 	 	 	 	 	 };	

	 	 	 	 }	 u4;	

}	 MMPFN,	 *PMMPFN;	

	

Generally, operations using the structures shown above are performed as follows:

• Obtain the pointer to the respective page table entry (PTE) from the Key field of the
indexed entry of MMWSLE_HASH or from the VirtualAddress field of MMWSLE using
the macro definition MiGetPteAddress:

PointerPte	 =MiGetPteAddress	

(WsInfo-‐>VmWorkingSetList-‐>Table[Index].Key)	

PointerPte	 =MiGetPteAddress	 (WsInfo-‐>VmWorkingSetList-‐>Wsle	

[index].u1.e)	

	

• Obtain the pointer to the page frame number (PFN) descriptor from the PTE using the
macro definition MI_PFN_ELEMENT:

Pfn1	 =	 MI_PFN_ELEMENT	 (PointerPte-‐>u.Hard.PageFrameNumber);	 	 	 	

//Useful	 during	 deletion	

• Obtain the location (index) of this page frame in the page frame database from PEN PFN
using the macro definition MI_PFN_ELEMENT_TO_INDEX:

Pfn1-‐>u4.PteFrame	 =	 (ULONG_PTR)MI_PFN_ELEMENT_TO_INDEX	 (Pfn1)	

Having the page frame location is useful when you add a page frame to (or insert a page
frame into) the working set.

typedef	 struct	 _MMPFNLIST	 {	

	 	 	 	 PFN_NUMBER	 Total;	 //Number	 of	 page	 frames	 in	 this	 type	 of	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 linked	 list	

Lab 2

Page 5

	 	 	 	 MMLISTS	 ListName;	 //Type	 of	 linked	 list:	 idle	 linked	 list,	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 modified	 linked	 list,	 backup	 linked	 list,	 etc.	 	

	 	 	 	 PFN_NUMBER	 Flink;	 	 	 	 	 	 	 	 	 //Successor	 index	

	 	 	 	 PFN_NUMBER	 Blink;	 	 	 	 	 	 	 	 	 //Predecessor	 index	

}	 MMPFNLIST;	

	

The pages in the page frame database are organized into six linked lists:

MmZeroedPageListHead MmFreePageListHead
MmStandbyPageListHead MmModifiedNoWritePageListHead
MmModifiedPageListHead MmBadPageListHead.

Each is a pointer to the head node of its respective linked list. Given a PFN structure, you can
obtain the next or the previous PFN structure from the Flink or Blink field (respectively) using the
macro definition MI_PFN_ELEMENT.

Lab 2

Page 6

3 	 	 Working	 Set	 Management	 Code	 Analysis	 	

3.1 	 	 Kernel	 Code	 Related	 to	 the	 Working	 Set	
The distribution of the kernel code related to the working set is shown in Table 1.

Table 1. Kernel code related to the working set

File name Functions of module

ps.h Contains data structures and interfaces related to the process,
including part of structures of the working set

mi.h Contains data structures and interfaces related to the memory
management subsystem, including part of structures of the
working set

wslist.c Includes a series of functions for operating the working set
structure

wstree.c Implements some auxiliary functions in working set management,
and implements such operations as add, delete and update on the
working set or working set entries

wsmanage.c Includes the functions for operating the working set of the process
in the active state, and implements the working set management
thread

3.2 	 	 Kernel	 Code	 Analysis	 for	 the	 Working	 Set	
This section describes several representative functions that use the structures of the working
set described previously, so that you may gain a more in-depth understanding of the working
set and lay a foundation for reading and modifying the page replacement algorithm in the
experiments described in this paper.

3.2.1 Page	 Aging	 and	 Trimming	

Start to look for the cause for aging from the function KeBalanceSetManager, and determine
the trimming and aging criteria. When there is a shortage of idle pages, more idle pages can
be obtained by trimming the working set. KeBalanceSetManager, which is running on a
separate thread and which is executed cyclically once per second, calls the working set
management function MmWorkingSetManager. The working set management function first
calls the MiComputeSystemTrimCriteria() function to determine the operation to be
performed: trim the working set, age the working set, or do nothing. The triggering conditions
for these three cases are:

• Trim the working set: This is based on the following three conditions:

• The current number of available pages (Available) is smaller than the number of
pages required.

Lab 2

Page 7

• A record of the replaced page is already available in this working set:
MiReplacing == TRUE.

• More than 1/4 of the available pages are recycled as the backup pages.

As soon as one of the above conditions is met, the trimming operation is performed
immediately, and the corresponding value is assigned to the TrimCriteria variable.

• Age the working set: When none of the trimming conditions is true, and the number of
currently available pages (Available) is smaller than the limit of 20,000, the aging
operation is performed.

• No operation: When neither of the above conditions is true, it indicates that currently
there is plenty of memory available in the system, so MiComputeSystemTrimCriteria()
returns 0 and no operation is performed.

So far, the criteria for the working set processing has been determined and stored in
WorkingSetRequestFlags and TrimCriteria variables. If the WorkingSetRequestFlags is not
zero—meaning that the trimming or aging operation should be performed—then
MiProcessWorkingSets(WorkingSetRequestFlags, &TrimCriteria) is called. If
WorkingSetRequestFlags is zero, no operation is performed, and the
MmModifiedPageListHead.Total counter of the modified page link list is checked to see
whether it reaches or exceeds the MmModifiedPageMaximum limit. If it does, the modified
page writer operation is activated.

The function call chain throughout the above process is shown below:

KeBalanceSetManager()	

	 MmWorkingSetManager()	

	 	 	 MiComputeSystemTrimCriteria()//	 MI_AGE_ALL_WORKING_SETS	

	 	 MiComputeSystemTrimCriteria()//	 MI_AGE_ALL_WORKING_SETS	

	 	 MiProcessWorkingSets()	

	 	 	 	 MiTrimWorkingSet()	 	 	 	 //Determine	 whether	 to	 make	 trimming	

according	 to	 MI_TRIM_ALL_WORKING_SETS	

	 	 	 	 MiTrimWorkingSet()	

	 	 	 	 MiAgeWorkingSet()//Judge	 whether	 to	 perform	 aging	 according	

to	 MI_AGE_ALL_WORKING_SETS	

	 	 	 	 MiAgeWorkingSet()	

	 	 MiProcessWorkingSets()	

	 MmWorkingSetManager()	

KeBalanceSetManager()	

	

Lab 2

Page 8

3.2.1.1 MiTrimWorkingSets Algorithm Analysis

MiProcessWorkingSets calls MiTrimWorkingSet() to implement the working set trimming
operation. Here is a detailed analysis of MiProcessWorkingSets.

Function prototype
MiTrimWorkingSet	 (WSLE_NUMBER	 Reduction,	 PMMSUPPORT	 WsInfo,	 ULONG	

TrimAge)	

	

Parameter description

IN WSLE_NUMBER Reduction: Number of pages to be trimmed.

IN PMMSUPPORT WsInfo: Pointer of the working set of the process.

IN ULONG TrimAge: Age limit of the pages to be trimmed.

Function description

Variable description:

WsleFlushList: Store the indexes and number of pages to be removed.

TryToFree, StartEntry, LastEntry: These three integer variables loop through the Wsle
array to determine the pages to be trimmed.

WorkingSetList: working set link list pointer.

Wsle: Working set page pointer.

PointerPte: The PTE structure pointer of the current page.

NumberLeftToRemove: Number of pages not removed at the end of this process.

NumberNotFlushed: Number of pages not removed after MiFreeWsleList is called.

Description:

 The starting location StartEntry and the ending location LastEntry of the search in Wsle
are computed.

 The TrimMore program segment searches and removes pages in a cyclic action from the
working set page array Wsle, starting with TryToFree (initially set to StartEntry) using
the least recently used (LRU) algorithm, and calls function MiFreeWsleList to release
relevant pages. When NumberLeftToRemove (initially set to Reduction) reaches zero or
when the search reaches its initial point (StartEntry), it stops.

 If WsleFlushList.Count is not zero, MiFreeWsleList function is called to release it,
returning the number of entries not flushed. This number is added to
NumberLeftToRemove, and if the sum is not zero, further trimming should be performed.
Further trimming, however, is impossible if the search has reached its initial point. If this
is not the case, the algorithm returns to the TrimMore label to repeat the trimming (step 2
above).

Lab 2

Page 9

 If no further trimming is necessary or possible, the function MiTrimWorkingSet checks
whether the working set can be contracted. If it can, the MiRemoveWorkingSetPages
function is called. This function compresses the working set list entries into the front of
the working set and frees the pages for unneeded working set entries.

 The final return value of MiTrimWorkingSet is the number of removed pages (Reduction
– NumberLeftToRemove).

3.2.1.2 MiAgeWorkingSet Algorithm Analysis

MiProcessWorkingSets calls MiAgingWorkingSet() to implement the page aging operation.
This function is used to estimate the number of invalid pages in the working set of this
process. By using the DoAging parameter, it also determines whether to perform page aging.
Here is a detailed analysis of the MiAgeWorkingSet() algorithm.

Function prototype
MiAgeWorkingSet	 (

	 IN	 PMMSUPPORT	 VmSupport,	

	 IN	 LOGICAL	 DoAging,	

	 IN	 PWSLE_NUMBER	 WslesScanned,	

	 IN	 OUT	 PPFN_NUMBER	 TotalClaim,	

	 IN	 OUT	 PPFN_NUMBER	 TotalEstimatedAvailable)	

	

Parameter description

IN PMMSUPPORT VmSupport: Pointer of the working set.

IN LOGICAL DoAging: Indicates whether to perform the aging operation.

IN PWSLE_NUMBER WslesScanned: Pointer to the total number of working set list
entries scanned in one sweep, used as a control to prevent excessive aging on large
systems that have many processes.

IN OUT PPFN_NUMBER TotalClaim: Pointer to system-wide claim to update.

IN OUT PPFN_NUMBER TotalEstimatedAvailable: Pointer to system-wide estimate to
update.

Function description

Variable description:

DoAging: When DoAging=False, skip steps 1 through 3 outlined below.

Description:

1. Determine the number of aged pages. A single iteration of the Aging operation does not
age all the pages of a process but only 1/ 2^MiAgingShift(4) pages starting from
NextAgingSlot. All the pages can be aged once after 2^MI_AGE_AGING_SHIFT
seconds.

Lab 2

Page 10

The number of aged pages may be corrected in special cases:

• The calculated number of aged pages, NumberToExamine, is not allowed to exceed
8192.

• If the number of already scanned entries reaches or exceeds 262144 (0x40000, or
number of pages in 1gigabyte), NumberToExamine is set to 64.

2. Determine the starting location of aging:

 Check whether NextAgingSlot is a valid page.

 If it is not a valid page, use MI_NEXT_VALID_AGING_SLOT to determine the next
aged page to be used as the starting page.

3. Repeat the following NumberToExamine times:

 Get the pointer to the respective page table entry (PTE);

 If the page has been accessed since the last check (macro
MI_GET_ACCESSED_IN_PTE returns non-zero), reset the Accessed bit of the PTE and
reset the age of the current working set list entry;

 Otherwise, increase Age for the page using macro MI_INC_WSLE_AGE; this macro
increases the age by 1 up to the maximal value of 3.

 Estimate the number of unused pages in the working set. Similar to aging, estimation is
performed only on 1/ 2^MiEstimationShift(5) pages. Unlike aging, where pages are
selected in sequence, here one page is selected every 2^MiEstimationShift pages, which
is not a fixed value. For the specific algorithm, refer to the
MI_NEXT_VALID_ESTIMATION_SLOT macro code. Pages are not checked
continuously because the number of invalid pages in the entire working set is estimated at
the end of the operation based on the computed probability. Various pages in the page set
are fetched to ensure that the entire page set will be more accurate.

 Determine the sample size. There are several different cases for determination of
SampleSize:

• SampleSize = VmSupport -> WorkingSetSize - WorkingSetList -> FirstDynamic

• NumberToExamine = SampleSize >> MiEstimationShift.

This is the number of preferred pages. It depends on how the following conditions are
met:

 If the control parameter WslesScanned is larger than (1024 * 1024 * 1024) / PAGE_SIZE,
the bigger computer may contain a lot of processes. To avoid performing the estimation
operation too many times, the number of the pages to be estimated and the MiEstimationShift
value are calculated again later.

Lab 2

Page 11

 If NumberToExamine is greater than 8192 (peak value), then NumberToExamine equals
8192, and the bigger computer has sufficient resources. In this case, the number of searches is
reduced and MiEstimationShift is calculated again.

 If NumberToExamine is greater than or equal to MI_MINIMUM_SAMPLE, the number
of searches should not be smaller than the minimum value of 64.

 Start to scan from FirstDynamic. If Wsle[CurrentEntry] is invalid,
MI_NEXT_VALID_ESTIMATION__SLOT is called to recalculate a new starting
estimation location, which is stored in CurrentEntry.

 Estimate the number of invalid pages, starting from CurrentEntry, and store the value in
the SampledAgeCounts array.

 Calculate the number of invalid pages in a small range by using
MI_CALCULATE_USAGE_ESTIMATE(SampledAgeCounts, CounterShift), and
estimate the total number of invalid pages in this working set.

 Store the estimation result in this working set:

• VmSupport ->Claim = Claim

• VmSupport -> EstimatedAvailable = Estimate

 Use the estimation result to modify the TotalClaim and TotalEstimatedAvailable
parameters of this function to make it return to the calling program.

3.2.2 Analysis	 of	 Page	 Release	 Process	

MiTrimWorkingSet() determines the index numbers of the pages to be removed in the
working set, and the number of pages to be released, based on the incoming trimming criteria,
and encapsulates them in the WsleFlushList structure sent to the MiFreeWsleList function,
which releases the listed pages. The page release steps are analyzed in “MiRemoveWsle
Algorithm Analysis” below.

Windows is a multitasking operating system. Though the index number of the page to be
released has been determined, this page may be shared by other processes during the period
from determining the index number to calling MiRemoveWsle to actually release the page. If
the page is shared, the MiDecrementShareCount() function is called to decrease the shared
counter by 1.

Note: If this page is a prototype page table entry, looping should be performed for the
first time to set FlushIndex[] in all these cases to zero.

MiRemoveWsle() is then called in the subsequent loops to remove the page.

3.2.2.1 MiRemoveWsle() Algorithm Analysis

Function prototype
MiRemoveWsle	 (WSLE_NUMBER	 Entry,PMMWSL	 WorkingSetList)	

Lab 2

Page 12

Parameter description

IN WSLE_NUMBER Entry: Index of the working set entry to be released.

IN PMMWSL WorkingSetList: Pointer to linked list of working set entries of the process.

Function description

 Store the indexed working set entry (Wsle[Entry]) in the temporary variable
WsleContents.

 Check whether the current working set of the process is a working set of the system, and
which category of the system working set it belongs to, and decrease the counter by 1.

 Invalidate the working set entry and its local copy:
WsleContents.u1.e1.Valid = 0;
Wsle[Entry].u1.e1.Valid = 0;

 If the working set entry has been hashed, delete it from the hash table. The lookup process
is as follows:

• Determine the starting index of the search: Hash = MI_WSLE_HASH
(WsleContents.u1.Long, WorkingSetList).

• Search from Hash to the end of the table, until the key value of the hash table entry
matches the virtual address obtained from WsleContents.

• If no match is found, restart the search from the beginning of the hash table to the
original starting index. This ensures that the entire hash table is searched once.

• After the location is found, set Table[Hash].Key to zero.

4 Viewing	 Working	 Set	 State	 Using	 WinDbg	

4.1 Introduction	 to	 WinDbg	 Commands	 	
WinDbg is a free source code–level debugging tool developed by Microsoft. WinDbg can be
used for debugging in both Kernel mode and user mode. Robust debugging commands are
available in both modes. To call the help file and view explanation of all the commands,
type .hh.

This section describes the functions of the WinDbg commands for working set management.
Table 2 summarizes these functions. (For detailed usage and other commands, refer to the
help file.)

Table 2. Related debugging commands for working set management

Command Function explanation

!process Shows information about the current process, including the virtual address
of PCB and the process image name.

Lab 2

Page 13

!vm Shows the memory configuration and usage of the current system.

!pte Shows the page table entry and page directory entry for the specified
virtual address.

dd Shows the contents of the memory in specified address range.

dc Shows the content of the specified virtual address using symbols.

dt Shows information about local variables, global variables, and data types.
To see the kernel data type information, enter dt nt!data_name, where
data_name is the name of the variable. Wildcards (*) can be used in names.
For example, command dt nt!A* shows all variables whose names begin
with A.

?(expression) Calculates the value of an expression. The value can be displayed as a
decimal value.

4.2 Viewing	 Working	 Set	 State	
This section details how to locate a certain page of the working set and view its contents using
the debugging commands together with the related data structures of the working set that are
described in Section 1.1.

To view the start of the working set, we will first run the application and request 100-page
memory. Each page can be written with other data. Then, we will set a breakpoint in the
kernel to stop the kernel.

Note: WinDbg debugs the kernel in the same manner as other applications. However, to
stop the kernel, we should know what code has walked through the kernel. Section
4.3.1 details how to add a system call. We set a breakpoint within the added
system call, and this system call is executed in WinDbg. WinDbg stops when it
reaches the system call code. In this way, we can debug the current kernel state.

 View the state of the current process using the !process command.

kd> !process

PROCESS	 81de1bf8	 	 SessionId:	 0	 	 Cid:	 07f4	 	 	 	 Peb:	 7ffdf000	 	 ParentCid:	

05fc	

	 DirBase:	 1af1a000	 	 ObjectTable:	 e1718598	 	 HandleCount:	 	 	 9.	

	 Image:	 Explore_WS.	

	 VadRoot	 815f1d20	 Vads	 121	 Clone	 0	 Private	 193.	 Modified	 0.	 Locked	

0.	

	 DeviceMap	 e183e008	

	 Token	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 e19169f8	

……	

Lab 2

Page 14

THREAD	 819aeba0	 	 Cid	 07f4.07e8	 	 Teb:	 7ffde000	 Win32Thread:	 00000000	

RUNNING	 on	 processor	 0	

	

As you can see, the process starts at the address 0x81de1bf8. This is the address where
the process control block (PCB) of this process resides. The process image of the current
process is Explore_WS, which is the name of our own application.

 View details about the process structure using the dt command.

kd> dt nt!_EPROCESS 81de1bf8

+0x000	 Pcb	 	 	 	 	 	 	 	 	 	 	 	 	 :	 _KPROCESS	

+0x078	 ProcessLock	 	 	 	 	 	 :	 _EX_PUSH_LOCK	

+0x080	 CreateTime	 	 	 	 	 	 	 :	 _LARGE_INTEGER	 0x1c7b881`3b7cd070	

+0x088	 ExitTime	 	 	 	 	 	 	 	 	 :	 _LARGE_INTEGER	 0x0	

+0x0d0	 ExceptionPort	 	 	 	 	 :	 0xe125fad0	 	

+0x0d4	 ObjectTable	 	 	 	 	 	 	 :	 0xe1718598	 _HANDLE_TABLE	

+0x0d8	 Token	 	 	 	 	 	 	 	 	 	 	 	 :	 _EX_FAST_REF	

+0x198	 DefaultHardErrorProcessing	 :	 1	

+0x19c	 LastThreadExitStatus	 :	 0	

+0x1a0	 Peb	 	 	 	 	 	 	 	 	 	 	 	 	 	 :	 0x7ffdf000	 _PEB	

+0x1a4	 PrefetchTrace	 	 	 	 	 	 :	 _EX_FAST_REF	

+0x1e4	 SeAuditProcessCreationInfo	 :	 _SE_AUDIT_PROCESS_CREATION_INFO	

+0x1e8	 Vm	 	 	 	 	 	 	 	 	 	 	 	 	 	 :	 _MMSUPPORT	

+0x230	 MmProcessLinks	 	 	 :	 _LIST_ENTRY	 [0x808a0338	 —	 0x819ab690]	

+0x238	 ModifiedPageCount	 :	 0	

+0x23c	 JobStatus	 	 	 	 	 	 	 	 	 :	 0	

+0x240	 Flags	 	 	 	 	 	 	 	 	 	 	 	 :	 0x450801	

+0x240	 CreateReported	 	 	 	 :	 0y1	

	

The hexadecimal data preceded by the PLUS SIGN represent the offsets of data fields
within the EPROCESS structure. For example, the offset of the PCB relative to the
EPROCESS address is 0, which indicates that it is the first data member of EPROCESS.
Referring to the relationship of data structures that is presented in Figure 1, we can see
that the offset of the working set–related field Vm relative to EPROCESS is +0x1e8.

 Calculate the address of the Vm structure using the ? command.

kd> ?(81de1bf8+1e8)

Evaluate	 expression:	 -‐2116149792	 =	 81de1de0	

	

Lab 2

Page 15

By default, we enter the hexadecimal data in the ? command. In the result, the content to
the left of the equal sign is the decimal data, and the content to the right of the equal sign
is the hexadecimal data. The address of the Vm structure is 0x81de1de0.

 Output the details about Vm using the dt command.

kd> dt nt!_MMSUPPORT 81de1de0

+0x000	 WorkingSetExpansionLinks	 :	 _LIST_ENTRY	 [0x808a4bb0	 —	

0x819ab648]	

+0x008	 LastTrimTime	 	 	 	 	 :	 _LARGE_INTEGER	 0x1c7b881`3b7cd070	

+0x010	 Flags	 	 	 	 	 	 	 	 	 	 	 	 :	 _MMSUPPORT_FLAGS	

+0x014	 PageFaultCount	 	 	 :	 0x189	

+0x018	 PeakWorkingSetSize	 :	 0x18d	

+0x01c	 GrowthSinceLastEstimate	 :	 0x189	

+0x020	 MinimumWorkingSetSize	 :	 0x32	

+0x024	 MaximumWorkingSetSize	 :	 0x159	

+0x028	 VmWorkingSetList	 :	 0xc0502000	 _MMWSL	

+0x02c	 Claim	 	 	 	 	 	 	 	 	 	 	 	 :	 0	

+0x030	 NextEstimationSlot	 :	 0	

+0x034	 NextAgingSlot	 	 	 	 :	 0	

+0x038	 EstimatedAvailable	 :	 0	

+0x03c	 WorkingSetSize	 	 	 :	 0x18d	

+0x040	 WorkingSetMutex	 	 :	 _EX_PUSH_LOCK	

	

The output shows that the size of the current working set is 0x18d pages, the page fault
count is 0x189 pages, the maximum value of the working set is 0x159 pages, and the
minimum value is 0x32 pages.

The _MMWSL structure represents a working set list. The offset of its address relative to
_MMSUPPORT is 0x028. The address of _MMWSL is calculated below:

kd> ?(81de1de0+0x028)

Evaluate	 expression:	 -‐2116149752	 =	 81de1e08	

kd>	 dd	 81de1e08	 l	 1	 	 //Show	 that	 the	 content	 stored	 in	 81de1e08	 is	

c0502000,	 which	 is	 the	 real	 address	 of	 _MMWSL	

81de1e08	 	 c0502000	 //This	 is	 different	 from	 the	 Vm	 address	 calculated	

above	

	

 Output the details about the working set link list structure _MMWSL using the dt
command.

Lab 2

Page 16

kd> dt nt!_MMWSL c0502000

+0x000	 FirstFree	 	 	 	 	 	 	 	 :	 0x18d	 	 	 	 //The	 location	 where	 the	 working	 set	

page	 is	 added	 next	 time	

+0x004	 FirstDynamic	 	 	 	 	 :	 4	 	 	 	 	 	 	 //Subscript	 of	 the	 first	 available	

page	 among	 the	 working	 set	 pages	

+0x008	 LastEntry	 	 	 	 	 	 	 	 :	 0x23b	 	 	 //	 Subscript	 of	 the	 last	 available	

page	 among	 the	 working	 set	 pages	 	

+0x00c	 NextSlot	 	 	 	 	 	 	 	 	 :	 4	 	 	 	 	 	 //The	 starting	 page	 of	 the	 search	 when	

the	 page	 replacement	 algorithm	 is	 used	 	

+0x010	 Wsle	 	 	 	 	 	 	 	 	 	 	 	 	 :	 0xc0502698	 _MMWSLE	 	 	

//The	 virtual	 address	 where	 the	 page	 table	 entry	 structure	 of	 the	

working	 set	 stores	 pages	

+0x014	 LastInitializedWsle	 :	 0x259	

+0x018	 NonDirectCount	 	 	 :	 0xb0	

+0x01c	 HashTable	 	 	 	 	 	 	 	 :	 (null)	 	

+0x020	 HashTableSize	 	 	 	 :	 0	

+0x024	 NumberOfCommittedPageTables	 :	 6	

+0x028	 HashTableStart	 	 	 :	 0xc0703000	 	

+0x02c	 HighestPermittedHashAddress	 :	 0xc0c00000	 	

+0x038	 UsedPageTableEntries	 :	 [768]	 0x6b	

+0x638	 CommittedPageTables	 :	 [24]	 7	

	

 View the details about the page table entry of the working set (all the virtual addresses of
the page).

kd> dd C0502698 l 0x18d

c0502698	 	 c0300203	 c0301203	 c0501203	 c0502203	

c05026a8	 	 c01ff201	 7ffc2009	 7ffa6009	 7ffa5009	

c05026b8	 	 7ffa4009	 7ffa3009	 7ffd0009	 7ffa1009	

c05026c8	 	 7c94d001	 0012f201	 c01f2201	 7c9b7221	

……	

c0502c98	 	 00a40201	 00a50201	 00a60201	 00a70201	

c0502ca8	 	 00a80201	 00a90201	 00aa0201	 00ab0201	

c0502cb8	 	 00ac0201	 00ad0201	 00ae0201	 00af0201	

c0502cc8	 	 00b00201	

	

Lab 2

Page 17

The first column in italic indicates the virtual address. After that, each row contains four
entries of 4-byte data. Each entry represents the virtual address of a page and page
attributes. Since the page size is 4 kilobytes (0x1000), all virtual addresses are aligned on
0x1000: 7c94d000, 0012f000, etc. The lower 12 bits (or three rightmost hexadecimal
digits) of each entry are the attribute bits of respective page.

The structure of the entry is as follows:

typedef	 struct	 _MMWSLENTRY	 {	

	 ULONG_PTR	 Valid	 :	 1;	 	 	 	 	 	 	 	 	 	

	 ULONG_PTR	 LockedInWs	 :	 1;	

	 ULONG_PTR	 LockedInMemory	 :	 1;	

	 ULONG_PTR	 Protection	 :	 5;	

	 ULONG_PTR	 Hashed	 :	 1;	

	 ULONG_PTR	 Direct	 :	 1;	

	 	 ULONG_PTR	 Age	 :	 2;	 	 	 	 	 	 	 	 //	 Age	 bits	 indicate	 how	 long	 since	 page	

was	 accessed	

	 ULONG_PTR	 VirtualPageNumber	 :	 MM_VIRTUAL_PAGE_SIZE;	 	

//	 The	 high	 20	 bits	 indicate	 the	 page	 number;	 the	 physical	 page	 address	

is	 calculated	 from	 this	

}	 MMWSLENTRY;	

	

 View information about the page directory and the page table entry of a specific page
using the !pte command.

kd> !pte 00b00201

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 VA	 00b00201	

PDE	 at	 	 	 C0300008	 	 	 	 	 	 	 	 PTE	 at	 C0002C00	 	 	 	 //The	 virtual	 address	

where	 the	 page	 table	 and	 the	 page	 directory	 are	 located	

contains	 17E1C867	 	 	 	 	 	 contains	 1895D867	 	 //Content	 of	 the	

virtual	 address	 (physical	 address)	

pfn	 17e1c	 -‐-‐-‐DA—UWEV	 	 	 	 pfn	 1895d	 -‐-‐-‐DA—UWEV	

	

In this output, C0300008 is the virtual address of the page directory entry where the page
table is located, 17E1C867 is the content of the page entry, and the high 20 bits indicate
the location of the corresponding page table in the memory.

C0002C00 is the virtual address of the page table where the page is located, 1895D867 is
the content of the page table entry, the first 20 bits indicate the physical page number, and
the low 12 bits indicate a symbol.

 Show content of a specific page using the dc command.

Lab 2

Page 18

Check whether this content is the content that was written by our application Explore_WS
by taking the last page as a sample. From step 6, you can see that the virtual address of
the last page is 0x00b00201. On the command line, set the last 12 bits to zero to obtain
0x00b00000.

kd> dc 0x00b00000

00b00000	 	 74697257	 61702065	 63206567	 65746e6f	 	 Write	 page	 conte	

00b00010	 	 703a2078	 20656761	 21303031	 00000021	 	 x	 :page	 100!!...	

00b00020	 	 00000000	 00000000	 00000000	 00000000	 	 ….............	

	

From here, we can see that virtual address 0x00b00000 is really the last page we request in
application, with the content “Write page conte x :page 100!!”.

4.3 Viewing	 Working	 Sets	 of	 Multiple	 Processes	 with	 WinDbg	
In this section, the WinDbg commands that are explained in Section 3.2 are used in an
experiment that views the state of multiple processes, analyzes the locations of working sets
of each process in the virtual address space, and verifies that the virtual address is valid for
the current process only.

In this experiment, two processes need to be started. It is best that the two selected programs
are similar, differing only in the content that is written to the page when requesting the page.
Here, two programs Other-Alloc.exe and alloc.exe are executed. Write the content
“VirtualAlloc—Alloc Page mum …...” in the page for the first process, and write the content
“Other VirtualAlloc—Alloc Page mum…...” in the page for the second process. Do not
perform any other operation. The purpose of this experiment is to be able to see the difference
between the content of the two pages. In the experiment, the breakpoint is set in Row 194 in
the kernel file wslist.c, and then two processes are run at the same time. The records are
shown in the Table 3.

Table 3. Comparing content elements of two processes

Program Content
Elements

alloc.exe Other-alloc.exe

View program
structure address

kd> !processPROCESS
81dce220

kd> !processPROCESS

 81e41a10

View working set
structure address

kd> ? (81dce220+1e8)

= 81dce408

kd> ? (81e41a10+1e8)

= 81e41bf8

View content of
working set link list

kd> dt nt!_MMSUPPORT

 81dce408

[The working set size 0xa5a is
obtained.]

kd> dt nt!_MMSUPPORT

 81e41bf8

[The working set size 0x65a is
obtained.]

Lab 2

Page 19

View virtual address
of working set page

kd> dd c0502698 l 0xa5a kd> dd c0502698 l 0x65a

View contents in the
pages with the same
virtual address

kd> dc 04b90000

[The content is displayed as
follows:]

VirtualAlloc—Alloc	 Page	

mum	 1148.at0x	 4b90000..	

kd> dc 04b90000

[The content is displayed as follows:]

Other	 VirtualAlloc—Alloc	 Page	

mum	 1148.at0x	 4b90000..	

View the physical
page addresses where
PDEs and PTEs of
pages with the same
virtual address are
located

kd> !pte 04b90000

VA 04b90000

PDE	 at	 	 	 C0300048	 	 	 	 	 	 	 	

PTE	 at	 C0012E40	

contains	 16E44867	 	 	 	 	 	

contains	 161FE867	

pfn	 16e44	 -‐-‐-‐DA—UWEV	 	 	 	

pfn	 161fe	 -‐-‐-‐DA—UWEV	

kd> !pte 04b90000

VA 04b90000

PDE	 at	 	 	 C0300048	 	 	 	 	 	 	 	 	

PTE	 at	 C0012E40	

contains	 166B8867	 	 	 	 	 	

contains	 16552867	

pfn	 166b8	 -‐-‐-‐DA—UWEV	 	 	 	 	

pfn	 16552	 -‐-‐-‐DA—UWEV	

cr3 register
kd> r cr3

cr3=17eca000	

kd> r cr3

cr3=17b82000	

This experiment indicates that two virtual addresses are valid for the current process only, the
page directories and the page table entries of all the processes reside in the space with the
address range 0xC0000000-0xC03FFFFF4M, the page directories are mapped within the
0xC0300000-0xC0303FFF range (4K), and the cr3 register is used between processes to find
a physical memory page that is suitable for the processes.

5 Project	 Setting	 for	 Working	 Set	 Management	 Experiment	

Three experiment projects are described in this section: an analysis experiment on the page
replacement algorithm of working set, an algorithm modification experiment, and an
experiment on writing an application verification algorithm. These three experiments are
related to each other and depend heavily on each other. Consider performing the experiments
together, as presented in this section, based on the requirements of the three experiments. For
example, determining the peak value for the working set (experiment 1) is the foundation for
the subsequent experiments, and modification of the page replacement algorithm (experiment
2) may require multiple tests and improvements to the test application.

5.1 Part	 1:	 Analyze	 the	 Page	 Replacement	 Algorithm	 	

5.1.1 Background	 Knowledge	
The page replacement algorithm is one of the key operating system algorithms. It involves
process management and memory management. If additional pages are requested after the

Lab 2

Page 20

number of pages assigned to a process exceeds the maximal allowed value for the working set,
the system replaces old pages using a replacement algorithm. This experiment can be
conducted by using WinDbg together with the Windows kernel source code.

5.1.2 Experiment	 Requirements	

This experiment has three requirements:

• Find the peak value of the working set page of the process.

• Analyze the kernel code path (function-calling relationship) from page fault to
execution of the replacement algorithm using the call stack information obtained from
WinDbg during debugging, and analyze the basic components of each function.

• Conduct a detailed analysis of the page replacement algorithm procedure, because
this is the foundation for later modifying the page replacement algorithm (experiment
2).

5.1.3 Submission	

To meet the experiment requirements, the experiment you must submit documents in PDF
format with the following contents:

• Describe how you found the peak value of the process’ working set, and how you
determined it.

• Show the function calling relationship for page faults and page replacements.

5.1.4 Experiment	 Steps	 and	 Guide	

Perform the following steps to conduct this experiment:

 Conduct static analysis of the code, find the execution conditions for the page
replacement algorithm, and appropriately modify these conditions to determine the peak
value of the working set. (See the source code in Table 1 to find the page replacement
algorithm.)

• Set a breakpoint in the page replacement algorithm using WinDbg. Let the kernel attempt
to execute the page replacement algorithm. Here, you may need to write a user
application that would require the kernel’s page replacement mechanism to be engaged.

• Verify correctness of your understanding of the algorithm, and record each step in detail;
this step will be helpful in the subsequent experiments.

• When the kernel executes the page replacement algorithm, view the call path from the
page default processing function to the page replacement algorithm in the call stack
window of the WinDbg.

• Analyze the functionality of each called function, analyze the page replacement algorithm
in detail, and write a detailed document.

Lab 2

Page 21

5.2 Part	 2:	 Modify	 the	 Page	 Replacement	 Algorithm	

5.2.1 Background	 Knowledge	
In this experiment, you modify the page replacement algorithm of the kernel. Before the
experiment, you should gain a thorough understanding of this algorithm, such as the structure
inside the working set and the storage location of pages.

5.2.2 Experiment	 Requirements	 	

This experiment has four requirements:

• Modify the page replacement algorithm to use an algorithm of your choice and
recompile the kernel.

• Start the system using the new kernel image.

• Set a breakpoint in the new algorithm and verify that the kernel correctly executes the
modified page replacement algorithm.

5.2.3 Submission	

To meet the experiment requirements, you must submit the following materials:

• A document in PDF format with the following contents:

• A description of how your new algorithm works.
• A code listing of your implementation, with detailed comments.

• The source file containing your kernel modifications and your WRKX86.exe.

5.2.4 Experiment	 Guide	

Perform the following steps to conduct this experiment:

• Modify the original replacement algorithm:

• Conduct a thorough analysis of breakpoint setting.

• Start the system.

• Write your own algorithm; replace the page replacement algorithm in the system with the
new algorithm.

• Recompile the kernel and start the system using the new kernel.

• Set a breakpoint in the new algorithm, verify correctness of the algorithm by performing
single-step debugging, and record the verification result.

