
0018-9162/00/$10.00 © 2000 IEEE52 Computer

Windows of
Vulnerability:
A Case Study
Analysis

C
omplex information and communication
systems give rise to design, implementation,
and management errors. These errors can
lead to a vulnerability—a flaw in an infor-
mation technology product that could allow

violations of security policy.
Anecdotal evidence alone suggests that known and

patchable vulnerabilities cause the majority of system
intrusions. Although no empirical study has substanti-
ated this anecdotal evidence, none has refuted it either.
Nor have studies conducted to determine the number
of computers at risk for security breaches focused on
the intrusion trends of specific vulnerabilities.1,2

Here we propose a life-cycle model that describes
the states a vulnerability can enter during its lifetime.
We then use our vulnerability model to present a case
study analysis of specific computer vulnerabilities.

Although the term “life cycle” implies a fixed and
linear progression from one phase to the next, the dis-
covery and exploitation of system vulnerabilities does
not always follow such a tidy pattern. Instead—and,
appropriately, given the nature of our model—the pro-
gression varies depending on interactions between the
host system, the intruding scripts, and the programs
that exploit its vulnerabilities. Thus our life cycle mod-
els a host and its viral parasites more closely than it
does an isolated organism.

In general, a vulnerability appears to transition
through distinct states: birth, discovery, disclosure, the
release of a fix, publication, and automation of the
exploitation. Intuitively, you would expect the num-
ber of intrusions into computer systems as a result of
using a specific vulnerability over time to resemble the
graph in Figure 1.3,4 The assumption here is that intru-
sions increase once the community discovers a vul-

nerability, with the rate of increase accelerating as
news of the vulnerability spreads to a wider audience.

This trend continues until the vendor releases a
patch or workaround, and the intrusion rate decreases.
Ideally, the decrease would be a steep decline rather
than the slow decrease Figure 1 shows. It does, how-
ever, take time for news of the patch to spread, and
longer still for users to install it. In addition, cautious
organizations require testing prior to system changes—
rightfully so—to ensure that the patch does not create
new problems. Some organizations install the patch
when they “get to it,” and others may never install the
patch, for any of several reasons.

Determining the exact shape of the vulnerability
curve in Figure 1 is, unfortunately, not straightforward.
Doing so requires people and organizations to report
that their system has been compromised and to describe
the nature of the intrusion. Unfortunately, few inci-
dents occur in which these two conditions hold.

First, for business reasons most organizations do
not want to report a compromised system. The orga-
nization may fear disclosure and bad publicity—
should the intrusion become public knowledge.
Second, causality is difficult, if not impossible, to estab-
lish once a computer system has been fully compro-
mised. Experienced crackers know how to cover their
tracks, and script kiddies—less-experienced intruders
who depend on more knowledgeable crackers to auto-
mate attacks—use tools written by others to automate
the process for them. If meaningful evidence of the
original intrusion isn’t available, it usually isn’t possi-
ble to determine the exact cause of intrusion.

Much like a vulnerability, an information system tran-
sitions between several distinct states—hardened, vul-
nerable, and compromised—during its lifetime. A system

The authors propose a life-cycle model for system vulnerabilities, then
apply it to three case studies to reveal how systems often remain
vulnerable long after security fixes are available.

William A.
Arbaugh
University of
Maryland at
College Park

William L.
Fithen
John
McHugh
CERT
Coordination
Center

C O V E R F E A T U R E

• attains a hardened state when all security-related
corrections, usually patches, have been installed;

• becomes vulnerable when at least one security-
related correction has not been installed; and

• enters a compromised state when it has been suc-
cessfully exploited.

As Figure 2 shows, a system typically oscillates
between the hardened and vulnerable states during its
lifetime, but, if fortunate, it will never enter a com-
promised state. Active systems management seeks to
reduce the total time a system remains in the vulner-
able and compromised states.

To support the model we propose, we extracted
data from the historical record of the CERT
Coordination Center’s Incident and Vulnerability
Teams. When reports of suspicious or malicious activ-
ity arrive at the CERT/CC, the Incident Team corre-
lates them into related groupings called “incidents.”
Loosely speaking, an incident is a collection of reports
that appear to relate to one another in a particular and
meaningful way. These reports usually are related by
the attacker’s method—namely the vulnerabilities
exploited—or by the specific tools the attacker uses
to exploit those vulnerabilities.

In CERT/CC terminology, a vulnerability is a tech-
nological flaw in an information technology product
that has security or survivability implications.
Necessarily, that determination is subjective—what is
a feature to one person may be a vulnerability to
another. The CERT/CC Vulnerability Team tries to
maintain a consistent definition of what a reasonable
user or administrator would consider acceptable func-
tional behavior in products, but the definition contin-
uously evolves. CERT/CC terminology calls this
definition the “reasonable expectation rule.” CERT/CC
usually receives vulnerability reports independent of
any particular incident activity, but not always. For a list
of CERT/CC security definitions, see the “CERT
Coordination Center Definitions” sidebar.

VULNERABILITY LIFE-CYCLE MODEL
To better understand the behavior of vulnerabili-

ties, we devised a life-cycle model that is more specific
than the usual phased analysis of vulnerabilities. Our
model captures all possible states that a vulnerability
can enter during its lifetime, with the understanding
that not all vulnerabilities enter each state. In fact,
when we analyze our case studies, several of the
model’s states converge into a single state.

The usual order of appearance of states is as fol-
lows:

• Birth. Denoting the flaw’s creation, birth usually
occurs unintentionally, during a large project’s
development. If the birth is malicious and thus

intentional, discovery and birth coincide. By con-
vention, we consider the vulnerability to exist
only after there is a nonzero probability of
deployment—internal development and testing
do not count, only deployment does.

• Discovery. When someone discovers that a product
has security or survivability implications, the flaw
becomes a vulnerability. It doesn’t matter if the dis-
coverer’s intentions are malicious (Black Hat) or
benign (White Hat). It is clear that, in many cases,
original discovery is not an event that can be known;
the discoverer may never disclose his finding.

• Disclosure. The vulnerability is disclosed when
the discoverer reveals details of the problem to a
wider audience. The disclosure may be posted to
a vulnerability-specific mailing list such as
Bugtraq. A full-disclosure moderated mailing list,

December 2000 53

Figure 1. Intuitive life cycle of a system-security vulnerability. Intrusions increase once
users discover a vulnerability, and the rate continues to increase until the system
administrator releases a patch or workaround.

Discovery
In

tr
u

si
o

n
s

Disclosure
Patch

released

Compromised

Vulnerable

Hardened

Time

Figure 2. Host life cycle. A system typically oscillates between hardened and vulnera-
ble states. Systems management seeks to reduce the time the system remains in the
vulnerable and compromised states.

54 Computer

Bugtraq serves as a forum for detailed discussion
and announcement of computer security vulner-
abilities: what they are, how to exploit them, and
how to fix them. Alternatively, the product’s ven-
dor or developer may receive news of the vul-
nerability directly. Obviously, the many levels of
disclosure comprise a vast continuum of who was
informed and what aspect of the vulnerability the
disclosure revealed.

• Correction. A vulnerability is correctable when
the vendor or developer releases a software mod-
ification or configuration change that corrects the
underlying flaw.

• Publicity. A vulnerability becomes public in sev-
eral ways. A news story could detail the problem,
or an incident response center could issue a report
concerning the vulnerability. The key element here
is that the vulnerability becomes known on a large
scale once the disclosure gets out of control.

• Scripting. Initially, successful exploitation of a

new vulnerability requires moderate skill. Once
a cracker scripts the exploitation, however, those
with little or no skill can exploit the vulnerabil-
ity to compromise systems. Scripting dramatically
increases the size of the population that can
exploit systems with that vulnerability. Further,
although we use the term “scripting” here, this
phase applies to any simplification of intrusion
techniques that exploit the vulnerability, such as
cracker “cookbooks” or detailed descriptions on
how to exploit the vulnerability. In essence, at
this point the vulnerability has been industrial-
ized.

• Death. A vulnerability dies when the number of
systems it can exploit shrinks to insignificance. In
theory, a vulnerability can die if administrators
patch all the systems at risk to correct the flaw, if
they retire such systems, or if attackers and the
media lose interest in the vulnerability. In practice,
administrators can never patch all the systems at

CERT/CC precisely defines several
terms that can have multiple meanings in
casual use but that have a quite specific
meaning within the bounds of the security
community.

General Security Terms
Activity. A group of events that occur

on the Internet and relate to one another
in any of several ways. An activity may or
may not be security or survivability
related. Examples include an Internetwide
scan of domain name servers to find
invalid delegations, execution of a large-
scale distributed denial of service attack
against a particular system or group of
systems, and a single intruder who com-
promises a single system.

Event. The most fundamental unit of
information that describes the aspects of
network or host behavior. This single
piece of evidence may be grouped with
other events to form a larger picture of
Internet activity. Examples include the
delivery of a single network packet to a
system, execution of a single command or
program, and a port scan of a system to
determine the services it offers.

Incident. An activity that has security
or survivability implications.

Vulnerability. A flaw or defect in a tech-
nology or its deployment that produces
an exploitable weakness in a system,
resulting in behavior that has security or
survivability implications.

Probe. An attack that only gathers
information from the target system.

Defect or flaw. A technology product
feature that can be used to produce unde-
sirable behavior. Defect types include a
specification defect, which specifies a func-
tion in the product that cannot be imple-
mented correctly; an implementation
defect that incorrectly implements a cor-
rectly specified function, and a superflu-
ous function defect that implements an
unspecified product function. Relatively
speaking, only a few defects have security
or survivability implications.

Buffer overflow. A common defect class
in which the buffer—the extent of a mem-
ory area that serves as a write operation’s
target—is exceeded without intervention,
causing overflow. Depending on the loca-
tion of the buffer and the source of the
data being written, such a defect can be
used to coerce the affected program into
executing arbitrary machine code with the
same privileges the program enjoys. If the
program’s privileges differ from the

attacker’s, this defect has security impli-
cations that make it a vulnerability.

Perspective-Dependent Terms
Some terms have distinct definitions

that depend on whether they’re viewed
from the intruder’s or defender’s perspec-
tive—a cause of much confusion because
these perspectives are rarely identified
when people use the terms.

Attack. From the intruder’s viewpoint,
an attack is an act intended to elicit a behav-
ior from the target system that achieves an
intruder’s goal. This behavior may or may
not be contrary to the system owner’s de-
sires, but that issue is entirely irrelevant to
the intruder. For example, an action may
be part of an attack and yet not be contrary
to the target-system-owner’s desires.

From the defender’s viewpoint, an
attack is any event that targets the de-
fender’s system and that he or she believes
is intentionally directed at his or her sys-
tem for unapproved purposes.

Intrusion. From an attacker’s viewpoint,
an intrusion is an intended behavior elicited
from a system due to his or her attack.

From a defender’s viewpoint, an intru-
sion is any observed, undesired behavior
caused by a system attack.

CERT Coordination Center Definitions

risk. They inevitably retire such systems at some
point, and attackers and the media frequently lose
interest in the vulnerability—but sometimes only
temporarily, creating a near-death experience.

Because they’re causally related, the first three
states—birth, discovery, and disclosure—must always
occur in order. Disclosure can, however, occur almost
simultaneously with discovery. After the initial dis-
closure, the vulnerability can be further disclosed,
made public, scripted, or corrected in any order. In
our three case studies, the intrusions were corrected,
made public, then scripted. We rarely encounter cases
with CERT/CC’s preferred ordering: Following a care-
fully controlled initial disclosure, a modification or
configuration change corrects the vulnerability, a pub-
lic advisory reveals that the problem has been cor-
rected, the vulnerability is never scripted, and it dies
quickly. Death eventually followed years later.

DATA ANALYSIS AND APPROACH
We used historical data from the CERT/CC data-

base to apply our life-cycle model to examine the lives
of three common vulnerabilities. The data we exam-
ined covers a period from 1996 through 1999 and
provides a unique view of intrusions that cannot be
obtained elsewhere.

While the CERT/CC data is the best available
source for an analysis of this type, there are several
problems related to the data. The foremost is that all
the reports are self-selecting. Only a subset of the sites
that experience some sort of problem, either an intru-
sion or a probe, will report it. As a result, the
CERT/CC data does not accurately reflect the entire
scope of intrusion activity on the Internet.

The human element of reporting introduces
another problem. At some point, the hot vulnerabil-
ity becomes passé, and focus shifts to the next vul-
nerability du jour. Attackers become bored with
exploiting the old vulnerability, while administrators
have already dealt with it and either understand it or
are tired of it. Thus, lack of interest alone may artifi-
cially lower the vulnerability’s incidence rate. While
these factors have a significant effect on the data set,
we believe that the data is sufficient to provide a win-
dow into the much larger problem.

When CERT/CC closes an incident, it creates a sum-
mary containing all pertinent information about the
incident. The summary contains both formatted and
free-format discussion sections. One formatted field
describes the exploited vulnerability.

To collect the initial data, we calculated the total
number of incidents for every vulnerability known to
CERT/CC. From this list, we selected for further
analysis the three vulnerabilities with the highest inci-
dence rate. Next, we read the summary’s discussion

section to ensure that, for each incident two
conditions held:

• the incident did in fact involve the specific
vulnerability, and

• the incident involved an intrusion—
because in some cases the incident only
involved unsuccessful probes for the vul-
nerability.

We counted the incident as a successful intru-
sion only if the evidence clearly showed that
both conditions held. Often, an incident
includes several—and sometimes hundreds to
thousands—of hosts. We did not add these hosts to
the intrusion count unless they met our criteria. In
some cases, captured logs clearly indicated that crack-
ers successfully exploited numerous hosts. However,
if we could not determine the actual dates for the
hosts’ exploitation, we used the date the logs were
obtained as the incident date—which resulted in an
occasional spike.

VULNERABILITY CASE STUDIES
For each case, we provide background information

about the vulnerability, such as how attackers
exploited it and which systems were affected. We then
tie the case to the life-cycle model by identifying the
dates for each state within the model. Finally, we use
a histogram of reported intrusions to show the life of
the vulnerability, and we conclude with an analysis
specific to the particular vulnerability.

Phf incident
Like all common gateway interface programs, phf

extends the functionality of Web servers by providing
a server-side scripting capability. Phf provides a Web-
based interface to an information database that usu-
ally consists of personnel information such as names,
addresses, and telephone numbers.

In the phf incident, attackers exploited an imple-
mentation-error vulnerability, not an underlying secu-
rity problem with CGI or the Web server. The
vulnerable phf program appeared in both the Apache
and NCSA HTTPd server distributions.

The phf script works by constructing a command
line string based on user input. While the script
attempted to filter the user’s input to prevent the exe-
cution of arbitrary commands, the authors failed to
filter a new-line character. As a result, attackers could
execute arbitrary commands on the Web server at the
privilege level of the HTTP server daemon—usually
root, which is the most privileged user in Unix sys-
tems. Because the attackers could simply issue a URL
request to accomplish their intrusion, they could eas-
ily exploit the vulnerability with or without scripting.

December 2000 55

In the phf incident,
attackers exploited
an implementation-
error vulnerability,
not an underlying
security problem
with CGI or the

Web server.

56 Computer

That search engines could readily find servers running
phf only compounded the problem.

Jennifer Myers both discovered and disclosed the phf
vulnerability, posting the details to Bugtraq on 5
February 1996.5 During the next few weeks, IBM,
CERT/CC, and the Australian Computer Emergency
Response Team issued advisories concerning the prob-
lem, with each advisory providing information on how
to correct it. The first known scripting of the phf vul-
nerability occurred in June 1996. The script, as released,
only attempted to download the password file from the
vulnerable host. It did not permit the execution of arbi-
trary commands. This limitation, and that the major-
ity of incidents reported to CERT only involved
downloading the password file, tend to support the
belief that script kiddies blindly run exploitation scripts
without understanding them because opening a remote
terminal session would have been far more effective.

Figure 3 shows the phf incident histogram. While a
small amount of activity took place prior to the phf
vulnerability’s scripting, the vast majority of reported
intrusions occurred after the scripting. Further, the
intrusion rate doesn’t increase significantly until
August 1996, six months after the initial disclosure
and correction. The surprise, however, is that these
intrusions continued through November 1998—a
period of more than two and one-half years.

IMAP incident
The Internet message access protocol provides a

method for using a server-based approach to access
electronic mail over a network. The client can use

IMAP to access and manipulate messages as if they
were local. Once connected to the IMAP service, the
client can create, delete, and rename messages and
mailboxes.6 A client connects to the service by con-
tacting the server through a well-known port, 143.
After connecting, the client must authenticate itself—
usually through sending a username and password.

Unfortunately, in the source code distributed by the
University of Washington, the login process was struc-
tured so that using a long username would cause a
buffer overflow. Secure Networks’ David Sacerdote
revealed the flaw in a posting to Bugtraq on 2 March
1997.7 Sacerdote also provided a fix for the source and
a link to an updated version of the servers. Slightly over
a month later, the CERT/CC issued an advisory on the
flaw and provided links to corrections. The first known
scripting of the flaw appeared on 1 May 1997.8

Unfortunately, the IMAP server contained another
flaw that wasn’t identified until nearly a year later.
This flaw, also a buffer overflow, involved IMAP’s
server-level authentication mechanism. On 10 July
1998, the University of Washington’s Terry Gray dis-
closed the problem’s existence on the pine-announce
mailing list and provided a link to a fix, but the exact
problem remained undisclosed.9 On 16 July 1998, an
anonymous message to Bugtraq provided details
about the new problem.10 The same individual also
released a scripted version of the exploitation that day.
On 20 July 1998, CERT/CC released an advisory
informing the public of the flaw.11

Rather than separate the two flaws into different
case studies, we combined them because the incident

1/
96

2/
96

3/
96

4/
96

5/
96

6/
96

7/
96

8/
96

9/
96

10
/9

6
11

/9
6

12
/9

6
1/

97
2/

97
3/

97
4/

97
5/

97
6/

97
7/

97
8/

97
9/

97
10

/9
7

11
/9

7
12

/9
7

1/
98

2/
98

3/
98

4/
98

5/
98

6/
98

7/
98

8/
98

9/
98

10
/9

8
11

/9
8

140

120

100

80

60

40

20

0

Discovered
Corrected
Scripted

N
u

m
b

er
 o

f
in

tr
u

si
o

n
s

Month/year

Figure 3. Phf incident histogram. The rate of intrusions increased significantly six months after the correction became available, then persisted for
another two years.

data, in most cases, did not differentiate between the
two. Further, several later scripts combined the
flaws—making it difficult to determine exactly which
was exploited. Figure 4 shows the IMAP histogram.
Although we combined the data for the two flaws, the
histogram reveals two separate curves, one for each
vulnerability. The general shape of each curve resem-
bles the phf curve’s shape.

One significant aspect of the IMAP vulnerability is
the degree to which attackers used scanning or prob-
ing to identify potentially vulnerable hosts. In several
cases, incidents reported to CERT/CC involved large
subnet scanning, with some scans encompassing an
entire Class A network, or several million hosts.

BIND incident
The Berkeley Internet Name Domain provides an

implementation of the domain name system that maps
an Internet host name such as bozo.cs.umd.edu to its
IP address—a string of numbers such as 128.8.128.38.
BIND’s flaw involved a buffer overflow in the inverse
query directive to BIND, which maps an IP address
back to the host’s fully qualified domain name.

CERT/CC disclosed and made public the problem
on 8 April 1998.12 Almost two months later, crackers
automated exploitation of the flaw. Rumors circulated
that the flaw had been known for months prior to the
CERT/CC advisory’s release, but we have yet to sub-
stantiate these allegations.

Figure 5 shows the histogram for incidents involv-
ing BIND. Given that BIND is part of the Internet’s
infrastructure, you would expect more aggressive

management of the hosts running it. Indeed, such
aggressiveness is reflected in the relatively short time
during which attackers successfully exploited BIND’s
vulnerability: six months compared to the year or
more for the phf and IMAP vulnerabilities. Still, six
months is far too long for a host to remain vulnerable
to a known and corrected security flaw.

THE GREAT DEBATE
For years, the security community has debated the

issue of full and open disclosure of vulnerability infor-
mation. Briefly, the arguments for withholding vul-
nerability information from the public derive from the
belief that potential intruders will use such informa-
tion to increase their effectiveness. Worse, some fear
that intruders would use the information to carry out
yet more intrusions, thus the disclosure would be more
harmful than helpful to the public. The argument for
releasing vulnerability information to the public stems
from the belief that crackers already know the infor-
mation—but system administrators don’t.

This debate began when CERT/CC issued its first
advisory and has continued unabated since then. One
reason for the debate’s persistence is the lack of empir-
ical evidence to support either side—until now.

Automation is key
In our research, we found that automating a vul-

nerability, not just disclosing it, serves as the catalyst
for widespread intrusions. In each case study, patches
for the vulnerability were available at least a month
before target sites reported intrusions to CERT.

December 2000 57

80

70

60

50

40

20

30

10

0

Discovered
Corrected
Scripted

3/9
7

4/9
7

5/9
7

6/9
7

7/9
7

8/9
7

9/9
7

10
/97

11
/97

12
/97 1/9

8
2/9

8
3/9

8
4/9

8
5/9

8
6/9

8
7/9

8
8/9

8
9/9

8
10

/98
11

/98
12

/98 1/9
9

2/9
9

3/9
9

4/9
9

5/9
9

6/9
9

7/9
9

N
u

m
b

er
 o

f
in

tr
u

si
o

n
s

Month/year

Figure 4. IMAP incident histogram. This study actually tracks two flaws, both of which exploited buffer overflow vulnerabilities in the IMAP server.

58 Computer

Further, the patches were generally available shortly
after or concurrent with the vulnerability’s public dis-
closure. Thus, while open disclosure obviously works,
the availability of patches prior to the upswing in
intrusions implies that deployment of corrections is
woefully inadequate. We cannot dismiss, however,
that scripting always follows disclosure—as it logi-
cally must. As such, disclosure may be a second-order
driving force behind an increase in intrusions.

The most compelling conclusion from this research,
however, is the surprisingly poor state in which admin-
istrators maintain systems. Many systems remain vul-
nerable to security flaws months or even years after
corrections become available. When we began this
research, we expected to obtain a graph similar to the
one shown in Figure 1. We knew intuitively, and from
anecdotal evidence, that attackers exploit most sys-
tems through widely known security vulnerabilities.
We did not, however, anticipate that almost all
reported intrusions could have been prevented had the
systems been actively managed, with all security-rel-
evant corrections installed.

Tardy deployment
Even considering the data’s sampling issues, we

uncovered overwhelming evidence that a significant
problem exists in the deployment of corrections to
security problems. This evidence prompts us to con-
clude that most current Internet intrusions could be
prevented with better systems management—or at
least with the timely deployment of security correc-
tions.

We admit, however, that the intrusions these mea-
sures prevent would likely only be nuisance attacks by
script kiddies, and that more sophisticated attackers
would likely remain successful. Still, preventive mea-
sures would reduce the overall noise level of intrusions,
permitting the allocation of more time and resources
to detecting and investigating sophisticated attacks.

Likewise, life for sophisticated attackers would
become more difficult, as they could no longer exploit
a system using the easy entry methods favored by
script kiddies. The remaining alternatives—more
sophisticated attacks—might fail because of the
attack’s very complexity, or the attack might be
detected thanks to the lack of surrounding noise. On
the other hand, until we can eliminate the ambient
noise that such nuisance attacks cause, detecting cur-
rent and future sophisticated attacks will remain sig-
nificantly more difficult, if not impossible.

Managing systems actively
Active systems management represents the most

cost-effective means of increasing the security of
information systems because it hardens current sys-
tems against exploitation and eases detection of the
more damaging, sophisticated attacks. At a minimum,
a system with all current security-related corrections
in place presents a harder target than an equivalent
system without such corrections.

Achieving active systems management requires
meeting several research challenges. First, we must
make an a priori determination of a system’s current
state. While making an approximate determination is
easy, determining the state with complete accuracy is
extremely difficult.

Next, when we determine that the system is in a vul-
nerable or, worse, compromised state, we need to iden-
tify and apply the set of transitions required to move
the system to a hardened state. Again, while a first
approximation for this task is easy, a complete and
accurate solution is difficult.

Finally, as with every process, active systems man-
agement requires independent auditing to ensure
proper operation. Providing an auditing capability,
possibly in a compromised environment, is an
extremely difficult problem.

Active systems management is not the complete
answer, however. While exploiting actively managed
systems is more difficult, they are not immune to
exploitation. As such, we must use additional pre-
cautions to fully protect sensitive systems.

In the future, we plan to expand our work into two
areas: collection and analysis of data and active sys-
tems management. With respect to additional col-

lection and analysis, we are currently performing a
statistical analysis of the three case studies to identify
any possible correlations among the vulnerabilities.
We will also analyze additional case studies to identify
new vulnerability life cycles beyond the three we’ve
described. With respect to active systems management,
through the University of Maryland’s newly established
Active Systems Management research program we are
aggressively pursuing the challenges we’ve described.

Discovered
Corrected
Scripted

4/98 5/98 6/98 7/98 8/98 9/98 10/98 11/98

60

50

40

20

30

10

0

N
u

m
b

er
 o

f
in

tr
u

si
o

n
s

Month/year

Figure 5. BIND incident histogram. Part of the Internet’s infrastructure, BIND suffered
attacks for a much shorter period of time than did phf and IMAP, thanks to aggressive
countermeasures.

Over the long term, prevention, achieved at the
design and development stages by a determined effort
to expunge vulnerabilities from systems before they
enter service, offers the best hope of thwarting attack-
ers. In the meantime, however, active systems man-
agement offers the potential for a dramatic increase
in the protection of information systems beyond the
current state of practice. ✸

Acknowledgments
The authors thank the staff of the operations team at

Carnegie Mellon University’s CERT/CC and Bobby
Bhattacharjee and Bill Pugh of the University of
Maryland for their assistance with the research for this
article. This research was sponsored in part by a Faculty
Partnership award from the IBM Corporation and by
the US Department of Defense. The Software Engi-
neering Institute is sponsored by the US Department of
Defense.

References
1. J.D. Howard, “An Analysis of Security Incidents on the

Internet,” Engineering and Public Policy, Carnegie Mel-
lon Univ., Pittsburgh, 1997.

2. Government Accounting Office, Information Security:
Computer Attacks at Department of Defense Pose
Increasing Risks, Washington, D.C., 1996.

3. B. Schneier, Closing the Window of Exposure: Reflec-
tions on the Future of Security, Securityfocus.com, 2000,
http://www.securityfocus.com/templates/forum_message.
html?forum=2&head=3384&id=3384.

4. K. Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems,” BS/MS
thesis, June 1999.

5. J. Myers, “CGI Security: Escape Newlines,” Bugtraq,
1996, http://www.securityfocus.com/archive/1/4262.

6. M. Crispin, “RFC206—Internet Message Protocol”—
version 4, revision 1, Internet Engineering Task Force,
1996.

7. D. Sacerdote, “imapd and ipop3d hole,” 1997, Bugtraq,
http://www.securityfocus.com/archive/1/6370.

8. CERT Coordination Center, CERT Advisory CA-1997-
09: “Vulnerability in IMAP and POP,” http://www.cert.
org/advisories/CA-1997-09.html, Pittsburgh, 1997.

9. T. Gray, “Attention: Please Update Your Imapd,”
pine-announce, 1998, http://www.washington.edu/pine/
pine-info/1998.07/msg00062.html.

10. Anonymous, “EMERGENCY: New Remote Root
Exploit in UW imapd,” 1998, Bugtraq, http://www.
securityfocus.com/archive/1/9929.

11. CERT Coordination Center, CERT Advisory CA-1998-
.09.imapd: “Buffer Overflow in Some Implementations
of IMAP Servers,” http://www.cert.org/advisories/
CA-1998.09.imapd.html, 1998.

12. CERT Coordination Center, CERT Advisory CA-
98.05.bind_problems, “Multiple Vulnerabilities in BIND,”
http://www.cert.org/advisories/CA-1998.05.bind_prob-
lems. html, 1998.

William (Bill) A. Arbaugh is an assistant professor of
computer science at the University of Maryland, Col-
lege Park. Previously, he worked for ten years with
the Information Systems Security Research and Engi-
neering groups of the US Department of Defense. His
research interests are information systems security,
focusing on embedded systems and active systems
management. Arbaugh received a PhD in computer
science from the University of Pennsylvania. Contact
him at waa@cs.umd.edu.

William L. Fithen is a senior member of the technical
staff at the Software Engineering Institute, a federally
funded research and development center operated by
Carnegie Mellon University. He works in the CERT
Coordination Center, part of the Networked Surviv-
able Systems program. Fithen received an MS in com-
puter science from Louisiana Tech University. Contact
him at wlf@cert.org.

John McHugh is a senior member of the technical staff
in the Networked Systems Survivability Program at the
Software Engineering Institute, where he performs
research on information assurance and computer secu-
rity. He received a PhD in computer science from the
University of Texas. Contact him at jmchugh@cert.org.

Distributed Systems Online

cluster computing

distributed agents

distributed databases

distributed multimedia

grid computing

middleware

mobile & wireless systems

operating systems

real-time systems

security

c o m p u t e r . o r g / d s o n l i n e

I E E E

collaborative computing

dependable systems

