
Testing for Software Vulnerability Using Environment Perturbation

Wenliang Du
CERIAS�

1315 Recitation Building
Purdue University

W. Lafayette, IN 47907, USA
Email: duw@cs.purdue.edu

Aditya P. Mathur
Computer Science Department

1398 Computer Science Building
Purdue University

W. Lafayette, IN 47907, USA
Email: apm@cs.purdue.edu

Abstract

We describe an methodology for testing a software sys-
tem for possible security flaws. Based on the observation
that most security flaws are caused by the program’s inap-
propriate interactions with the environment, and triggered
by user’s malicious perturbation on the environment (which
we call an environment fault), we view the security testing
problem as the problem of testing for the fault-tolerance
properties of a software system. We consider each envi-
ronment perturbation as a fault and the resulting security
compromise a failure in the toleration of such faults. Our
approach is based on the well known technique of fault-
injection. Environment faults are injected into the system
under test and system behavior observed. The failure to tol-
erate faults is an indicator of a potential security flaw in the
system. An Environment-Application Interaction (EAI) fault
model is proposed which guides us to decide what faults to
inject. Based on EAI, we have developed a security test-
ing methodology, and apply it to several applications. We
successfully identified a number of vulnerabilities include
vulnerabilities in Windows NT operating system.

Keywords: Security testing, security flaws, fault injection,
environment perturbation.

1 Introduction

Security testing

Reports of security violations due to software errors are
becoming increasingly common. We refer to such errors
as “security errors” or “security flaws.” This has resulted
in security related concerns among software developers and

�Center for Education and Research in Information Assurance and Se-
curity

users. All stages of software development are motivated by
the desire to make the product secure and invulnerable to
malicious intentions of some users. Our work is concerned
with the testing of software with the goal of detecting errors
that might lead to security violations.

Traditional methods for detecting security flaws include
penetration analysis and formal verification of security ker-
nels [18, 20]. Penetration analysis relies on known security
flaws in software systems other than the one being tested.
A team of individuals is given the responsibility of pene-
trating the system using this knowledge. Formal methods
use a mathematical description of the security requirements
and that of the system that implements the requirements.
The goal of these methods is to show formally that the re-
quirements are indeed met by the system.

A weakness of penetration analysis is that it requires one
either to know or be able to postulate the nature of flaws that
might exist in a system. Further, the effectiveness of pene-
tration analysis is believed to be as good as that of the team
that performs the analysis. A lack of an objective criterion
to measure the adequacy of penetration analysis leads to un-
certainty in the reliability of the software system for which
penetration analysis did not reveal any security flaws.

Attractive due to the precision they provide, formal
methods suffer from the inherent difficulty in specifying
the requirements, the system, and then applying the process
of checking the requirements specification against system
specification.

Recently, several specific security testing techniques
have been developed [4, 8, 19, 24, 22, 29]. As discussed
in section 5, these techniques are either restricted to some
specific security flaws or limited by the underlying testing
techniques.

Another alternative for security testing is to use general
testing techniques, such as path testing, data-flow testing,
domain testing, and syntax testing [2]. However, the effec-
tiveness of these techniques in revealing security flaws is
still unknown and more studies are needed to justify their

0-7695-0707-7/00 $10.00 � 2000 IEEE

use in testing for security flaws.

Outline of our approach

Our approach for security testing employs a well known
technique in the testing of fault-tolerant systems, namely
fault injection. This approach has drawn upon years of re-
search and experience in vulnerability analysis [1, 3, 6, 17,
21]. Our approach relies on an empirically supported belief
that the environment plays a significant role in triggering
security flaws that lead to security violations [10, 17].

The problem

For the purpose of our discussion, we assume that a
“system” is composed of an “application” and its “environ-
ment.” Thus, potentially, all codes that are not considered
as belonging to the application belong to the environment.
However, we can reduce the size of the environment, by
considering only those portions of the code that have a di-
rect or indirect coupling with the application code. Such
coupling might arise, for example, due to the application’s
use of global variables declared in the environment or the
use of common resources such as files and network ele-
ments.

For various reasons, programmers tend to make assump-
tions about the environment in which their application will
function. When these assumptions hold, the application
is likely to behave appropriately. But, because the envi-
ronment, as a shared resource, can often be perturbed by
other subjects, especially malicious users, these assump-
tions might not be true. How to know whether a program
can tolerate the environment perturbation is the key problem
that we want to solve in this paper.

If we consider environment perturbations, especially ma-
licious perturbations to be (malicious) faults, the above
problem is considered as whether a program is able to toler-
ate various environment faults (not leading to security viola-
tions is considered toleration of such faults). In the remain-
der of this paper, we will use the terms “environment per-
turbation” and “environment fault” interchangeably where
there is no confusion.

Fault injection–the deliberate insertion of faults into
an operational system to determine its response–offers an
effective solution to validate the dependability of fault-
tolerant computer and software systems [5]. In our ap-
proach, faults are injected into environment thereby perturb-
ing it. In other words, we perturb the application environ-
ment during testing to see how the program responds and
whether there will be a security violation under this pertur-
bation. If not then the system is considered secure.

Advantages of our approach

The use of environment fault injection technique leads
to several advantages. First, in practice, it is hard to trig-
ger certain anomalies in the environment, and knowing how
to trigger them depends on the tester’s knowledge of the
environment. Therefore, testing software security under
those environment anomalies becomes difficult. Fault in-
jection technique provides a way of emulating the environ-
ment anomalies without having to be concerned with how
they could occur in practice. Second, our approach provides
a systematic way of deciding when to emulate environment
faults. If we want to test whether a system will behave ap-
propriately under certain environment anomalies, we need
to set up those environments. However, the set up time is
often difficult to control. If the set-up is too early, the con-
dition might change during the test, and the environment
state might not be what is expected when an interaction be-
tween the application and the environment takes place. If
the environment is set up too late, the effect it has on the ap-
plication’s behavior might not serve the purpose for which
it was set up. By exploiting static information in the ap-
plication and the environment’s source code, our approach
can, however, decide deterministically when to trigger en-
vironment faults. Third, unlike penetration analysis, where
the procedure is difficult to automate and quantify, fault in-
jection technique provides a capability of automating the
testing procedure. In addition, we adopt a two-dimensional
metrics to quantify the quality of our testing procedure.

Research issues

Fault injection requires the selection of a fault model [5].
The choice of this model depends on the nature of faults.
Software errors arising from hardware faults, for instance,
are often modeled via bits of zeroes and ones written into a
data structure or a portion of the memory [15, 26], while
protocol implementation errors arising from communica-
tion are often modeled via message dropping, duplication,
reordering, delaying etc. [14]. Understanding the nature of
security faults provides a basis for the application of fault
injection. Several studies have been concerned with the na-
ture of security faults [1, 3, 6, 17, 21].) However, we are not
aware of any study that classifies security flaws from the
point of view of environment perturbation. Some general
fault models have also been widely used [13, 27, 22, 29].
The semantic gap between these models and the environ-
ment faults that lead to security violations is wide and the
relationship between faults injected and faults leading to
security violations is still unknown. We have developed
an Environment-Application Interaction (EAI) fault model
which serves as the basis for the fault injection technique
described here. The advantage of the EAI model is in its

0-7695-0707-7/00 $10.00 � 2000 IEEE

capability of emulating environment faults that are likely to
cause security violations.

Another issue in fault injection technique is the location,
within the system under test, where faults are to be injected.
In the current stage of our research, we inject environment
faults at the points where the environment and the appli-
cation interact. In future work, we plan to exploit static
analysis to further reduce the number of fault injection lo-
cations by finding the equivalence relationship among those
locations. The motivation for using static analysis method
is that we can reduce the testing efforts by utilizing static
information from the program.

A general issue about software testing is “what is an ac-
ceptable test adequacy criterion?” [11]. We adopt a two-
dimensional coverage metric (code coverage and fault cov-
erage) to measure test adequacy.

The remainder of this paper is organized as follows: sec-
tion 2 presents the fault model. A methodology for security
testing is presented in section 3. In section 4 we will show
the results of using this methodology in detecting real world
programs. Finally a brief overview of related studies is pre-
sented in section 5 followed by summary of this research
and the potential for future work in section 6.

2 An Environment Fault Model

In order to determine system behavior under various en-
vironment conditions, an engineer must be able to deter-
mine the effects of environment perturbation on a given
system. Therefore, it is useful to inject faults that man-
ifest themselves as errors in systems at the environment-
application interaction level. To maintain confidence in
the validity of the errors, the model used for these injec-
tions should be drawn from actual environment faults, while
faults injected into the system should be able to emulate
those environment faults appropriately. One assumption be-
hind this requirement is that a security violation resulting
due to the injected fault is similar to one that results due to
an environment fault that arises during the intended use of
the system.

2.1 Terminology

Definition 2.1 (Internal State and Internal Entity) Any el-
ement in an application’s code and data space is considered
an internal entity. A state consisting of the status of these
entities is called an internal state.

Variable i in a application, for example, is an internal
entity. The value ofi is a part of an internal state. The size
of a buffer used in the application is also a part of its internal
state. In general, all information in this application’s data
space, stack space, and heap space are part of its internal
state.

Definition 2.2 (Environment Entity and Environment State)
Any element that is external to an application’s code and
data space is called an environment entity. A state that con-
sists of the status of these entities is called an environment
state.

For instance, file and network are treated as environment
entities. The permission of a file, existence of a file, owner-
ship of a file, real user-id of a process, and the effective user-
id of process are different parts of an environment state.

A key difference between an environment and an inter-
nal entity, which makes implementation of a secure system
difficult and error-prone, is the shared nature of the environ-
ment entity. An application is not the only one that can ac-
cess and change an environment entity. Other objects, such
as other users, may access and change the environment en-
tity as well. Internal entity, on the other hand, is private
to an application in the sense that only the application can
modify and access them, assuming that the underlying op-
erating system provides protected process space.

In concurrent programming, shared resources are han-
dled by using the mutual exclusion and the semaphore
mechanism to guarantee assumptions about the state of
shared resources. However, we believe that few program-
mers use a similar mechanism to guarantee their assumption
about the state of the environment. There are several rea-
sons for this. First, programmers might not have recognized
that the environment entities are shared resources. When,
for example, an application writes to a file, it checks that
it has the permission to write to that file, and then assumes
that right in subsequent operations to that file without notic-
ing that a malicious attacker could have change the environ-
ment thereby rendering the assumption false. Most security
flaws resulting from race conditions [4] are caused by such
dubious assumptions. Second, although some mechanisms,
such as file locking, guarantee that a programmer’s assump-
tion hold on some part of the environment state, there is no
general mechanism to do the same because the environment
entity has various attributes and the mutual exclusion and
semaphore mechanisms could handle not handle them eas-
ily. As a result, programmers often usead hoc mechanisms
to guarantee the correctness of their assumptions. This can
lead to errors more readily than would be the case when a
standard mechanism is used.

2.2 Developing a fault model

In order to provide high confidence in the validity of the
security flaws caused by environment faults, the method-
ology described here models systems at a high level. We
refer to this level as the Environment-Application Interac-
tion (EAI) level. Fault injection at the interaction level at-
tempts to emulate what a “real” attacker does. Since most

0-7695-0707-7/00 $10.00 � 2000 IEEE

of the vulnerability databases record the way attackers ex-
ploit a vulnerability, we transform these exploits to envi-
ronment faults to be injected with little analysis on those
records thereby narrowing the semantic gap between faults
injected at the interaction level and faults that really occur
during the intended use of the system. In contrast, other
studies [22, 29] inject faults at the program statement level
thereby leaving a large semantic gap between faults injected
and those that might arise during the intended use of the ap-
plication.

2.3 An EAI fault model

In general, environment faults affect an application in
two different ways. First, an application receives inputs
from its environment. The environment faults now become
faults in the input, which is then inherited by an internal
entity of the application. From this point onwards the en-
vironment faults propagate through the application via the
internal entities. If the application does not handle the faults
correctly, a security violation might occur. The direct rea-
son for this violation appear to be faults in the internal en-
tity. However, this violation is due to the propagation of
environment faults. Stated differently, the environment in-
directly causes a security violation, through the medium of
the internal entity. Figure 1(a) shows this indirect way in
which the environment faults affect an application.

Consider the following example. Suppose that an appli-
cation receives its input from the network. Any fault in the
network message related to this input is inherited by an in-
ternal entity. When the application does a memory copy
from this message to an internal buffer without checking
the buffer’s boundaries, the fault in the network message,
the fault being “message too long,” now triggers a violation
of security policy.

A second way in which an environment fault affects the
application is that the fault does not propagate via the inter-
nal entity; instead, it stays within the environment entity and
when the application interacts with the environment without
correctly dealing with these faults, security policy will be
violated. In this case, the environment faults are the direct
cause of security violation and the medium for environment
faults is the environment entity itself. Figure 1(b) shows
this direct way in which the environment faults affect an
application.

Let us now consider an example to illustrate this second
kind of interaction. Suppose that an application needs to ex-
ecute a file. There are two possibilities: one is that the file
belongs to the user who runs the application. Here the en-
vironment attribute is the file’s ownership. In this case the
execution is safe. The other possibility is that the file be-
longs to some malicious user. This is an environment fault
created by the malicious user. Now the individual who runs

the application assumes that the file belongs to the appli-
cation. If the application does not deal with this environ-
ment fault, it might execute arbitrary commands in that file
thereby resulting in a security violation.

The most error-prone interactions between an applica-
tion and the environment are those that involving files. Pro-
grammers tend to use an abstraction of a file that includes
only a subset of the file attributes. A file name with a lo-
cation or file content, for example, is a commonly used ab-
straction of a file. The environment faults, such as a long
file name or a file name with special characters, associated
with this abstraction will propagate via the internal entity. If
the application does not place appropriate checks on these
internal entities, such environment faults will cause secu-
rity violations such as those due to buffer overflow and the
execution of an unintended command. The environment
faults associated with the remaining file attributes, such as
whether the file is a symbolic link, the ownership of the file,
existence of the file, and the permissions associated with
the file, will not propagate via an internal entity. Although
these attributes are extrinsic to the application, if not dealt
correctly, they are likely to directly affect the interaction be-
tween application and environment.

In summary, we have categorized the environment faults
according to the way they affect applications. Environment
faults which affect programs via internal entities are called
indirect environment faults. Environment faults which af-
fect programs via environment entities are calleddirect en-
vironment faults.

Indirect environment faults are further divided into five
sub-categories according to their origins: (1) user input, (2)
environment variable, (3) file system input, (4) network in-
put, (5) process input.

Direct environment faults are similarly divided into three
sub-categories: (1) file system, (2) process, (3) network.

3 Environment Fault Injection Methodology

3.1 Fault injection

Like the EAI model, which models the environment
faults at the interaction level, fault injections are also done at
the interaction level. The previous section classifies the en-
vironment faults into direct and indirect environment faults.
These faults are injected using the following mechanisms:

1. Indirect Environment Fault Injections: An indirect
environment fault occurs at the interaction point where
an application requests its environment for an input.
The input that the environment provides to the appli-
cation will most likely affect the application’s behav-
ior. A secure application should tolerate an unexpected

0-7695-0707-7/00 $10.00 � 2000 IEEE

enviroment
 entity

environment
entity

environment
entity

internal
entity

internal
entity

internal
entity

enviroment
 entity

entity
environment

entity

(a) (b)

 Environment Environment
Software System Software System

environment

input from the environment to the software system

execution of the software system execution of the software system

environment entity affects the software system directlyenvironment entity affects the software system via an internal entity

Figure 1. Interaction Model

Table 1. Indirect Environment Faults and Environment Perturbations

Internal Entity Semantic Attribute Fault Injections
User Input file name + direc-

tory name
change length, use relative path, use absolute path, insert special characters such as “..”,
“=” in the name

command change length, use relative path, use absolute path, insert special characters such as “j”,
“&”, “>” or newline in the command

file name + direc-
tory name

change length, use relative path, use absolute path, use special characters, such as “j”, “&”
or “>” in the name

Environment
Variable

execution path + li-
brary path

change length, rearrange order of path, insert a untrusted path, use incorrect path, use
recursive path

permission mask change mask to 0 so it will not mask any permission bit
File Sys-
tem Input

file name + direc-
tory name

change length, use relative path, use absolute path, use special characters in the name such
as “j”, “&” or “ >” in name

file extension change to other file extensions like “.exe” in Windows system; change length of file exten-
sion

IP address change length of the address, use bad-formatted address
Network packet change size of the packet, use bad-formatted packet
Input host name change length of host name, use bad-formatted host name

DNS reply change length of the DNS reply, use bad-formatted reply
Process
Input

message change length of the message, use bad-formatted message

anomaly in the environment input. One way to per-
turb the input is to use random input as in Fuzz [9, 24].
However, this approach dramatically increases the test-
ing space, which and calls for a significantly large
amount of testing effort. The Fuzz approach does not
exploit the semantics of each input. Our vulnerability
analysis, however, has shown that inputs most likely to
cause security violations tend to have patterns accord-
ing to their semantics. If, for instance, the input is a list
of paths used to search for a command, then security
failure will most likely occur when the order of these
paths is altered, a new path is inserted or deleted, or the
length of the list is increased. Other kinds of perturba-
tions are less likely to cause security failure. Thus, by
an examination of rare cases and by concentrating in-
stead on fault patterns already observed, we reduce the

testing space considerably.

Faults injected into the application are based on pat-
terns that are likely to cause security faults. These
patterns come from our investigation of a vulnerabil-
ity database and other studies reported in the literature.
The faults are summarized in Table 1.

2. Direct Environment Faults Injections: A direct en-
vironment fault occurs at the interaction point where
the application accesses an environment entity for cre-
ation, modification, reading or execution of an envi-
ronment entity. Different status of environment en-
tity attributes will affect the consequences of those in-
teractions. Thus, the environment fault injections are
used to perturb the attributes of an environment entity
at points of interaction to see how the application re-

0-7695-0707-7/00 $10.00 � 2000 IEEE

sponds to the perturbation. For example, before an
application executes anopen operation to a named
file, several perturbations are performed on this file
by changing its attributes such as its existence, permis-
sions, ownership, and the type of the file since failure
to handle these attributes is likely to cause security vio-
lations. These attributes are and their their perturbation
are presented in Table 2.

3.2 Test adequacy criterion

An important issue in the management of software test-
ing is to “ensure that prior to the start of testing the ob-
jectives of testing are known and agreed upon and that the
objectives are set in terms that can be measured.” Such
objectives “should be quantified, reasonable, and achiev-
able” [12].

We usefault coverage andinteraction coverage measure
test adequacy. Fault coverage is defined as the percentage
of the number of faults tolerated with respect to that of the
faults injected. Our conjecture is that the higher the fault
coverage the more secure the application is. In addition to
fault coverage, an additional measurement of the testing ef-
fort is the interaction coverage. Interaction coverage is de-
fined as the percentage of the number of interaction points
where we injected faults with respect to the total number
of interaction points. Once again, we conjecture that the
higher the interaction coverage, the more dependable the
testing result are. Of course we assume that faults found
during testing are removed. These two coverage criteria
lead to a 2-dimensional metric for measuring test adequacy.

3

42

1

1.0

1.0

Interaction Coverage

F
au

lt
C

ov
er

ag
e

Figure 2. Test Adequacy Metric

Figure 2 shows the 2-dimensional metric and four sam-
ple points of significance. The metric serves as a quan-
titative evaluation of a test set. Point 1 is representative
of the region where testing resulted in low interaction and
fault coverage. In this case testing is considered inadequate.
Point 2 is representative of the region where the fault cover-

age is high but interaction coverage is low. The test is con-
sidered inadequate since in this test, only a few interactions
are perturbed, how the system behaves under perturbation
of other interactions is still unknown.

Point 3 is representative of an insecure region because
the fault coverage is so low that we consider the application
is likely to be vulnerable to the perturbation of the envi-
ronment. The safest region is indicated by point 4 which
corresponds to a high interaction and fault coverage.

3.3 Procedure

The procedure of our Environment Fault Injection
Methodology consists of the following steps:

1. Setcount andn to 0.

2. For each test case, do step 3 to 9.

3. For each interaction point in the execution trace, de-
cide if the application asks for an input. If there is no
input, only inject direct environment faults; if there is
an input, inject both direct and indirect environment
faults.

4. Decide the object where faults will be injected.

5. Establish a fault list corresponding to this object using
Table1 and Table 2.

6. For each fault in the list, inject it before the interaction
point for the direct environment faults; inject each fault
after the interaction point for the indirect environment
faults since in this case, we want to change the value
the internal entity receives from the input.

7. Increasen by 1.

8. Detect if security policy is violated. If so, increase
count by 1.

9. Calculate interaction coverage. If the test adequacy
criteria for interaction coverage is satisfied then stop
else repeat steps 3-9 until the adequacy criteria for in-
teraction coverage is achieved.

10. Dividecount by n yielding� to obtain the vulnerabil-
ity assessment score (fault coverage) for the applica-
tion.

3.4 Example

To illustrate the steps shown above, we consider an ex-
ample of fault injection. The following code is taken from
BSD version oflpr.c. Notice thatlpr is a privileged ap-
plication. It is aset-UID application which means that it
runs in the root’s privilege even when it is invoked by a user
who does not have the same privilege as the root.

0-7695-0707-7/00 $10.00 � 2000 IEEE

Table 2. Direct Environment Faults and Environment Perturbations

Environment Entity Attribute Fault Injections
file existence delete an existing file or make a non-existing file exist
file ownership change ownership to the owner of the process, other normal users, or root

File file permission flip the permission bit
System symbolic link if the file is a symbolic link, change the target it links to; if the file is not a symbolic link,

change it to a symbolic link
file content invari-
ance

modify file

file name invariance change file name
working directory start application in different directory
message authenticity make the message come from other network entity instead of where it is expected to come

from
protocol purposely violates underlying protocol by omitting a protocol step, adding an extra step,

reordering steps
socket share the socket with another process

Network service availability deny the service that application is asking for
entity trustability change the entity with which the application interacts to a untrusted one
message authenticity make the message come from other process instead of where it is expected to come from

Process process trustability change the entity with which the application interacts to a untrusted one
service availability deny the service that application is asking for

f = create(n, 0660);
if (f<0) {

printf(‘‘%s: cannot create %s’’, name, n);
cleanup();

}
... (code skipped here)
if (write(f, buf, i)!=i) {

printf(‘‘%s: %s: temp file write error\n’’,
name, n);

break;
}

Suppose that we have decided to perturb the environment
at a place where thecreate system call is issued. This
is an interaction point wherelpr interacts with thefile
system. There is no input in this case and hence we simply
carry out direct environment fault injections.

The next step is to identify the object. Here,n is a file
name, and hence the object is the file referred to using this
file name. Then we refer to Table 2 and get a list of at-
tributes that need to be perturbed. This list includes 1) file
existence, 2) file ownership, 3) file permission, 4) sym-
bolic link, 5) file content invariance, 6) file name invariance
and 7) working directory. A further analysis shows that at-
tributes 5 and 6 are not applicable in this case as this is
supposed to be the first time the file is encountered.

We then perturb the remaining four attributes of the file
and inject the faults into the application. For example, the
perturbation of the “existence” means that we make the file
exist or not exist before the application creates it. The per-
turbation of “symbolic link” means that we make the file
link to some other file, such as the password file, before the
application creates it.

After fault injection, we execute the application and de-
tect if there is any violation of the security policy. In this
case the violation is detected when we perturb attributes 1,
2, 3 and 4. Doing so causeslpr to write to a file even when
the user who runs it does not have the appropriate owner-
ship and file permissions. Thus when the file is linked to

the password file, the password file is be modified bylpr.
The problem here is that the application assumes that the
file does not exist before the creation or assumes that the
file belongs to the user who runs the application. In a real
environment, this assumption could easily be false and the
fault injection test points out a security vulnerability.

4 Result

4.1 Turnin

Turnin is a program used in Purdue for electronically
submitting files for grading. Before students in a class can
use this program, the teaching assistant (TA) for this class
should have set up his account (or a dedicated course ac-
count) correspondingly. This includes creating asubmit
directory under the home directory of this account, creating
a Projlist file undersubmit directory, which speci-
fies a list of projects students could be able to turnin. Stu-
dents can type “turnin -c coursename -l” to view the list of
projects; students can type “turnin -c coursename -p pro-
jectname files” to turnin their project files. After submis-
sion, the submitted files will be copied to TA’ssubmit
directory.

Sinceturnin program allows students to copy their
files to TA’s protected directory, the program is running as
SUID, which means its effective user isroot. The pro-
gram consists of 1310 lines of code.

Following our method, we have identified 8 interaction
places where programmers could possibly have made as-
sumptions about the environment. We make 41 environ-
ment perturbation to check whether programmers indeed
made the assumptions, and whether the failure of these as-
sumptions can affect program’s security. Among those per-
turbations, 9 perturbation lead to security violation, which

0-7695-0707-7/00 $10.00 � 2000 IEEE

means the failure of assumptions on these 9 situation could
lead to a vulnerability in the program. Then we investi-
gated each assumptions by asking whether they are rea-
sonable. For example, programmers obviously made an
assumption that/usr/local/lib/turnin.cf file is
trusted. Our perturbation testing found out that if this as-
sumptions is false, the system’s security will be violated.
Since theturnin.cfwill always be protected, so is its di-
rectory, we believe the assumption is quite reasonable, there
is no vulnerability regarding to this assumption.

However, one assumption seems unreasonable to us, it
turns out to be a vulnerability, and is hence exploited by us
after we have known the assumption. The problematic code
is list in the following:

if ((FILE *)0 == (fp = fopen(pcFile, "r"))) {
printf("can not find project list file\n");
exit(9);

}

Sincefopen is an interaction point where potential as-
sumption might be made, we perturb the environment sta-
tus ofpcFile, making it only readable by root, not by the
people who is running theturnin program. The result is
that by running “turnin -c coursename -l”, we can success-
fully read the contents of the file that we are not supposed
to be able to read. So, here the programmers have made an
assumption that people are allowed to read file pointed by
pcFile usingturnin program, and its failure can cause
security violation. Now, the question is: is this assump-
tion reasonable? The result turns out to be NO since TA
can makepcFile point to any file he wants, then using
turnin program to read the contents of that file.

Knowing this fact, we designed a following sce-
nario: a TA makes theProjlist a symbolic link to
/etc/shadow, which is not readable by anyone except
root. Then the TA runs “turnin -c coursename -l”, Voila,
the program prints out the content of/etc/shadow!

Another perturbation we have done is perturbing the at-
tributes of the argument in the following code:

execve (acTar, nargv, environ);

Sincenargv contains file names, according to table 1, we
have inserted special characters, such as “/“, “../”, in front of
the file names. The program does a good job in forbidding
the “/” character, however, it does not resist the perturba-
tion of inserting “../” in the front. Knowing this fact, a stu-
dent can submit several “.login” files with different number
of “../” in front of the “.login” file, such that when his TA
unpacks the submitted file, the TA’s “.login” will be over-
written by the student’s malicious “.login” file, which can
do anything evil to the TA.

Theturnin program has been used in Purdue Univer-
sity widely since 1993, and we became the first to iden-
tify these vulnerabilities. After our discovery, the university

quickly verified the problem and patched theturnin pro-
gram.

4.2 Windows NT Registry

In Windows NT operation system, registry directory is
a critical part to the system security. Registry directory is
essentially an organized storage for operating system’s and
application’s data which are globally shared by different ap-
plications and components. An appropriate configuration
on each registry key in the registry directory is a key fac-
tor for security. Many security vulnerabilities have been
reported due to inappropriate configuration of the registry
keys. In the Windows NT 4.0 (SP3), there are still keys that
are not protected. Our task is to test the related modules of
the operating system, and find whether it is secure to leave
those registry keys unprotected.

First of all, we use static analysis technique to find out
where these unprotected keys are used [7], then we apply
the EPA method to find if programmers have made assump-
tions that can fail.

We have identified 9 unprotected registry keys that could
be exploited to break the system security, and indeed we
came up with test cases to actually exploit the vulnera-
bilities. Furthermore, based on the similarities of these 9
registry keys and other 20 unprotected keys, we speculate
that the same vulnerabilities exist for those 20 keys as well.
However, we have not been able to perturb the modules that
used the other 20 keys yet due to the lack of knowledge of
how those modules work. The 9 registry keys that we have
exploited are the results of applying our perturbation tech-
nique.

Due to the agreement with Microsoft, we are not reveal-
ing the exact keys and source codes that have the vulnera-
bilities. So, in the next discussion, we will not refer to any
specific key, except the purpose of the key and the problem
with the key.

One of the keys in the registry directory specifies a name
for a font file. It seems pretty safe to give everybody the
right to modify this registry key until we have found a mod-
ule in the system that invokes a function call to actually
delete this file. To know whether the program has done
the correct checking before the delete or not, we did a per-
turbation on the properties of this file according to Table 2,
making it writable only by administrator, and also making it
point to a very important file (such as system configuration
file) instead of just a font file. It turns out that the program
fails to respond securely under this environment perturba-
tion - when administrators run this module, they will actu-
ally delete the file specified by this registry key regardless of
whether this file is a font file or a security critical file. The
assumption behind this “delete” environment interaction is
that the programmers assume the file name always points to

0-7695-0707-7/00 $10.00 � 2000 IEEE

a font file or a unimportant file, however, since everybody
has the right to modify the value of this registry key, the
assumption fail to sustain.

Another vulnerability we have found is associated with
user logon module. When a user logons, the module will
find the user’s profile from a directory specified in a reg-
istry key. Using our EAI model, we have managed to per-
turb the trustability attribute of the directory, and found
out that the program does not deal with the situation when
the directory is not trusted, which means, whenever a user
logs in, the logon module will go to the untrusted direc-
tory, and grab a specified profile for you. Therefore, by the
environment perturbation, we have found out that program-
mers have made a fatal assumption about the trustability of
the profile directory. After knowing the fact, it becomes
straightforward to design a test case and fail the program-
mers’ assumptions.

5 Related Work

A significant amount of computer security testing is per-
formed using penetration testing. Security is assessed by
attempting to break into an installed system by exploiting
well-known vulnerabilities. Several researchers, including
Linde and Attanasio [18], Pfleeger [25], describes the pro-
cess of penetration testing. As pointed out by Pfleeger, the
success of penetration testing depends on testers’ skill, ex-
perience, and familiarity with the system. Moreover, the
lack of well defined and tested criteria to decide when to
stop penetration testing causes penetration testing difficult
to use.

Our research attempts to overcome the above mentioned
difficulties. It has a deterministic procedure to conduct and
test, a criterion to decide when testing should stop. It over-
comes the limitation of the lack of knowledge of the envi-
ronment by emulating possible attacks using the faults in-
jection technique. Finally, our approach overcomes the lim-
itation of testers’ knowledge by offering a set of concrete
faults that should be injected into application.

Adaptive Vulnerability Analysis (AVA) is designed by
Ghosh et al. to quantitatively assess information system
security and survivability. This approach exercises soft-
ware in source-code form by simulating incoming malicious
and non-malicious attacks that fall under various threat
classes [22, 23, 28, 29]. In this respect, our own work par-
allels the AVA approach. A major divergence appears, how-
ever, with respect to how incoming attacks are simulated.
AVA chooses to perturb the internal state of the executing
application by corrupting the flow of data and the inter-
nal states assigned to application variables. Our approach
chooses to perturb the environment state by changing the
attributes of the environment entity and perturbing the in-
put that an application receives from the environment. Our

approach should be considered as complementary to AVA.

For attacks that do not affect the internal states of an
application, AVA appears incapable of simulating them by
only perturbing the internal states. For vulnerabilities that
are caused purely by incorrect internal states, our approach
cannot simulate them by only perturbing the environment.
One disadvantage of the AVA is the semantic gap between
the attacks during the use of an application and the pertur-
bation AVA makes during testing. In other words, know-
ing that the application fails under certain perturbation, it
is difficult to derive what kind of attacks correspond to this
failure. This makes it difficult to assess the validity of the
perturbation. Our approach narrows the semantic gap by
perturbing at the environment-application level since most
attacks really occur due to intentional perturbation of the
environment.

Fuzz [9, 24] is a black-box testing method designed by
Miller et al, which feeds randomly generated input stream
to system utilities in order to test how reliable they are.
The Ballista [16] testing methodology involves automati-
cally generating combinations of exceptional and valid pa-
rameter values to be used in calling software modules. Both
of these testing methods focus on the system reliability in-
stead of security.

Bishop and Dilger studied one class of the time-of-
check-to-time-of-use (TOCTTOU) flaws [4], and investi-
gated using static analysis method to identify such type
of flaws. Fink and Levitt employ application-slicing tech-
nique to test privileged applications [8]; Gligor has also
proposed a security testing method using control synthesis
graphs [19]. They both achieve a certain degree of success
in security testing.

6 Summary and Future Work

We have presented a white-box security testing method-
ology using environment perturbation technique, a variant
of the fault injection technique. The methodology is based
on the Environment-Application Interaction (EAI) model,
which captures the properties of a family of software vul-
nerability. We have applied this methodology to several
real-world systems and applications, and we have success-
fully identified a number of security flaws that exist for sev-
eral years without being discovered.

Future work will concentrate on applying this methodol-
ogy to more applications. We are in the progress of devel-
oping and conducting a set of experiments to evaluate the
effectiveness of this methodology. In the future, we hope to
be able to develop a prototype tool for security testing based
on this methodology.

0-7695-0707-7/00 $10.00 � 2000 IEEE

References

[1] T. Aslam. A taxonomy of security faults in the unix operation
system. Master’s thesis, Purdue University, August 1995.

[2] B. Beizer.Software Testing Techniques. Van Nostrand Rein-
hold, New York, 1990.

[3] M. Bishop. A taxonomy of unix system and network vulner-
abilities. Technical Report CSE-95-10, Department of Com-
puter Science, University of California at Davis, May 1995.

[4] M. Bishop and M. Dilger. Checking for race conditions in
file acesses.The USENIX Association Computing Systems,
9(2):131–151, Spring 1996.

[5] J. Clark and D. Pradhan. Fault injection: A method for
validating computer-system dependability.IEEE Computer,
pages 47–56, June 1995.

[6] W. Du and A. Mathur. Categorization of software errors that
led to security breaches. In21st National Information Sys-
tems Security Conference, Crystal City, VA, 1998.

[7] W. Du and A. Mathur. Security relevancy analysis on the
registry of windows nt 4.0. InACSAC’99 15th Annual Com-
puter Security Applications Conference, Phoenix, Arizona,
December 6-10 1999.

[8] G. Fink and K. Levitt. Property-based testing of privileged
programs. InProceedings of the 10th Annual Computer Se-
curity Applications Conference; Orlando, FL, USA; 1994
Dec 5-9, 1994.

[9] B. Miller, L. Fredriksen and B. So. An empirical study of
the reliability of unix utilities.Communications of the ACM,
33(12):32–44, December 1990.

[10] S. Garfinkel and G. Spafford.Practical UNIX & Internet
Security. O’Reilly & Associates, Inc., 1996.

[11] J. Goodenough and S. Gerhart. Toward a theory of test-
ing: Data selection criteria.current Trends in Programming
Methodology, 2:44–79, 1977.

[12] H. Zhu, P. Hall and J. May. Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4):366–427, De-
cember 1997.

[13] W. Kao, R. Iyer and D. Tang. FINE: A fault injection and
monitoring environment for tracing the unix system behavior
under faults. IEEE Transactions on Software Envineering,
19(11):1105–1118, November 1993.

[14] S. Dawson, F. Jahanian and T. Mitton. ORCHESTRA:
A fault injection environment for distributed systems. In
26th International Symposium on Fault-Tolerant Computing
(FTCS), pages 404–414, Sendai, Japan, June 1996.

[15] G. Kanawati, N. Kanawati and J. Abraham. FERRARI: A
tool for the validation of system dependability properties. In
Proceedings 22nd International Symposium Fault Tolerant
Computing, pages 336–344, July 1992.

[16] N. Kropp, P. Koopman and D. Siewiorek. Automated robust-
ness testing of off-the-shelf software components. In28th
Fault Tolerant Computing Symposium, June 1998.

[17] I. Krsul. Software Vulnerability Analysis. PhD thesis, Pur-
due University, Department of Computer Sciences, West
Lafayette, Indiana, 1998.

[18] R. R. Linde. Operating system penetration. InAFIPS Na-
tional Computer Conference, pages pp. 361–368, 1975.

[19] V. D. Gligor, C. S. Chandersekaran, W. Jiang, A. Johri,
G. L. Luchenbaugh and L. E. Reich. A new security testing
method and its application to the secure xenix kernel.IEEE
Transactions on Software Engineering, SE-13(2):169–183,
February 1987.

[20] E. J. McCauley and P. J. Drongowski. The design of a secure
operating system. InNational Computer Conference, 1979.

[21] C. E. Landwehr, A. R. Bull, J. P. McDermott and W. S. Choi.
A taxonomy of computer program security flaws.ACM Com-
puting Surveys, 26(3), September 1994.

[22] A. Ghosh, T. O’Connor, G. McGraw. An automated ap-
proach for identifying potential vulnerabilities in software.
In IEEE Symposium on Security and Privacy, Oakland, CA,
1998.

[23] J. Voas, F. Charron, G. McGraw, K. Miller and M.Friedman.
Predicting how badly “good” software can behave.IEEE
Software, 14(4):73–83, August 1997.

[24] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.
Natarajan and J. Steidl. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. Technical re-
port, Computer Sciences Department, University of Wiscon-
sin, 1995.

[25] C. Pfleeger, S. Pfleeger and M. Theofanos. A methodology
for penetration testing.Computers and Security, 8(7):613–
620, 1989.

[26] S. Han, K. Shin and H. Rosenberg. Doctor: An integrated
software fault injection environment for distributed real-time
systems. Technical report, University of Michigan, Depart-
ment of Elect. Engr. and Computer Science, 1995.

[27] M. Hsueh, T. Tsai and R. Iyer. Fault injection techniques and
tools. IEEE Computer, pages 75–82, April 1997.

[28] J. Voas. Testing software for characteristics other than cor-
rectness: Safety, failure tolerance, and security. InProc. of
the Int’l Conference on Testing Computer Software, 1996.

[29] J. Voas and G. McGraw.Software Fault Injection: Incocu-
lating Programs Against Errors. John Wiley & Sons, Inc.,
1998.

0-7695-0707-7/00 $10.00 � 2000 IEEE

