
Wireless Network Security

Mitigating design flaws in security architec-
tures is a difficult, if not impossible, task.
Yet, organizations and vendors must
often resort to mitigation to protect their

installed bases. While mitigating implementation flaws,
such as buffer overflows, usually involves only a few lines
of code, mitigating design flaws often involves the whole-
sale redesign of the system architecture.

As wireless networks become more ubiquitous, secu-
rity concerns related to these networks likewise increase.
For many security researchers, wireless networks have
proven to be an archetype of a fundamental premise in se-
curity design: adding security or fixing poorly designed
security after the fact is often impossible. While the IEEE
802.11 Task Group I design team is advancing the state of
wireless local area network security, legacy deployments
will continue to operate for several more years, and these
networks will predominantly operate without the infra-
structure required for current best practice.

In a case study involving wireless LAN security, we
found that mitigating one known security flaw or at-
tack created a dramatic speed-up in a second known
attack. Thus, the system’s overall security saw little
improvement. As part of our study, we developed and
implemented a novel active attack against the wired
equivalent privacy protocol. Our inductive attack lets
any attacker with access to the wireless medium syn-
chronously recover a full or partial dictionary for any
static WEP deployment. Although other researchers
have documented WEP properties that make partial
dictionary recovery possible, previous attacks have

been asynchro-
nous and therefore
incur significant operational difficulties in practice.
Our implementation is both the first synchronous at-
tack against WEP and, more importantly, a classic ex-
ample of how a decision to mitigate one design flaw
can greatly accentuate another.

Wired equivalent
privacy protocol
IEEE 802.11 designers recognized the inherent differ-
ences between the wired and wireless environments, par-
ticularly with regard to medium access. Because the trans-
port medium is shared, any client in transmission range of
another client can process packets originating from that
host. WEP was designed to protect data at the link layer
and prevent unauthorized access to 802.11 data frames.1

Although the WEP design goals called for “reasonably
strong” protection, recent work has demonstrated the
protocol’s failure to meet that goal (see the sidebar “WEP
Design Flaws”).

To provide data confidentiality at the link layer, WEP
uses the symmetric stream cipher RC4 to encrypt all net-
work data traffic, as Figure 1 illustrates.1 The system is
based on a shared secret k that is distributed out of band. In
most network configurations, this out-of-band method is
the manual distribution of a single key shared by all parties
in the network. RC4 uses the key to generate a stream of
pseudorandom bytes equal in length to the target plaintext.
It then combines this stream with the plaintext (P), using
the bitwise “exclusive or” function (XOR, or ⊕) to pro-
duce ciphertext C.1

NICK L.
PETRONI JR.
AND
WILLIAM A.
ARBAUGH
University of
Maryland,
College Park

The Dangers of Mitigating
Security Design Flaws:
A Wireless Case Study

28 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY

Mitigating design flaws often provides the only means to pro-

tect legacy equipment, particularly in wireless local area net-

works. A synchronous active attack against the wired equiva-

lent privacy protocol demonstrates how mitigating one flaw

or attack can facilitate another.

Wireless Network Security

C = RC4(k) ⊕ P (1)

Similarly, WEP decrypts network traffic by producing the
pseudorandom stream used for encryption and combin-
ing it with the ciphertext. Use of the combiner ⊕ reveals
the original plaintext.

P′ = RC4(k) ⊕ C = RC4(k) ⊕ RC4(k) ⊕ P = P (2)

Because the sender and receiver must generate the same
key stream, the same key must always generate the same
pseudorandom stream. Thus, identical plaintexts en-
crypted with the same key produce identical cipher-
texts. This is an extreme weakness, particularly when
the cipher is used to encrypt highly redundant messages,
such as network protocols.2 To address this weakness,
WEP’s set of initialization vectors attempt to add entropy
to the key space by using an IV. WEP uses a 3-byte (24-
bit) IV and a 40- or 104-bit shared secret to produce the
encryption key k. The sender transmits the IV with the
encrypted ciphertext so the receiver can produce the full
k and decrypt.

In addition to its cryptographic protection of the data,
WEP uses a 4-byte integrity check value (ICV), computed
over the original plaintext of the data portion of the 802.11
frame. The 802.11 transmitter computes the ICV as a
CRC-32 checksum and appends it to the plaintext before
encrypting.1

Dictionary attacks
Historically, the term dictionary attack refers to a class of
attacks against password systems whereby the attacker
uses a large set of inputs—the dictionary—to gain access
by trying all possibilities. Over time, the phrase has been
used more generally to refer to any brute-force attack in
which a large table is used or generated. In the case of
RC4, each key has an associated key stream (pseudoran-
dom stream) used for encryption and decryption. As
previously mentioned, WEP utilizes a set of IVs to in-
crease the total number of streams associated with a sin-
gle secret. An attacker who can build a dictionary of all
such streams (one per IV) has no need for the key, as-
suming the dictionary is a manageable size. An IV’s rela-
tively small size results in a total of 224 possible key
streams, each with a length of the maximum transport
unit (MTU) for 802.11 (2,312 bytes). A quick calcula-
tion shows that with less than 40 Gbytes of storage, we
could build a dictionary for a single key and all possible
IVs. While many researchers have noted the potential
for dictionary attacks, these attacks have relied on an at-
tacker’s ability to determine the plaintext or inject
known data from a wired interface.

In the first approach, an attacker can use a network pro-
tocol structure to determine many bytes of the plaintext,
but must resort to traffic analysis to guess the remaining

fields. This analysis can be difficult without additional in-
formation about the network such as usernames, server ad-
dresses, and active protocols. Moreover, the recovered
stream’s length will depend on the size of packets for which
the attacker can correctly predict the plaintext. An attacker
who can only guess the beginning of the message will not
be able to decrypt longer messages.

In the second approach, injecting data into the net-
work, the attacker knows the entire plaintext and can con-
trol the injected packet’s length to maximize the recovered
stream. However, this approach relies on the attacker’s abil-
ity to inject such information into the network via a wired
interface or to persuade a wireless client to request prede-
termined content. Clearly, an attacker will not always have
such influence over the network or its users. Additional
problems arise from the asynchronous nature of these ap-
proaches. Attacks such as IP redirection or plaintext injec-
tion from an outside host make timing a difficult task for
the attacker.

Inductive attack
The inductive attack aims to give the attacker full network
access (both encryption and decryption) without knowl-
edge of the secret key. As stated previously, the lack of in-
tegrity protection for wireless packets lets an attacker with
knowledge of the key stream inject arbitrary packets
without being detected by other clients.

Overview
The inductive attack maximizes the advantages of a com-
pletely known plaintext attack, while minimizing the at-

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 29

Host (layer 3) data

CRC-32

Host (layer 3) data

RC4 stream
cipherIV Secret

802.11 header

Ciphertext802.11 header IV

k

Integrity
check value

Figure 1. WEP
data encryption
and encapsu-
lation. In WEP,
the symmetric
stream cipher
RC4 encrypts
network data
traffic. Using a
shared secret
key, RC4 gen-
erates a stream
of pseudo-
random bytes
equal in length
to the target
plaintext.

Wireless Network Security

tacker’s reliance on external knowledge about and influ-
ence on the network. Furthermore, it does this synchro-
nously to minimize attack complexity. The inductive at-
tack has three phases.

Recovering an initial pseudorandom stream. The
base case requires an attacker to recover n bytes of a
pseudorandom stream for any IV. Generally, the attacker
can accomplish this using network protocol structure and
external information such as a media access control ad-
dress and message size to guess the plaintext. Perhaps the
simplest example is network traffic for a dynamic host
configuration protocol session. DHCP messages, partic-
ularly discover and request, are generally easy to
identify even when encrypted and have highly pre-
dictable fields including all of the IP header and most of
the user datagram protocol (UDP) header.

We have successfully mounted the inductive attack
with as few as 11 correctly guessed initial bytes. Given that
the logical link control (LLC) and subnetwork access pro-

tocol (SNAP) combine for eight highly predictable bytes
at the beginning of every 802.11 packet and that the first
three bytes of an IP packet are also highly predictable, an
attacker could perform this step on almost any network.

Extending the pseudorandom stream size. The at-
tacker uses the redundant information provided by the
ICV to extend the pseudorandom stream one byte at a
time to obtain a stream for the entire MTU. Because an
access point or other wireless host will only pass a WEP-
encrypted packet if the ICV is computed correctly, an at-
tacker can use the device to filter out false guesses at the
pseudorandom stream. If, for example, the attacker re-
covers n bytes of a key stream from the above step, he or
she can inject any message of length n – 4 by computing
the correct ICV, appending it to the plaintext and com-
bining it with the known key stream. To extend the
known key stream, the attacker

1. Generates a message of length n – 3 that, if received cor-

30 JANUARY/FEBRUARY 2003 � http://computer.org/security/

WEP design flaws

Researchers have identified threats against each of the
primary security services (availability, integrity, and

confidentiality) and have implemented attacks for a variety
of network configurations.1–7 While we don’t give a com-
prehensive list of these vulnerabilities, we overview past
work to compare it with the inductive attack we present.

Key stream reuse
Jesse Walker’s analysis of WEP’s use of RC4 was one of the earli-
est works to study 802.11 network insecurity.7 Walker exam-
ined the initialization vector mechanism as a prevention
against key stream reuse. He concluded that the way in which
WEP uses RC4 causes high IV reuse and therefore key stream
reuse that renders it ineffective. First, a moderately busy net-
work will exhaust the relatively small IV space in a matter of
hours, sometimes minutes. The likely configuration of multi-
ple access points sharing the same key magnifies this result.
Second, because WEP does not prevent collisions among mul-
tiple access points, access points using the same IV production
algorithm are more likely to choose duplicate IVs in a smaller
interval. As Walker points out, even if you employ a system to
avoid collisions, the IV space is simply too small to guarantee
such avoidance.

Nikita Borisov, Ian Goldberg, and David Wagner made
similar observations about the dangers of key stream
reuse and further analyzed the WEP checksum (that is, its
integrity check value, or ICV).3 Having reached the same
conclusion about the likelihood of IV collisions, they

described methods attackers could use to recover plaintext
or inject new traffic into the network through key stream
reuse. In terms of recovery, the authors used known char-
acteristics of network and application protocols to make
predictions about the plaintext of sniffed messages—for
example, header structure, common fields, easily identi-
fiable remote library calls, and frequently used strings such
as prompts. Furthermore, they suggested using a wired
Internet connection to make controlled IP requests of a
wireless host or, if a permanent connection is not available,
sending a known wireless user an email and simply waiting
for the user to update his or her mail. While both methods
are feasible, they rely on an attacker’s knowledge of the
network being attacked or ability to externally influence
the environment asynchronously.

Message modification
Borisov, Goldberg, and Wagner also describe how an attacker
can arbitrarily change or “bit flip” parts of a WEP-encrypted
message to let the receiver decrypt the message without rec-
ognizing any error. This directly results from WEP’s use of CRC-
32 as its integrity checking function. Because CRC-32 is linear,
its checksum distributes over the XOR operation. That is,
CRC(x) ⊕ CRC(y) = CRC(x ⊕ y). Furthermore, because RC4
uses the XOR operation as its combining function, an attacker
can arbitrarily modify the encrypted message while maintain-
ing a valid checksum. Because the checksum lacks a keyed-
input, an adversary who knows the plaintext of the message
can compute the checksum. Thus, an adversary can inject a
packet without knowing the cryptographic key (assuming he
or she has the key stream).

Wireless Network Security

rectly, generates a predictable response from some net-
work host (possibly the access point). If not received, or
if received incorrectly, the message fails to produce such
a response.

2. Computes the ICV for the new message and appends the
first three bytes, saving the final byte for later use.

3. Combines the resulting n-byte message with the known
key stream.

4. Transmits an n + 1-byte message (n bytes from the pre-
vious step and a guess at the final byte). The attacker re-
peats this step with a different, untested final byte until
he or she detects the expected network response for a
valid packet.

5. XORs the n + 1th transmitted byte with the last byte of
the correct ICV computed in the second step. The re-
sulting value is the n + 1th key stream byte.

Figure 2 illustrates this process. The completed proce-
dure extends the known key stream by a single byte. The
attacker can repeat the procedure until he or she recovers a

pseudorandom stream up to the MTU.

Building the dictionary. Now that the attacker has a
complete key stream for a particular IV, he or she can
inject arbitrary packets at will using that IV. With no
information about other IVs, however, the attacker
cannot yet participate as a full network member. To re-
cover key streams for the remaining IVs, the attacker
simply makes a series of requests that elicit predictable,
long responses from a host or hosts. By encrypting
these requests using the recovered pseudorandom
streams (as in the previous step), the attacker can re-
cover additional full key streams. Although similar to a
dictionary attack in which the attacker injects data into
the network from outside connections, the attacker
uses a key stream recovered during the attack rather
than outside access to the wired network. Because the
attacker is a participating member of the local network,
he or she can easily synchronize requests and responses
for key stream recovery.

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 31

One of us, William Arbaugh, extended these findings
into a practical synchronous attack against WEP (and at the
time a potential replacement for WEP called WEP2), the
implementation of which we describe in the main article.2

Passive attacks
Not long after researchers identified the weaknesses

of applying cryptographic primitives within WEP, Scott
Fluhrer, Itsik Mantin, and Adi Shamir published work on
weaknesses in the RC4 cipher.1 They presented the FMS
probabilistic attack, which leverages a class of weak keys
in the underlying cryptographic logic used in IEEE 802.11
wireless LANs. This devastating attack can recover the
encryption key in approximately 30 minutes when com-
bined with an active attack to generate enough traffic.
Previously, the best-known attack against WEP required
almost 54 hours.2 Under the right conditions, a vulnera-
bility in RC4’s key-scheduling algorithm provides infor-
mation about the key generating the stream. Unfor-
tunately for WEP, these conditions, a constant secret
combined with multiple different exposed key bytes (the
IV), are consistent with how WEP uses RC4. As a result, a
passive attacker can recover the entire secret key with rel-
atively few sniffed messages.

Explanations of the theory behind the attack are
available elsewhere.1,4,6 The FMS attack is entirely passive
and relies on the use of a specific IV class that, when used
with the associated secret, is likely to encrypt with a value
that reveals information about the secret. By processing
enough packets encrypted with these weak IVs, an
attacker can determine the value and recover a piece of

the key. This attack has multiple independent imple-
mentations and works quite well.4,6 Some access point
vendors have begun to filter weak IVs to mitigate the
effectiveness of the passive attack. Without access to data
encrypted using weak IVs, the attack cannot succeed.

References
1. S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the Key

Scheduling Algorithm of RC4,” Proc. 8th Ann. Workshop Selected

Areas in Cryptography, Springer, 2001, pp. 1–24.

2. W. A. Arbaugh, “An Inductive Chosen Plaintext Attack Against

WEP/WEP2,” IEEE 801.11, Verlag, May 2001, www.cs.umd.

edu/~waa/wepwep2-attack.html.

3. N. Borisov, I. Goldberg, and D. Wagner, “Intercepting Mobile

Communications: The Insecurity of 802.11,” Proc 7th Ann. Int’l

Conf. Mobile Computing and Networking, ACM Press, 2001, pp.

180–188.

4. A. Stubblefield, J. Ioannidis, and A.D. Rubin, “Using the Fluhrer,

Mantin, and Shamir Attack to Break WEP,” Proc. Network and Dis-

tributed System Security Symposium (NDSS), Internet Society,

2002; www.isoc.org/isoc/conferences/ndss/02/proceedings/

papers/stubbl.pdf.

5. W. Arbaugh, et al., “Your 802.11 Wireless Network Has No

Clothes,” IEEE Wireless Comm., vol. 9, no. 6, IEEE Press, 2002, pp.

44–51.

6. D. Hulton, “Practical Exploitation of RC4 Weaknesses in WEP Envi-

ronments,” white paper, Dachb0den Labs, Feb. 2002, www.

dachb0den.com/projects/bsd-airtools/wepexp.txt.

7. J. Walker, “Unsafe at Any Key Size: An Analysis of the WEP Encap-

sulation,” IEEE 802.11-00/362, IEEE Press, 2000, www.

netsys.com/library/papers/walker-2000-10-27.pdf.

Wireless Network Security

Our attack implementation
We implemented a relatively simple inductive attack to
demonstrate the feasibility of conducting such an attack
on commercially available and widely deployed networks.
The attack has modest hardware requirements:

• A wireless card that can enter RF Monitor mode—a
mode in which all detected 802.11 traffic from any net-
work in the area is passed to the operating system—to
recover the initial pseudorandom stream in the base case

• A wireless card that lets the device driver transmit
frames with arbitrary data portions so the attacking
software rather than the card hardware encrypts the
data

• Enough disk space (up to 40 Gbytes)

To meet the first two requirements, we used a single
card based on the Intersil Prism2 chipset. This card has
monitoring capabilities and lets the driver generate ar-
bitrary data packets when using the correct transmit
flags. Most currently available laptops meet the third re-
quirement.

We performed the implementation on a system run-
ning OpenBSD 3.1. Because the if_wi driver already
supports RF Monitor mode, it only required a simple
change to be able to send arbitrary data being passed
through the wi device interface as raw data in an 802.11
packet. We then implemented the attack as a user–space
program, using the inductive attack methods described in
the previous section.

Recovering an initial pseudorandom stream. In the-
ory, we could use any packet long enough to have an
ICV (4 bytes) to perform the inductive step. In practice,
the attack relies on the use of a protocol that will cause a
predictable response under certain conditions. If an at-
tacker can recover more bytes in the first step, he or she
will need to recover fewer bytes inductively (thereby
reducing the overall time of attack) and can use more
complex protocols earlier in the attack. An attacker
who only recovers 11 bytes, for example, will not be
able to inject packets with correct IP headers. Our im-
plementation successfully identifies and recovers 34
bytes of a pseudorandom stream for the address resolu-
tion protocol (ARP) and DHCP packets and as many as
12 bytes for arbitrary, unidentifiable IP packets (see the
sidebar “Recovering an Initial Pseudorandom Stream
with DHCP”).

Extending the pseudorandom stream size. Many pro-
tocols allow single-byte length increases, enabling the at-
tacker to be creative in his or her selection of protocols.
We successfully implemented our attack using two differ-
ent packet types for induction: Internet control message
protocol echo packets and arbitrary length, malformed
ARP packets. Other possibilities include sending user
datagram protocol packets to a known closed port.3

Because of their flexibility, widespread implementa-
tion, and response characteristics, ICMP echo (ping) re-
quests are a natural candidate for key stream induction.4

Any network host, wireless or wired, is a potential message
destination. Moreover, the messages are easy to generate
because the payload can contain arbitrary data.

To use ICMP, an attacker must know an active IP ad-
dress for a network host. If the initial pseudorandom stream
is at least 28 bytes long, the attacker can easily recover IP
addresses for one or more network hosts (IP address are al-
ways in the first 20 bytes of any IP message and IVs are
guaranteed to repeat). Because this is really a layer-2 attack,
however, a valid layer-3 protocol—all of which require the
attacker to identify a valid address—is unnecessary.

Our second implementation of the inductive attack
uses packets with arbitrary data and a SNAP header that in-
dicates the data is actually part of the ARP protocol. While
the ICMP version relies on a reply from the destination
host, the ARP version only uses the access point to filter
out packets with invalid checksums. Because the packet
data is invalid, the host will not reply. Instead, the attacker
chooses a wireless host as the destination and sniffs the
medium to determine if the access point has forwarded the
injected packet to that host. Although the choice of ARP
might seem arbitrary, many access points are increasingly
intelligent about transmitted data. Tests indicated that
some vendors’ access points didn’t forward IP packets with
invalid IP headers. None of the tested access points were as
discriminant with ARP packets.

32 JANUARY/FEBRUARY 2003 � http://computer.org/security/

Host (layer 3) data

CRC-32

Host (layer 3) data Integrity
check value

Pseudorandom key stream

Ciphertext ?

n – 3 bytes

n + 1 bytes

n bytes

n + 1 bytes

Figure 2. The
inductive step.
An attacker
guesses the n +
1th byte until
he or she
receives a
response and
recovers the
next byte of
the pseudo-
random
stream.

Wireless Network Security

Building the dictionary. We also use ICMP packets or
malformed ARP packets to build a dictionary of re-
maining pseudorandom streams. By injecting maxi-
mal-length ICMP echo requests destined for a known
host, we receive responses of known content that are
long enough to recover entire pseudorandom streams
for alternate IVs. Each time we receive data with a new
IV, we use the known plaintext to recover the pseudo-
random stream for that IV and then store the informa-
tion in the dictionary. When the attacker sees a dupli-
cate IV, he or she simply discards the data. As with
arbitrary data injected into ARP packets, the access
point will often forward the packet using its next IV and
not the IV chosen by the initial sender. The attacker
simply sniffs the forwarded packet and recovers the
pseudorandom stream for the new IV. Other protocols
can be used in this step as well.

Attack performance
The inductive attacker’s primary goal is to become a peer
on the network as quickly as possible. In general, the in-
ductive step (phase two of the attack) is the most techni-
cally difficult to implement, while phase three takes the
most attack time.

Several factors contribute to phase two’s speed, in par-
ticular network latency. In the inductive step, the attacker
sends packets that might or might not be the correct form
and waits for a response. If a response comes, the attacker
immediately knows he or she can move on to the next
byte, but how long should an attacker wait for a response?
Depending on network conditions, responses could take
from a couple of milliseconds to a few seconds. Waiting too
long obviously wastes time, but not waiting long enough
means the attackers might not know which request in-
duced the response. Fortunately for the attacker, this delay
is a tunable parameter that can be updated each time the at-
tack runs, or even dynamically during a single attack, de-
pending on the implementation’s sophistication.

Our implementation used a manually tuned static
value, but also included a form of backtracking to handle
the case where the wait period is usually optimal, but in-
consistent. Although we determined that the implementa-
tion could have further reduced its wait time, limitations in
the packet capture library used prevented delays of less
than seven milliseconds. Still, as Table 1 shows, the imple-
mentation averaged a per-byte recovery rate of 1.83 sec-
onds, resulting in an average phase-two length of just over
one hour for the full 802.11 MTU and only 45 minutes for
the 802.3 limit of 1,500 bytes.

The high expense of building a dictionary is due to
the large amount of data that must be collected. While
conservative estimates have exceeded 46 hours, fast-
packet throughput on a commercial access point let us
build the entire dictionary in just less than 18 hours. Fur-
thermore, a number of properties of the inductive attack

considerably lessen the importance of this number.
First, in the inductive attack, the attacker has far more

power before the attack’s completion than in the passive
key-scheduling algorithm attack. In a KSA attack, the at-
tacker cannot decrypt or inject messages until the entire
key is known. Conversely, inductive attackers will already
have partial key streams to use to their advantage. One way
to capitalize on this advantage is to maintain a dictionary of
partial pseudorandom streams during the inductive step.
For each byte recovered there will be a corresponding re-
sponse from a host, generally encrypted using a previously
unseen IV. The attacker can disregard partial streams and
wait for the entire dictionary or use this information to de-
crypt smaller messages.

Using partial dictionaries of full streams before the
completion of phase three can also provide immense ad-
vantages in some WEP implementations. In the test envi-
ronment, an access point from a major access point ven-
dor proved to reuse IVs consistently in a short period of
time (on the order of minutes). The clear advantage of
such reuse is that the attacker can begin using the net-
work as a full member after recovering only a subset of
key streams.

The second, and more powerful, feature of the induc-
tive attack is that it can be easily parallelized. During the
third phase, an attacker can add an arbitrary number of
hosts or interfaces without complicating the attack and
thus gain almost linear speedup. Tightly coupled hosts
could share a dictionary, or loosely coupled hosts could
simply take the union of independently held dictionaries
after working for a predetermined amount of time.

WEP implementations
Walker and Borisov, Goldberg, and Wagner were the first
to point out the wide variance of possible WEP imple-
mentations left open by the standard. Early on, many ven-
dors made poor implementation decisions such as the re-
peated use of a single IV or a repeating counter that resets
on reboot. Most major vendors subsequently increased

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 33

ATTACK CHARACTERISTIC TIME

Minimum single-byte induction 1.75 seconds

Average single-byte induction 1.83 seconds

Maximum single-byte induction 2.26 seconds

Minimum phase two (MTU 1500) 42.845 minutes

Average phase two (MTU 1500) 45.217 minutes

Maximum phase two (MTU 1500) 55.682 minutes

Estimated phase two (MTU 2300) 1 hour, 6.161 minutes

Table 1. Time characteristics of our attack imple-
mentation over 10 runs on a single access point.

Wireless Network Security

34 JANUARY/FEBRUARY 2003 � http://computer.org/security/

Recovering an initial
pseudorandom stream
with DHCP

Recovering an initial pseudorandom stream is easy for
any adversary who can sniff wirelessly. Because network

headers are highly predictable, almost every packet can
become an initial pseudorandom stream that can be the
base for induction. Attackers benefit from highly recog-
nizable messages that maximize the number of continuous
bytes they can guess. An extremely common and easy-to-
recognize message is the dynamic host configuration
protocol request. DHCP is used to pass information to
hosts on a TCP/IP network.1 In general, to recover an initial
pseudorandom stream, an attacker listens to packets sent
from wireless clients, which he or she filters for certain
properties. For example, an attacker might use DHCP in
these ways:

• A wireless host sends a packet to the broadcast MAC ad-
dress ff:ff:ff:ff:ff:ff

• The packet contains the 802.11 ToDS and WEP flags set, in-

dicating that the broadcast is destined for the host (wired)
network and that it is an encrypted packet.

• The packet is larger than the minimum DHCP request size
(802.11 header + LLC (logical link control) + IP header +
UDP header + DHCP request data).

• The packet came from a host whose MAC address recently
appeared on the network (making it more likely that host
will request an IP address).

Once the attacker has recovered what seems to be
an encrypted DHCP request, he or she simply makes a
best guess at the plaintext request and combines that
guess with collected ciphertext, as Figure A (next page)
shows. Table A enumerates the potentially guessed
fields from a DHCP packet that an attacker could use.
Many of the fields are predetermined, while others
simply have common values used in well-known imple-
mentations.

Reference
1. R. Droms, Dynamic Host Configuration Protocol, Internet Engi-

neering Task Force RFC 2131, Mar. 1997, www.

ietf.org/rfc/rfc2131.txt.

FIELD BYTES COMMENT

Logical link control 8 Same for all IP packets

IP Header

Version/header length 1 Same for all IPv4 packets with no options

Differentiated service 1 Default 0 × 00 common

Length 2 Provided by packet characteristics

Identification 2 0 × 00 0 × 00 for many clients

Flags/frag offset 2 0 × 00 0 × 00 (no flags, no fragments)

Time to live 1 Commonly used values are 128 and 16

Protocol 1 User datagram protocol (UDP), 0 × 11

Header checksum 2 Calculable for any guessed header

Source address 4 0.0.0.0 (client yet to have an address)

Destination address 4 255.255.255.255 (broadcast)

UDP header

Source port 2 DHCP, 68

Destination port 2 DHCP, 67

Length 2 Provided by packet characteristics

Total 34

Table A. Predictable fields in DHCP requests.

Wireless Network Security

their use of the already small IV space. After the publica-
tion and subsequent implementation of the Fluhrer,
Mantin, and Shamir passive attack, vendors quickly
turned their attention to attack mitigation.

The only way to prevent the FMS passive attack is to
prevent the attacker from seeing a sufficient number of
packets encrypted using weak IVs. For many vendors, this
means filtering out all potentially weak IVs, thereby reduc-
ing the total number of IVs available for transmission. De-
pending on the number of IVs being filtered, this increases
the potential for IV reuse.

In the test environment of our implementation, a major
vendor’s access point filtered an entire class of IVs, thereby
reducing the size of the dictionary needed by the attacker
and hastening the attack by a factor of more than 45. Initial
tests showed that when the vendor received many attack
packets in a short time period, the vendor’s access point
began reusing IVs with an alarmingly high frequency in
packets sent to the attacker. In this environment, an at-
tacker can begin to use the network and can likely decrypt
arbitrary responses. Furthermore, we obtained high reuse
to a single interface each time we ran the attack, prompting
a full analysis of the vendor’s IV selection.

We conducted tests on different access points from the
same vendor using the vendor’s three most recently re-
leased firmware versions. We also took statistics for envi-
ronments with different numbers of hosts and a variety of
network traffic patterns. Analysis revealed a simple pattern
in all cases: the vendor does not use IVs with a second byte
larger than 0 × 03, reducing the IV space to 218, a remark-
ably low 15.625 percent of the total 224 possible IVs.
Reuse at such a high level gives an overwhelming advan-
tage to an attacker.

Table 2 compares the effectiveness of a varying number
of hosts where there is high IV reuse and little or no IV
reuse. The estimates for the multihost columns are best-
case in that they assume full parallelism. The two tested ac-
cess points differed drastically in recovery rates (time to re-
cover a single IV). Because it had much faster packet
throughput, the nonfiltering access point’s recovery time
far exceeded the expected 45 hours. Thus, increasing ac-
cess point performance significantly speeds up the attack.
Had the faster, nonfiltering access point used the same fil-
tering as the slower access point, the phase three time
would have been an alarming 17 minutes.

Attack mitigation
Among the possible techniques for mitigating attacks are
proprietary message integrity checks, limitation or detec-
tion of packets with failed ICVs, protocol filtering, and
dynamic rekeying. As always, the best solution for a net-
work depends on the network’s requirements.

WEP’s ICV does not ensure data integrity and is di-
rectly responsible for the success of bit-flip and dictionary
attack techniques against WEP.5 One possible solution is to

use an additional cryptographically sound message in-
tegrity check that uses a keyed input. Simply replacing the
ICV with a cryptographically sound hash would not pro-
tect against the inductive attack, because the attacker could
still compute the function over arbitrary data and inject it
without knowing a shared secret.5 While some vendors
have begun to implement keyed MICs, the systems remain
proprietary, thereby limiting interoperability.

Because the attack is active, a number of aspects make
its detection feasible in some instances. During phase
two, a single source generates numerous packets with in-
correct ICVs. Many access points provide statistics for ad-
ministrators, who could identify an extreme rise in ICV
failures and conclude that something anomalous had oc-
curred. In practice, although many ICV failures occur
during phase two, the inductive step takes a relatively
short time, and, without an automated system, audit logs
will probably not provide enough information to identify
the attack. Even if the administrator could detect the at-
tack, it is unclear what action he or she could take. The
simplicity of MAC spoofing makes simply blocking traf-
fic from a particular host useless. Rekeying is perhaps the
most useful course of action, but without automation it is
often a tedious process. Detection, therefore, is likely not

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 35

Alice

Eve

Dynamic host configuration
protocol request

DHCP response

DHCP request packet

WEP encrypted request802.11
header

Integrity
check value

Initialization
vector

Encrypted user datagram
protocol header

Enclosed logical
link control

Encrypted
IP header

Encrypted
DHCP payload

User datagram
protocol header

Logical
link control

Guessed IP
header

Initial Pseudorandom

Figure A. Recovery of an initial pseudorandom stream from a
dynamic host configuration protocol (DHCP) request.

continued from p. 34

Wireless Network Security

the most effective means of mitigation.
Packet filtering is a common method for mitigating active

attacks. Several commercial access points provide this func-
tionality and likely candidates for filtering are the protocols
(such as ICMP) that make phase two easy. The problems with
this approach are twofold. First, to prevent MAC spoofing, an
administrator would have to unilaterally block such proto-
cols, which would deny hosts access to services they might
find useful or necessary. Second, and more importantly, it is
difficult to identify which protocols can and cannot be used
for the attack. Creative attackers can likely find a way to use
unblocked protocols to their advantage. There are simply too
many possibilities for key stream induction and no reasonable
way to limit protocol usage. Thus, protocol filtering is not an
option for mitigating the inductive attack.

Protocols using dynamic rekeying provide excellent re-
sistance to the inductive attack. An attacker’s ability to build
a dictionary relies on the limited number of possible
pseudorandom streams. With a properly implemented dy-
namic key system, an attacker cannot build a dictionary for
any one key in use. While partial dictionary building and
other forms of key stream attacks are still possible, dynamic
rekeying eliminates an inductive attacker’s ability to be-
come a peer on the network. The primary disadvantage to
dynamic keying systems is the amount of administration
and infrastructure necessary in most implementations.
Some systems require proprietary hardware, while others
rely on public key infrastructure.

To address the issues surrounding interoperability of
rekeying designs, the WiFi Alliance recently announced
WiFi Protected Access, a new security architecture that
would be available as a firmware upgrade to much of the
currently deployed equipment. WPA provides for per-
packet keys and a lightweight message authentication
code—message integrity code in IEEE vernacular.
Combining these security mechanisms would prevent
our inductive attack as well as all currently known in-
tegrity and confidentiality attacks against 802.11-based
networks. You can find more information at http://
cedar.intel.com/media/pdf/security/80211_part2.pdf.

A s we have shown in this article, the improper design of
a system can have critical consequences on its overall

security. While adequate design is difficult and expensive,
the mitigation of flaws arising from poor design can be
nearly impossible. More often than not, the only true solu-
tion is wholesale system redesign. To this end, WPA should
not be considered a panacea. WPA mitigates WEP’s secu-
rity problems and, as we have demonstrated, mitigation
can sometimes have unwanted effects. WPA should there-
fore be viewed as only an interim solution until the AES-
based RSN is released in early 2004.

References
1. “LAN MAN Standards of the IEEE Computer Society.

Wireless LAN medium access control (MAC) and physi-
cal layer (PHY) specification,” IEEE Standard 802.11,
IEEE Press, 1997.

2. J. Walker, “Unsafe at Any Keysize: An Analysis of the
WEP Encapsulation,” IEEE 802.11-00/362, IEEE Press,
2000; www.netsys.com/library/papers/walker-2000-
1027.pdf.

3. R. Braden, ed., Requirements for Internet Hosts—Commu-
nication Layers, Internet Engineering Task Force RFC
1122, Oct. 1989, www.ietf.org/rfc/rfc1122.txt.

4. J. Postel, ed., Internet Control Message Protocol, IETF RFC
792, Sept. 1981, www.ietf.org/rfc/rfc0792.txt.

5. N. Borisov, I. Goldberg, and D. Wagner, “Intercepting
Mobile Communications: The Insecurity of 802.11,” Proc.
7th Int’l Conf. Mobile Computing and Networking, ACM
Press, 2001, pp. 180–188.

Nick L. Petroni Jr. is a second-year graduate student in the
Department of Computer Science at the University of Maryland,
College Park. His research interests include information security
and wireless networks. He received a BS in computer science from
the University of Notre Dame. He is a member of the IEEE and
the ACM. Contact him at npetroni@cs.umd.edu.

William A. Arbaugh is an assistant professor in the Department
of Computer Science at the University of Maryland, College Park.
His research interests include information systems security and
privacy with a focus on wireless networking, embedded systems,
and configuration management. He received a BS from the
United States Military Academy at West Point, an MS in com-
puter science from Columbia University, New York, and a PhD
in computer science from the University of Pennsylvania,
Philadelphia. He is a member of the IEEE. Contact him at
waa@cs.umd.edu.

36 JANUARY/FEBRUARY 2003 � http://computer.org/security/

NUMBER OF ATTACKERS 1 2 1 2

Number of IVs

Recovery rate (msec/IV) 11.527 11.527 3.800 3.800

Total time (hours) .839 .420 17.609 8.805

Tested Yes No Yes No

Table 2. The effects of IV reuse on attack time (phase three only).

218 218 224 224

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

